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Abstract. In this article the following are proved: 1. Let G be an infinite p-group
of cardinality either ℵ0 or greater than 2ℵ0 . If G is center-by-finite and non-Černikov,
then it is non-co-Hopfian; that is, G is isomorphic to a proper subgroup of itself. 2. Let
G be a nilpotent p-group of class 2 with G/G′ a non-Černikov group of cardinality ℵ0

or greater than 2ℵ0 . If G′ is of order p, then G is non-co-Hopfian.

2000 Mathematics Subject Classification. 20E07, 20F18, 20F24.

1. Introduction. A group G is co-Hopfian if every injective endomorphism of G
is an isomorphism; that is, G has no proper subgroup isomorphic to itself. Non-co-
Hopfian groups in some classes of groups are considered by many authors. The class
of abelian p-groups is well known. R. A. Beaumont and R. S. Pierce [4] showed that
if the cardinality of a reduced abelian p-group G is either ℵ0 or greater than 2ℵ0 ,
then G is non-co-Hopfian. But P. Crawley [7] constructed an infinite abelian p-group
without elements of infinite height that is co-Hopfian. Also J. M. Irwin and T. Ito
[11] considered some co-Hopfian abelian p-groups with some additional properties.
See also [1], [3], [12] for more details. In view of these results it seems natural to ask
which infinite nilpotent p-groups are non-co-Hopfian. As a first step it seems suitable
to study infinite nilpotent p-groups with finite derived subgroup as the results with
some restrictions show in the sequel.

In [2], [5], [6] the class K of locally finite groups all of whose Sylow subgroups
are Černikov is considered. In [6], V. V. Belyaev showed that if G is a countable
locally soluble K-group then G is co-Hopfian if and only if G is hyperfinite, which was
conjectured by R. Baer. This result is proved by S. D. Bell in [5] for locally finite groups
independently, using character theoretic ideas. See [9] for more details.

In recent years, H. Smith and J. Wiegold [14], [15], [16] considered some non-co-
Hopfian groups which are isomorphic to their non-nilpotent or non-abelian subgroups.

See also [8], [18] for some other results.
In this article we consider the class of center-by-finite p-groups (which is a subclass

of the class of all locally finite FC-groups) and nilpotent p-groups of class two with
derived subgroup of order p and prove the following results.

THEOREM 1. Let G be an infinite p-group of cardinality either ℵ0 or greater than 2ℵ0 .
If G is center-by-finite and non-Černikov then it is non-co-Hopfian.

THEOREM 2. Let G be a nilpotent p-group of class 2 with G/G′ a non-Černikov group
of cardinality ℵ0 or greater than 2ℵ0 . If G′ is of order p then G is non-co-Hopfian.
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2. Center-by-finite p-groups. We start with a Lemma which may be helpful to see
the structures of the groups in some classes. Here we consider center-by-finite p-groups
since these groups are always considered as an important subclass of the class of all
locally finite FC-groups.

LEMMA 1. Let G = FA be an infinite p-group with A an abelian group of cardinality
ℵ0 or greather than 2ℵ0 and F a subgroup of G. If A is non-Černikov, A ∩ F is finite and
[A, F ] = 1, then G is non-co-Hopfian.

Proof. By Theorem 21.3 of [10] there exist radicable and reduced subgroups D
and R respectively such that A = D × R. First suppose that D is a direct product of
infinitely many p∞-type subgroups. Hence there exists a subgroup U of D that is a
direct product of countably many p∞-type subgroups A1, A2, . . . such that D = U × V
for some subgroup V of D and F ∩ A is contained in A1 . . . Ar for a natural number r.
If Ai (i = 1, 2, . . .) is generated by ai,k for k = 1, 2, . . . then put

X = RV〈A1, . . . , Ar, Ar+2, . . .〉
and define φ from A to X by φ(ai,k) = ai,k for i = 1, . . . , r and for all k, φ(ai,k) = ai+1,k

for i > r and φ(x) = x for all x ∈ RV . Now it is not difficult to see that φ is an
isomorphism. If we define � from G to FX as �( fg) = f (φ(g)) for all f ∈ F and g ∈ A
then since [A, F ] = 1, � is a homomorphism. Let fg be in the kernel of �. Then
φ(g) = f −1 is contained in X ∩ F and, since φ fixes X ∩ F elementwise, g is contained
in X ∩ F . This implies that g = f −1; that is, fg = 1. Hence � is a monomorphism. It is
obvious that � is onto and since F ∩ A is contained in X , FX is a proper subgroup of
G and thus G is non-co-Hopfian.

