ON NON-CO-HOPFIAN *p*-GROUPS WITH FINITE DERIVED SUBGROUP

AHMET ARIKAN

Gazi Üniversitesi, Gazi Eğitim Fakültesi, Matematik Eğitimi Anabilim Dalı, 06500 Beşevler, Ankara, Turkey e-mail: arikan@gazi.edu.tr

(Received 6 June, 2003; accepted 27 November, 2003)

Abstract. In this article the following are proved: 1. Let *G* be an infinite *p*-group of cardinality either \aleph_0 or greater than 2^{\aleph_0} . If *G* is center-by-finite and non-Černikov, then it is non-co-Hopfian; that is, *G* is isomorphic to a proper subgroup of itself. 2. Let *G* be a nilpotent *p*-group of class 2 with G/G' a non-Černikov group of cardinality \aleph_0 or greater than 2^{\aleph_0} . If *G'* is of order *p*, then *G* is non-co-Hopfian.

2000 Mathematics Subject Classification. 20E07, 20F18, 20F24.

1. Introduction. A group G is *co-Hopfian* if every injective endomorphism of G is an isomorphism; that is, G has no proper subgroup isomorphic to itself. Non-co-Hopfian groups in some classes of groups are considered by many authors. The class of abelian p-groups is well known. R. A. Beaumont and R. S. Pierce [4] showed that if the cardinality of a reduced abelian p-group G is either \aleph_0 or greater than 2^{\aleph_0} , then G is non-co-Hopfian. But P. Crawley [7] constructed an infinite abelian p-group without elements of infinite height that is co-Hopfian. Also J. M. Irwin and T. Ito [11] considered some co-Hopfian abelian p-groups with some additional properties. See also [1], [3], [12] for more details. In view of these results it seems natural to ask which infinite nilpotent p-groups with finite derived subgroup as the results with some restrictions show in the sequel.

In [2], [5], [6] the class \mathbf{K} of locally finite groups all of whose Sylow subgroups are Černikov is considered. In [6], V. V. Belyaev showed that if G is a countable locally soluble \mathbf{K} -group then G is co-Hopfian if and only if G is hyperfinite, which was conjectured by R. Baer. This result is proved by S. D. Bell in [5] for locally finite groups independently, using character theoretic ideas. See [9] for more details.

In recent years, H. Smith and J. Wiegold [14], [15], [16] considered some non-co-Hopfian groups which are isomorphic to their non-nilpotent or non-abelian subgroups.

See also [8], [18] for some other results.

In this article we consider the class of center-by-finite p-groups (which is a subclass of the class of all locally finite FC-groups) and nilpotent p-groups of class two with derived subgroup of order p and prove the following results.

THEOREM 1. Let G be an infinite p-group of cardinality either \aleph_0 or greater than 2^{\aleph_0} . If G is center-by-finite and non-Černikov then it is non-co-Hopfian.

THEOREM 2. Let G be a nilpotent p-group of class 2 with G/G' a non-Černikov group of cardinality \aleph_0 or greater than 2^{\aleph_0} . If G' is of order p then G is non-co-Hopfian.

AHMET ARIKAN

2. Center-by-finite *p*-groups. We start with a Lemma which may be helpful to see the structures of the groups in some classes. Here we consider *center-by-finite p*-groups since these groups are always considered as an important subclass of the class of all locally finite *FC*-groups.

LEMMA 1. Let G = FA be an infinite p-group with A an abelian group of cardinality \aleph_0 or greather than 2^{\aleph_0} and F a subgroup of G. If A is non-Černikov, $A \cap F$ is finite and [A, F] = 1, then G is non-co-Hopfian.

