NATURALLY ORDERED REGULAR SEMIGROUPS WITH MAXIMUM INVERSES

by TATSUHIKO SAITO

(Received 24th March 1987)

Introduction

Let S be a regular semigroup. An inverse subsemigroup S° of S is called an *inverse* transversal if S° contains a unique inverse of each element of S. An inverse transversal S° of S is called *multiplicative* if $x^{\circ}xyy^{\circ}$ is an idempotent of S° for every $x, y \in S$, where x° denotes the unique inverse of $x \in S$ in S° . In Section 1, we obtain a necessary and sufficient condition in order for inverse transversals to be multiplicative.

It is well known that the set E(S) of idempotents of a regular semigroup S can be partially ordered by setting $e \omega f \Leftrightarrow ef = fe = e$ for any $e, f \in E(S)$. This partial order is called the natural order on E(S). A partially ordered semigroup $S(\cdot, \leq)$ is called *naturally ordered* if the order \leq extends the natural order ω on E(S), i.e. ef = fe = eimplies $e \leq f$. In this case, there is no assumption that $e \leq f$ implies ef = fe = e.

The interesting results on a naturally ordered regular semigroup S with a greatest idempotent u have been obtained by Blyth and McFadden in [1] as follows.

- (a) Every $x \in S$ has a maximum inverse x° in S.
- (b) The set $S^{\circ} = \{x^{\circ}: x \in S\}$ of maximum inverses of S forms a multiplicative inverse transversal of S, and $S^{\circ} = uSu$.

Let S be a naturally ordered regular semigroup in which each element x has a maximum inverse x°. The Green's relation \mathscr{R} [resp. \mathscr{L}] is called *regular* on S if $x \leq y$ implies $xx^{\circ} \leq yy^{\circ}$ [resp. $x^{\circ}x \leq y^{\circ}y$] for any $x, y \in S$.

A structure theorem on a naturally ordered regular semigroup with maximum inverses has been obtained by Blyth and McFadden ([2, Theorem 6.2]). In this case, there are the assumptions that the set S° of maximum inverses is a multiplicative inverse transversal of S and that \mathcal{R} and \mathcal{L} are regular on S. In Section 2, we show that if \mathcal{R} and \mathcal{L} are regular on a naturally ordered regular semigroup S, then the set S° of maximum inverses of S is a multiplicative inverse transversal of S.

An idempotent u of a regular semigroup S is called medial if x = xux for every $x \in \langle E(S) \rangle$, where $\langle E(S) \rangle$ denotes the subsemigroup of S generated by the set E(S) of idempotents of S. A medial idempotent u is called normal if $u \langle E(S) \rangle u$ is a semilattice. In [5], McAlister and McFadden have shown that a regular semigroup S with a normal

TATSUHIKO SAITO

medial idempotent u can be naturally ordered in such a way that u is the greatest idempotent of S.

In Section 3, we show that if a regular semigroup S has a multiplicative inverse transversal S°, and if x° is the unique inverse of $x \in S$ in S°, then S can be naturally ordered in such a way that x° is the maximum inverse of x, and that \mathscr{R} and \mathscr{L} are regular on S.

1. Multiplicative inverse transversals

Let S be a regular semigroup with an inverse transversal S°. If $x \in S$, the unique element of $V(x) \cap S^{\circ}$ is denoted by x° , and $x^{\circ\circ}$ denotes $(x^{\circ})^{\circ}$, where V(x) denotes the set of inverses of x. A subset Q of S is called a *quasi-ideal* if $QSQ \subseteq Q$.

We restate some results about regular semigroups with inverse transversals which will be used in this paper:

Let S be a regular semigroup with an inverse transversal S° . Then:

- (1°) If S° is multiplicative, then S° is a quasi-ideal of S ([4, Lemma 1.2]).
- (2°) If S° is a quasi-ideal of S, then
 - (i) $e^{\circ} \in E(S^{\circ})$ and $gg^{\circ} = g$ [resp. $f^{\circ}f = f$] imply $e^{\circ}g = e^{\circ}g^{\circ}$ [resp. $fe^{\circ} = f^{\circ}e^{\circ}$] ([4, Lemma 1.6]),
- (ii) $x \mathscr{R} y$ [resp. $x \mathscr{L} y$] implies $xx^\circ = yy^\circ$ [resp. $x^\circ x = y^\circ y$] for every $x, y \in S$ ([4, Proposition 1.7]), and
- (iii) $axb = ax^{\circ\circ}b$ for every $a, b \in S^{\circ}$ and for every $x \in S$ ([7, Proposition 1.7]).