Now suppose D is a direct product of finitely many p∞-type subgroups. Hence R
must be infinite. If R has finite exponent then R has an infinite direct factor which
is a direct product of countably many cyclic subgroups. If R is countable of infinite
exponent then by Exercise 8(a) on page 67 of [10] R again has an infinite direct factor
which is the product of countably many cyclic subgroups. If R is of cardinality greater
than 2ℵ0 then by the proof of the Theorem (Case 3) [11, p 152] R has an infinite direct
factor as in the previous two cases. Hence in every case there are subgroups M, N of R
such that R = M × N and M is the direct product of countably many cyclic subgroups
〈yi〉 of order pki such that pki ≤ pki+1 for i = 1, 2, . . . . Now there exists a natural number
n such that

(F ∩ A) ≤ (
Drn−1

i=1 〈yi〉
)
.

Put

Y = ND〈y1, . . . , yn−1, yn+1, . . .〉

and define θ from A to Y as θ (yi) = yi for i = 1, . . . , n − 1, θ (yi) = ypki+1−ki

i+1 for i ≥ n
and θ (x) = x for all x ∈ ND. Now θ is an isomorphism. Define γ from G to FY as
γ (fg) = f (θ (g)) for all f ∈ F , g ∈ A. Now, γ is an isomorphism and since F ∩ A is
contained in Y , FY is a proper subgroup of G and again G is non-co-Hopfian, as
desired. �

Proof of Theorem 1. There is a finite subgroup F such that G = ZF where Z is
the center of G. Hence G satisfies the hypothesis of Lemma 1 and so G is non-co-
Hopfian. �
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3. Nilpotent groups of class two with derived subgroup of order p. Now we give a
technical Lemma which concentrates on the derived factor group of a group and plays
a crucial role in the proof of Theorem 2.

LEMMA 2. Let G be a countably infinite nilpotent p-group of class 2 and let K/G′ be
a subgroup of G/G′ that is a direct product of cyclic subgroups 〈yiG′〉 such that yiG′ is of
order pki and pki < pki+1 for i = 1, 2, . . . . If G′ is of order p then K is non-co-Hopfian.

Proof. Let z be a generator of G′. If ypki

i = zv where 0 < v < p then by considering
the multiplicative inverse l of v in the field of elements modulo p we take yl

i in place of
yi. Now ypki

i can be 1 or z. By reordering the yi we have that K = HL and H ∩ L = G′,
where H and L are subgroups of K such that if yi is in H then ypki

i = 1 and if it is in L
then ypki

i = z, and the 〈yi〉 are ordered separately in H and L such that yiG′ is of order
pki and pki < pki+1 for i = 1, 2, . . . , as in the hypothesis. Clearly H or L is infinite. We
first assume that both subgroups are infinite and show that they are non-co-Hopfian.

Every element k of H (and of L ) can be written in the form

k = (
�r

i=1yti
i

)
u

where 0 ≤ ti < pki , u is in G′ and in this expression u and yti
i are uniquely determined

whenever ti is non-zero. Let M denote either of H, L and define φ from M to Y as

φ(k) = [
�r

i=1

(
yiy

(pki+1−ki )

i+1 . . . y(pki+p−ki )
i+p

)ti
]
u

where

Y = 〈
yiy

(pki+1−ki )

i+1 . . . y(pki+p−ki )
i+p , G′ | i = 1, 2, . . .

〉
.

Since G′ has order p, Gp is contained in the center of G and we have

φ(k) = (
�r

i=1yti
i yti(pki+1−ki )

i+1 . . . yti(pki+p−ki )
i+p

)
u.

We shall show in detail that φ is an isomorphism.
Since K/G′ is a direct product of cyclic groups 〈yiG′〉 (for i = 1, 2, . . .), the set

{yiG′ : i = 1, . . . , r} is linearly independent and thus φ is well-defined. Let

l = (
�r

i=1ysi
i

)
v,

where 0 ≤ si < pki and v is in G′. Then

kl = (
�r

i=1yti
i

)(
�r

i=1ysi
i

)
uv = �r

i=1

(
yti+si

i

)
uvw

for an element w of G′ (w can be calculated in terms of the commutators). First assume
that (ti + si) < pki for all i = 1, . . . , r and put ni = ti + si for i = 1, . . . , r. Now

kl = (
�r

i=1yni
i

)
uvw

and it is in the form stated above. Thus

φ(kl) = [
�r

i=1

(
yni

i yni(pki+1−ki )
i+1 . . . yni(pki+p−ki )

i+p
)]

uvw,

https://doi.org/10.1017/S0017089504001843 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089504001843