Proof. By Theorem 21.3 of [10] there exist radicable and reduced subgroups D and R respectively such that $A = D \times R$. First suppose that D is a direct product of infinitely many p^{∞} -type subgroups. Hence there exists a subgroup U of D that is a direct product of countably many p^{∞} -type subgroups A_1, A_2, \ldots such that $D = U \times V$ for some subgroup V of D and $F \cap A$ is contained in $A_1 \ldots A_r$ for a natural number r. If A_i $(i = 1, 2, \ldots)$ is generated by $a_{i,k}$ for $k = 1, 2, \ldots$ then put

$$X = RV\langle A_1, \ldots, A_r, A_{r+2}, \ldots \rangle$$

and define ϕ from A to X by $\phi(a_{i,k}) = a_{i,k}$ for i = 1, ..., r and for all k, $\phi(a_{i,k}) = a_{i+1,k}$ for i > r and $\phi(x) = x$ for all $x \in RV$. Now it is not difficult to see that ϕ is an isomorphism. If we define Φ from G to FX as $\Phi(fg) = f(\phi(g))$ for all $f \in F$ and $g \in A$ then since [A, F] = 1, Φ is a homomorphism. Let fg be in the kernel of Φ . Then $\phi(g) = f^{-1}$ is contained in $X \cap F$ and, since ϕ fixes $X \cap F$ elementwise, g is contained in $X \cap F$. This implies that $g = f^{-1}$; that is, fg = 1. Hence Φ is a monomorphism. It is obvious that Φ is onto and since $F \cap A$ is contained in X, FX is a proper subgroup of G and thus G is non-co-Hopfian.

Now suppose *D* is a direct product of finitely many p^{∞} -type subgroups. Hence *R* must be infinite. If *R* has finite exponent then *R* has an infinite direct factor which is a direct product of countably many cyclic subgroups. If *R* is countable of infinite exponent then by Exercise 8(a) on page 67 of [10] *R* again has an infinite direct factor which is the product of countably many cyclic subgroups. If *R* is of cardinality greater than 2^{\aleph_0} then by the proof of the Theorem (Case 3) [11, p 152] *R* has an infinite direct factor as in the previous two cases. Hence in every case there are subgroups *M*, *N* of *R* such that $R = M \times N$ and *M* is the direct product of countably many cyclic subgroups $\langle y_i \rangle$ of order p^{k_i} such that $p^{k_i} \leq p^{k_{i+1}}$ for $i = 1, 2, \ldots$. Now there exists a natural number *n* such that

$$(F \cap A) \leq \left(Dr_{i=1}^{n-1} \langle y_i \rangle \right).$$

Put

$$Y = ND(y_1, \ldots, y_{n-1}, y_{n+1}, \ldots)$$

and define θ from A to Y as $\theta(y_i) = y_i$ for i = 1, ..., n - 1, $\theta(y_i) = y_{i+1}^{p^{k_{i+1}-k_i}}$ for $i \ge n$ and $\theta(x) = x$ for all $x \in ND$. Now θ is an isomorphism. Define γ from G to FY as $\gamma(fg) = f(\theta(g))$ for all $f \in F, g \in A$. Now, γ is an isomorphism and since $F \cap A$ is contained in Y, FY is a proper subgroup of G and again G is non-co-Hopfian, as desired.

Proof of Theorem 1. There is a finite subgroup F such that G = ZF where Z is the center of G. Hence G satisfies the hypothesis of Lemma 1 and so G is non-co-Hopfian.

3. Nilpotent groups of class two with derived subgroup of order *p*. Now we give a technical Lemma which concentrates on the derived factor group of a group and plays a crucial role in the proof of Theorem 2.

LEMMA 2. Let G be a countably infinite nilpotent p-group of class 2 and let K/G' be a subgroup of G/G' that is a direct product of cyclic subgroups $\langle y_iG' \rangle$ such that y_iG' is of order p^{k_i} and $p^{k_i} < p^{k_{i+1}}$ for i = 1, 2, ... If G' is of order p then K is non-co-Hopfian.

Proof. Let z be a generator of G'. If $y_i^{p^{k_i}} = z^v$ where 0 < v < p then by considering the multiplicative inverse l of v in the field of elements modulo p we take y_i^l in place of y_i . Now $y_i^{p^{k_i}}$ can be 1 or z. By reordering the y_i we have that K = HL and $H \cap L = G'$, where H and L are subgroups of K such that if y_i is in H then $y_i^{p^{k_i}} = 1$ and if it is in L then $y_i^{p^{k_i}} = z$, and the $\langle y_i \rangle$ are ordered separately in H and L such that y_iG' is of order p^{k_i} and $p^{k_i} < p^{k_{i+1}}$ for i = 1, 2, ..., as in the hypothesis. Clearly H or L is infinite. We first assume that both subgroups are infinite and show that they are non-co-Hopfian.

Every element k of H (and of L) can be written in the form

$$k = \left(\prod_{i=1}^r y_i^{t_i}\right)u$$

where $0 \le t_i < p^{k_i}$, *u* is in *G'* and in this expression *u* and $y_i^{t_i}$ are uniquely determined whenever t_i is non-zero. Let *M* denote either of *H*, *L* and define ϕ from *M* to *Y* as

$$\phi(k) = \left[\prod_{i=1}^{r} \left(y_i y_{i+1}^{(p^{k_{i+1}-k_i)}} \dots y_{i+p}^{(p^{k_{i+p}-k_i})} \right)^{t_i} \right] u$$

where

$$Y = \langle y_i y_{i+1}^{(p^{k_{i+1}-k_i)}} \dots y_{i+p}^{(p^{k_{i+p}-k_i})}, G' \mid i = 1, 2, \dots \rangle.$$

Since G' has order p, G^p is contained in the center of G and we have

$$\phi(k) = \left(\prod_{i=1}^{r} y_i^{t_i} y_{i+1}^{t_i(p^{k_{i+1}-k_i)}} \dots y_{i+p}^{t_i(p^{k_{i+p}-k_i})}\right) u.$$

We shall show in detail that ϕ is an isomorphism.

Since K/G' is a direct product of cyclic groups $\langle y_i G' \rangle$ (for i = 1, 2, ...), the set $\{y_i G' : i = 1, ..., r\}$ is linearly independent and thus ϕ is well-defined. Let

$$l = (\prod_{i=1}^r y_i^{s_i})v,$$

where $0 \le s_i < p^{k_i}$ and v is in G'. Then

$$kl = (\Pi_{i=1}^{r} y_{i}^{t_{i}}) (\Pi_{i=1}^{r} y_{i}^{s_{i}}) uv = \Pi_{i=1}^{r} (y_{i}^{t_{i}+s_{i}}) uv w$$

for an element *w* of *G'* (*w* can be calculated in terms of the commutators). First assume that $(t_i + s_i) < p^{k_i}$ for all i = 1, ..., r and put $n_i = t_i + s_i$ for i = 1, ..., r. Now

$$kl = \left(\prod_{i=1}^{r} y_i^{n_i}\right) uvw$$

and it is in the form stated above. Thus

$$\phi(kl) = \left[\prod_{i=1}^r (y_i^{n_i} y_{i+1}^{n_i(p^{k_{i+1}-k_i})} \dots y_{i+p}^{n_i(p^{k_{i+p}-k_i})}) \right] uvw,$$