366 AHMET ARIKAN

since uvw ∈ G′ and φ fixes uvw by the definition of φ. We also see that

φ(k)φ(l) = [
�r

i=1yti
i yti(pki+1−ki )

i+1 . . . yti(pki+p−ki )
i+p

][
�r

i=1ysi
i ysi(pki+1−ki )

i+1 . . . ysi(pki+p−ki )
i+p

]
uv

= [
�r

i=1ysi+ti
i y(si+ti)(pki+1−ki )

i+1 . . . y(si+ti)(pki+p−ki )
i+p

]
uvw

= [
�r

i=1yni
i yni(pki+1−ki )

i+1 . . . yni(pki+p−ki )
i+p

]
uvw,

since Gp is contained in Z(G). Now assume that there exist m1, . . . , mc ∈ {1, . . . , r} such
that tmj + smj ≥ pkmj for j = 1, . . . , c. Then there exist dmj and wmj such that tmj + smj =
pkmj wmj + dmj and 0 ≤ dmj < pkmj . Since tmj + smj < 2pkmj we have wmj = 1 and thus

tmj + smj = pkmj + dmj . Define

ni =
{

ti + si if ti + si < pki ,

di if ti + si ≥ pki .

Now 0 ≤ ni < pki for i = 1, . . . , r and

kl = (
�r

i=1yni
i

)(
�c

j=1ypkmj

mj

)
uvw.

Put g = (�c
j=1ypkmj

mj ). Then g = 1 or zc according to whether M is H or L, respectively.
It follows that

φ(kl) = [
�r

i=1yni
i yni(pki+1−ki )

i+1 . . . yni(pki+p−ki )
i+p

]
guvw,

since guvw ∈ G′ and φ fixes guvw by the definition of φ. We also have

φ(k)φ(l) = [
�r

i=1yti
i yti(pki+1−ki )

i+1 . . . yti(pki+p−ki )
i+p

][
�r

i=1ysi
i ysi(pki+1−ki )

i+1 . . . ysi(pki+p−ki )
i+p

]
uv

= [
�r

i=1ysi+ti
i y(si+ti)(pki+1−ki )

i+1 . . . y(si+ti)(pki+p−ki )
i+p

]
uvw

= [
�r

i=1yni
i yni(pki+1−ki )

i+1 . . . yni(pki+p−ki )
i+p

][
�c

j=1ypkmj

mj
yp

kmj+1

mj+1 . . . yp
kmj+p

mj+p
]
uvw

= [
�r

i=1yni
i yni(pki+1−ki )

i+1 . . . yni(pki+p−ki )
i+p

]
guvw,

since [�c
j=1ypkmj

mj yp
kmj+1

mj+1 . . . yp
kmj+p

mj+p ] is either equal to 1 or (zp+1)c = zc. This yields that φ is
a homomorphism.

Let bars denote subgroups and elements modulo G′. If k is in kerφ then we have

�r
i=1

(
ȳti

i ȳti(pki+1−ki )

i+1 . . . ȳti(pki+p−ki )
i+p

) = 1.

Now pki | ti for i = 1, 2, . . . and this implies that k = 1. Consequently, we see that φ is
an isomorphism and M is non-co-Hopfian.

Let y1 be an element of Y . Then

ȳ1 = [
ȳ1ȳ(pk2−k1 )

2 . . . ȳ(pkp+1−k1 )
1+p

]m1
. . .

[
ȳrȳ

(pkr+1−kr )
r+1 . . . ȳ(pkr+p−kr )

r+p
]mr

,

for some r ≥ 1. If r ≥ 2, then pkr | mr, since pkr+p | (pkr+p mr). This implies that

ȳ1 = [
ȳ1ȳ(pk2−k1 )

2 . . . ȳ(pkp+1−k1 )
1+p

]m1
.
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Now we see that m1 is of the form pk1 t + 1 and pk2 | [(pk1 t + 1)(pk2−k1 )]. But then pk1 | 1,
a contradiction.

Finally, we will show that K = HL is non-co-Hopfian assuming that H is infinite (if
L is infinite then the same method can be used). Define θ from G to YL as θ (hl) = φ(h)l.
Since φ fixes G′ elementwise, θ is well-defined. If

h = (
�r

i=1ysi
i

)
u,

then

lφ(h) = l(�r
i=1ysi

i ysi (pki+1−ki )

i+1 ...ysi (pki+p−ki )
i+p )u = l(�r

i=1ysi
i )u = lh,

since ysi(pki+1−ki )
i+1 . . . ysi(pki+p−ki )

i+p is contained in the center of G. This shows that θ is a
homomorphism. It is not difficult to see that the kernel of θ is trivial and YL is proper
in K . Therefore K is non-co-Hopfian. �

Proof of Theorem 2. Case 1. G/G′ is reduced. Suppose first card(G/G′) = ℵ0 and
G/G′ is of infinite exponent. Then it has a direct factor K/G′ which is a direct product
of cyclic subgroups with strictly increasing order by Exercise 8(a) on page 67 of [10].
Now there is a subgroup N of G such that G = KN and N ∩ K = G′. By Lemma 2,
K is non-co-Hopfian. Let θ and φ be as in the proof of Lemma 2 and let K1 = θ (K).
Define γ from G to K1N as γ (kn) = θ (k)n. Since K = HL where Hand L are as in the
proof of Lemma 2,

nθ(k) = nθ(hl) = nφ(h)l = nhl.