since $uvw \in G'$ and ϕ fixes uvw by the definition of ϕ . We also see that

$$\begin{split} \phi(k)\phi(l) &= \left[\prod_{i=1}^{r} y_{i}^{t_{i}} y_{i+1}^{t_{i}(p^{k_{i+1}-k_{i})}} \dots y_{i+p}^{t_{i}(p^{k_{i+p}-k_{i})}} \right] \left[\prod_{i=1}^{r} y_{i}^{s_{i}} y_{i+1}^{s_{i}(p^{k_{i+1}-k_{i})}} \dots y_{i+p}^{s_{i}(p^{k_{i+p}-k_{i})}} \right] uv \\ &= \left[\prod_{i=1}^{r} y_{i}^{s_{i}+t_{i}} y_{i+1}^{(s_{i}+t_{i})(p^{k_{i+1}-k_{i})}} \dots y_{i+p}^{(s_{i+1}+t_{i})(p^{k_{i+p}-k_{i})}} \right] uvw \\ &= \left[\prod_{i=1}^{r} y_{i}^{n_{i}} y_{i+1}^{n_{i}(p^{k_{i+1}-k_{i})}} \dots y_{i+p}^{n_{i}(p^{k_{i+p}-k_{i})}} \right] uvw, \end{split}$$

since G^p is contained in Z(G). Now assume that there exist $m_1, \ldots, m_c \in \{1, \ldots, r\}$ such that $t_{m_j} + s_{m_j} \ge p^{k_{m_j}}$ for $j = 1, \ldots, c$. Then there exist d_{m_j} and w_{m_j} such that $t_{m_j} + s_{m_j} = p^{k_{m_j}} w_{m_j} + d_{m_j}$ and $0 \le d_{m_j} < p^{k_{m_j}}$. Since $t_{m_j} + s_{m_j} < 2p^{k_{m_j}}$ we have $w_{m_j} = 1$ and thus $t_{m_j} + s_{m_j} = p^{k_{m_j}} + d_{m_j}$. Define

$$n_i = \begin{cases} t_i + s_i & \text{if } t_i + s_i < p^{k_i}, \\ d_i & \text{if } t_i + s_i \ge p^{k_i}. \end{cases}$$

Now $0 \le n_i < p_{k_i}$ for $i = 1, \ldots, r$ and

$$kl = \left(\prod_{i=1}^r y_i^{n_i}\right) \left(\prod_{j=1}^c y_{m_j}^{p^{k_{m_j}}}\right) uvw.$$

Put $g = (\prod_{j=1}^{c} y_{m_j}^{p^{k_{m_j}}})$. Then g = 1 or z^c according to whether *M* is *H* or *L*, respectively. It follows that

$$\phi(kl) = \left[\prod_{i=1}^{r} y_{i}^{n_{i}} y_{i+1}^{n_{i}(p^{k_{i+1}-k_{i}})} \dots y_{i+p}^{n_{i}(p^{k_{i+p}-k_{i}})} \right] guvw,$$

since $guvw \in G'$ and ϕ fixes guvw by the definition of ϕ . We also have

$$\begin{split} \phi(k)\phi(l) &= \left[\Pi_{i=1}^{r} y_{i}^{t_{i}} y_{i+1}^{t_{i}(p^{k_{i+1}-k_{i})}} \dots y_{i+p}^{t_{i}(p^{k_{i+p}-k_{i}})}\right] \left[\Pi_{i=1}^{r} y_{i}^{s_{i}} y_{i+1}^{s_{i}(p^{k_{i+1}-k_{i}})} \dots y_{i+p}^{s_{i}(p^{k_{i+p}-k_{i}})}\right] uv \\ &= \left[\Pi_{i=1}^{r} y_{i}^{s_{i}+t_{i}} y_{i+1}^{(s_{i+1}+i)(p^{k_{i+1}-k_{i}})} \dots y_{i+p}^{(s_{i+1}+i)(p^{k_{i+p}-k_{i}})}\right] uvw \\ &= \left[\Pi_{i=1}^{r} y_{i}^{n_{i}} y_{i+1}^{n_{i}(p^{k_{i+1}-k_{i}})} \dots y_{i+p}^{n_{i}(p^{k_{i+p}-k_{i}})}\right] \left[\Pi_{j=1}^{c} y_{m_{j}}^{p^{k_{m_{j}}}} y_{m_{j}+1}^{p^{k_{m_{j}}+p}} \right] uvw \\ &= \left[\Pi_{i=1}^{r} y_{i}^{n_{i}} y_{i+1}^{n_{i}(p^{k_{i+1}-k_{i})}} \dots y_{i+p}^{n_{i}(p^{k_{i+p}-k_{i}})}\right] guvw, \end{split}$$

since $[\prod_{j=1}^{c} y_{m_j}^{p^{k_{m_j}}} y_{m_j+1}^{p^{k_{m_j+1}}} \dots y_{m_j+p}^{p^{k_{m_j+p}}}]$ is either equal to 1 or $(z^{p+1})^c = z^c$. This yields that ϕ is a homomorphism.

Let bars denote subgroups and elements modulo G'. If k is in $ker\phi$ then we have

$$\Pi_{i=1}^{r} \left(\bar{y}_{i}^{t_{i}} \bar{y}_{i+1}^{t_{i}(p^{k_{i+1}-k_{i})}} \dots \bar{y}_{i+p}^{t_{i}(p^{k_{i+p}-k_{i}})} \right) = 1.$$

Now $p^{k_i} | t_i$ for i = 1, 2, ... and this implies that k = 1. Consequently, we see that ϕ is an isomorphism and M is non-co-Hopfian.

Let y_1 be an element of Y. Then

$$\bar{y}_1 = \left[\bar{y}_1 \bar{y}_2^{(p^{k_2-k_1})} \dots \bar{y}_{1+p}^{(p^{k_{p+1}-k_1})}\right]^{m_1} \dots \left[\bar{y}_r \bar{y}_{r+1}^{(p^{k_{r+1}-k_r})} \dots \bar{y}_{r+p}^{(p^{k_{r+p}-k_r})}\right]^{m_r},$$

for some $r \ge 1$. If $r \ge 2$, then $p^{k_r} \mid m_r$, since $p^{k_{r+p}} \mid (p^{k_{r+p}}m_r)$. This implies that

$$\bar{y}_1 = [\bar{y}_1 \bar{y}_2^{(p^{k_2-k_1})} \dots \bar{y}_{1+p}^{(p^{k_{p+1}-k_1})}]^{m_1}$$

366

Now we see that m_1 is of the form $p^{k_1}t + 1$ and $p^{k_2} | [(p^{k_1}t + 1)(p^{k_2-k_1})]$. But then $p^{k_1} | 1$, a contradiction.

Finally, we will show that K = HL is non-co-Hopfian assuming that H is infinite (if L is infinite then the same method can be used). Define θ from G to YL as $\theta(hl) = \phi(h)l$. Since ϕ fixes G' elementwise, θ is well-defined. If

$$h = \left(\prod_{i=1}^r y_i^{s_i} \right) u,$$

then

$$l^{\phi(h)} = l^{(\prod_{i=1}^{r} y_{i}^{s_{i}} y_{i+1}^{s_{i}(p^{k_{i+1}-k_{i}})} \dots y_{i+p}^{s_{i}(p^{k_{i+p}-k_{i}})})u} = l^{(\prod_{i=1}^{r} y_{i}^{s_{i}})u} = l^{h},$$

since $y_{i+1}^{s_i(p^{k_{i+1}-k_i})} \dots y_{i+p}^{s_i(p^{k_{i+p}-k_i})}$ is contained in the center of *G*. This shows that θ is a homomorphism. It is not difficult to see that the kernel of θ is trivial and *YL* is proper in *K*. Therefore *K* is non-co-Hopfian.