Hence we obtain that γ is a homomorphism. Since K ∩ N = G′ and θ fixes G′

elementwise, kerγ is trivial. Consequently, γ is an isomorphism and thus G is non-co-
Hopfian.

Now let bars denote subgroups and elements modulo G′ and suppose Ḡ has finite
exponent. Then Ḡ = B̄1 × . . . × B̄m where B̄k is a (possibly trivial) direct product of
cyclic subgroups of order pk for k = 1, . . . , m and some B̄j is infinite. Suppose j > 1.
B̄j has an infinite subgroup Ū which is a direct product of countably many cyclic
subgroups 〈ȳi〉 of order pj such that B̄j = Ū × V̄ for some subgroup V̄ of B̄j. Put

M = B1 . . . Bj−1VBj+1 . . . Bm
〈
yiy

p
i+1 | i = 1, 2, . . .

〉

and define γ from G to M as γ (yi) = yiy
p
i+1 for i = 1, 2, . . . and γ (x) = x for all

x ∈ B1 . . . Bj−1VBj+1 . . . Bm. Using an argument as in the proof of Lemma 2 and the
fact that ypj+1

j+1 = 1 we can show that γ is an isomorphism and M �= G. Hence G is non-
co-Hopfian. If j = 1, then B̄1 is an infinite elementary abelian p-group. Now B̄1 has a
direct factor H̄ which is a direct product of countably many cyclic subgroups such that
B̄1 = H̄ × L̄ for a subgroup L̄ of Ḡ. Put G′ = 〈z〉 and define φ : H̄ × H̄ → GF(p) as
φ(ā, b̄) = k where [a, b] = zk. It is easy to show that φ is a non-degenerate, alternating
bilinear form. Since dimF (H̄) is countable where F = GF(p), H̄ is an orthogonal
direct product of hyperbolic planes H̄1, H̄2 . . . . If we consider the pre-image of each
one of these hyperbolic planes then we can find ai, bi for i = 1, 2, . . . such that
H = 〈a1, b1〉〈a2, b2〉 . . . where [a1, b1] = [a2, b2] = . . . and [〈ai, bi〉, 〈aj, bj〉] = 1 if i �= j.
Now define γ from G to Y as γ (ai) = ai+1, γ (bi) = bi+1 and γ (x) = x for all x ∈ L
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where

Y = L〈ai, bi | i = 2, 3, . . .〉.
Then γ is an isomorphism, Y �= G and thus G is non-co-Hopfian.

Finally suppose Ḡ is of infinite exponent and cardinality greater than 2ℵ0 . Then

Ḡ = B̄1 × . . . × B̄j × Ḡj

for a subgroup Ḡj of Ḡ. By the proof of the Theorem (Case 3) on page 152 of [11]
some B̄j must be infinite. Arguing the same way as in the previous case we see that G
is non-co-Hopfian for j = 1 and for j > 1 with few changes. If Ḡ is of finite exponent
then again the above arguments work.

Case 2. G/G′ is not reduced. Now if D/G′ is the radicable part of G/G′ then
G/G′ = D/G′ × R/G′ for a reduced subgroup R/G′ of G/G′ by Theorem 21.3 of [10].
If D is non-abelian then D′ = G′ and hence D is radicable by Theorem 9.23 of [13]. This
implies that D is abelian by Corollary 2 to Theorem 9.23 of [13], a contradiction. If D
is not radicable then D = G′ × Dp and thus Dp is radicable. Put A = Dp then G = AR
and A centralizes R. Hence R cannot be abelian, since G is nilpotent of class two. Now
card(R) or card(A) is either ℵ0 or greater than 2ℵ0 ; otherwise card(G/G′) would equal
2ℵ0 . If card(A) has that property, then G is non-co-Hopfian by Lemma 1. Hence we
may assume that card(R) has the above property. If we define � as �(ar) = aγ (r) for
all a ∈ A and r ∈ R then � is an isomorphism and thus G is non-co-Hopfian. This
completes the proof. �
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