Proof of Theorem 2. Case 1. G/G' is reduced. Suppose first $card(G/G') = \aleph_0$ and G/G' is of infinite exponent. Then it has a direct factor K/G' which is a direct product of cyclic subgroups with strictly increasing order by Exercise 8(a) on page 67 of [10]. Now there is a subgroup N of G such that G = KN and $N \cap K = G'$. By Lemma 2, K is non-co-Hopfian. Let θ and ϕ be as in the proof of Lemma 2 and let $K_1 = \theta(K)$. Define γ from G to K_1N as $\gamma(kn) = \theta(k)n$. Since K = HL where H and L are as in the proof of Lemma 2,

$$n^{\theta(k)} = n^{\theta(hl)} = n^{\phi(h)l} = n^{hl}.$$

Hence we obtain that γ is a homomorphism. Since $K \cap N = G'$ and θ fixes G' elementwise, $ker\gamma$ is trivial. Consequently, γ is an isomorphism and thus G is non-co-Hopfian.

Now let bars denote subgroups and elements modulo G' and suppose \overline{G} has finite exponent. Then $\overline{G} = \overline{B}_1 \times \ldots \times \overline{B}_m$ where \overline{B}_k is a (possibly trivial) direct product of cyclic subgroups of order p^k for $k = 1, \ldots, m$ and some \overline{B}_j is infinite. Suppose j > 1. \overline{B}_j has an infinite subgroup \overline{U} which is a direct product of countably many cyclic subgroups $\langle \overline{y}_i \rangle$ of order p^j such that $\overline{B}_j = \overline{U} \times \overline{V}$ for some subgroup \overline{V} of \overline{B}_j . Put

$$M = B_1 \dots B_{j-1} V B_{j+1} \dots B_m \langle y_i y_{i+1}^p | i = 1, 2, \dots \rangle$$

and define γ from *G* to *M* as $\gamma(y_i) = y_i y_{i+1}^p$ for i = 1, 2, ... and $\gamma(x) = x$ for all $x \in B_1 \dots B_{j-1} V B_{j+1} \dots B_m$. Using an argument as in the proof of Lemma 2 and the fact that $y_{j+1}^{p^{j+1}} = 1$ we can show that γ is an isomorphism and $M \neq G$. Hence *G* is non-co-Hopfian. If j = 1, then \overline{B}_1 is an infinite elementary abelian *p*-group. Now \overline{B}_1 has a direct factor \overline{H} which is a direct product of countably many cyclic subgroups such that $\overline{B}_1 = \overline{H} \times \overline{L}$ for a subgroup \overline{L} of \overline{G} . Put $G' = \langle z \rangle$ and define $\phi : \overline{H} \times \overline{H} \to GF(p)$ as $\phi(\overline{a}, \overline{b}) = k$ where $[a, b] = z^k$. It is easy to show that ϕ is a non-degenerate, alternating bilinear form. Since $\dim_F(\overline{H})$ is countable where F = GF(p), \overline{H} is an orthogonal direct product of hyperbolic planes then we can find a_i, b_i for $i = 1, 2, \ldots$ such that $H = \langle a_1, b_1 \rangle \langle a_2, b_2 \rangle \dots$ where $[a_1, b_1] = [a_2, b_2] = \dots$ and $[\langle a_i, b_i \rangle, \langle a_j, b_j \rangle] = 1$ if $i \neq j$. Now define γ from *G* to *Y* as $\gamma(a_i) = a_{i+1}, \gamma(b_i) = b_{i+1}$ and $\gamma(x) = x$ for all $x \in L$

where

$$Y = L\langle a_i, b_i \mid i = 2, 3, \ldots \rangle.$$

Then γ is an isomorphism, $Y \neq G$ and thus G is non-co-Hopfian.

Finally suppose \overline{G} is of infinite exponent and cardinality greater than 2^{\otimes_0} . Then

$$\bar{G} = \bar{B}_1 \times \ldots \times \bar{B}_i \times \bar{G}_i$$

for a subgroup \bar{G}_j of \bar{G} . By the proof of the Theorem (Case 3) on page 152 of [11] some \bar{B}_j must be infinite. Arguing the same way as in the previous case we see that G is non-co-Hopfian for j = 1 and for j > 1 with few changes. If \bar{G} is of finite exponent then again the above arguments work.

Case 2. G/G' is not reduced. Now if D/G' is the radicable part of G/G' then $G/G' = D/G' \times R/G'$ for a reduced subgroup R/G' of G/G' by Theorem 21.3 of [10]. If D is non-abelian then D' = G' and hence D is radicable by Theorem 9.23 of [13]. This implies that D is abelian by Corollary 2 to Theorem 9.23 of [13], a contradiction. If D is not radicable then $D = G' \times D^p$ and thus D^p is radicable. Put $A = D^p$ then G = AR and A centralizes R. Hence R cannot be abelian, since G is nilpotent of class two. Now card(R) or card(A) is either \aleph_0 or greater than 2^{\aleph_0} ; otherwise card(G/G') would equal 2^{\aleph_0} . If card(A) has that property, then G is non-co-Hopfian by Lemma 1. Hence we may assume that card(R) has the above property. If we define Φ as $\Phi(ar) = a\gamma(r)$ for all $a \in A$ and $r \in R$ then Φ is an isomorphism and thus G is non-co-Hopfian. This completes the proof.

ACKNOWLEDGMENT. The author is grateful to Professor Martyn Russell Dixon for many helpful discussions and to the referee for valuable comments and suggestions.

REFERENCES

1. R. Baer, Groups without proper isomorphic quotient groups, *Bull. Amer. Math. Soc.* 51 (1944), 267–277.

2. R. Baer, Lokal endlich-auflösbare Gruppen mit endlichen Sylowuntergruppen, *J. Reine Angew. Math* **239/240** (1970), 109–144.

3. R. A. Beaumont, Groups with isomorphic proper subgroups, *Bull. Amer. Math. Soc.* 51 (1945), 381–387.

4. R. A. Beaumont and R. S. Pierce, Partly transitive modules and modules with proper isomorphic submodules, *Trans. Amer. Math. Soc.* **91** (1959), 209–219.

5. S. D. Bell, *Locally finite groups with Černikov Sylow subgroups*, PhD thesis (University of Manchester, 1989).

6. V. V. Belyaev, Locally inner endomorphisms of *SF*-groups, *Algebra and Logic* **27** (1988), 1–11.

7. P. Crawley, An infinite primary abelian *p*-group without proper isomorphic subgroups, *Bull. Amer. Math. Soc.* **68** (1962), 463–467.

8. S. Deo and K. Varadarajan, Hopfian and co-Hopfian groups, *Bull. Austral. Math. Soc.* 56 (1997), 17–24.

9. M. R. Dixon, Sylow theory, formations and fitting classes (World Scientific, 1994).

10. L. Fuchs, Infinite abelian groups, Vols. 1 and 2 (Academic Press, 1973).

11. J. M. Irwin and T. Ito, A quasi-decomposable abelian group without proper isomorphic quotient groups, *Pacific J. Math.* **29** (1969), 151–160.

12. I. Kaplansky, A note on groups without isomorphic subgroups, *Bull. Amer. Math. Soc.* 51 (1945), 529–530.

368

13. D. J. S. Robinson, *Finiteness conditions and generalized soluble groups*, Vols. 1 and 2 (Springer-Verlag, 1972).

14. H. Smith and J. Wiegold, Groups which are isomorphic to their nonabelian subgroups, *Rend. Sem. Mat. Univ. Padova* 97 (1997), 7–16.

15. H. Smith and J. Wiegold, Groups isomorphic to their non-nilpotent subgroups, *Glasgow Math. J.*, 40 (1998), 257–262.

16. H. Smith and J. Wiegold, Soluble groups isomorphic to their non-nilpotent subgroups, J. Austral. Math. Soc. Ser. A, 67 (1999), 399–411.

17. M. J. Tomkinson, FC – groups, Research Notes in Mathematics (Pitman, 1984).

18. P. J. Witbooi, Groups for which every subquotient is (co)-Hopfian, New Zealand J. Math. 26 (1997), 301–308.