Lemma 1.1. Let S be a regular semigroup with an inverse transversal S° which is a quasi-ideal of S. Suppose that $e^{\circ} \in E(S^{\circ})$ for every $e \in E(S)$. If $x' \in V(x)$ for any $x \in S$, then $(xx')^{\circ} = x^{\circ \circ}x^{\circ}$, $(x'x)^{\circ} = x^{\circ}x^{\circ \circ}$ and $(x')^{\circ} = x^{\circ \circ}$.

Proof. Let $x \in S$ and let $x' \in V(x)$. Since $xx'\Re x$, $xx'(xx')^\circ = xx^\circ$. By the assumption, $(xx')^\circ \in E(S^\circ)$, so that $xx^\circ(xx')^\circ = xx'(xx')^\circ(xx')^\circ = xx'(xx')^\circ = xx^\circ$ and $(xx')^\circ xx^\circ = (xx')^\circ xx'(xx')^\circ = (xx')^\circ$ which shows $xx^\circ \mathscr{L}(xx')^\circ$. Thus we have $x^{\circ\circ}x^\circ = (xx^\circ)^\circ xx^\circ = (xx')^{\circ\circ}(xx')^\circ = (xx')^\circ$. Similarly $x^\circ x^\circ = (x'x)^\circ$. By using the above facts, we have

$$x^{\circ\circ}x'x^{\circ\circ} = x^{\circ\circ}x'xx'x^{\circ\circ}x^{\circ}x^{\circ\circ} = x^{\circ\circ}x'xx'(xx')^{\circ}x^{\circ\circ} = x^{\circ\circ}x'xx^{\circ}x^{\circ\circ}$$
$$= x^{\circ\circ}(x'x)^{\circ\circ}x^{\circ}x^{\circ\circ} = x^{\circ\circ}x^{\circ}x^{\circ\circ}x^{\circ\circ} = x^{\circ\circ}$$

and $x'x^{\circ\circ}x' = x'xx'x^{\circ\circ}x^{\circ}x^{\circ}x' = x'xx'(xx')^{\circ}x^{\circ\circ}x' = x'xx^{\circ}x^{\circ\circ}x' = x'x(x'x)^{\circ}x' = x'$. Consequently $(x')^{\circ} = x^{\circ\circ}$.

If S° is multiplicative, for any $e \in E(S)$, $e^\circ = e^\circ e e^\circ = e^\circ e e e^\circ \in E(S^\circ)$. Thus we obtain:

Corollary 1.2. Let S be a regular semigroup with a multiplicative inverse transversal S°. If $x' \in V(x)$ for $x \in S$, then $(xx') = x^{\circ\circ}x^{\circ}$, $(x'x)^{\circ} = x^{\circ}x^{\circ\circ}$ and $(x')^{\circ} = x^{\circ\circ}$.

Theorem 1.3. Let S be a regular semigroup with an inverse transversal S°. Then S° is multiplicative if and only if S° is a quasi-ideal of S and $e^{\circ} \in E(S^{\circ})$ for every $e \in E(S)$.

Proof. Suppose that S° is a quasi-ideal of S and $e^{\circ} \in E(S^{\circ})$ for every $e \in E(S)$. Let $x, y \in S$ and put $e = xx^{\circ}$ and $f = y^{\circ}y$. Then $fe \in S^{\circ}SS^{\circ} \subseteq S^{\circ}$, so that $(fe)^{\circ\circ} = fe$. Since $e(fe)^{\circ}f \in V(fe)$, by Lemma 1.1 $fe = (fe)^{\circ\circ} = (e(fe)^{\circ}f)^{\circ}$. Since $e(fe)^{\circ}f \in E(S)$, by the assumption $(e(fe)^{\circ}f)^{\circ} \in E(S^{\circ})$. Consequently $y^{\circ}yxx^{\circ} \in E(S^{\circ})$. Thus S° is multiplicative.

From (1°) the converse is true.

2. Ordered regular semigroups with maximum inverses

Let S be a partially ordered regular semigroup in which each element has the maximum inverse. If $x \in S$, the maximum element of V(x) is denoted by x° , and $x^{\circ \circ}$ denotes $(x^{\circ})^{\circ}$. The set of maximum inverse of S is denoted by S° , i.e. $S^{\circ} = \{a \in S: a = x^{\circ} \text{ for some } x \in S\}$. The \mathscr{R} -class [resp. \mathscr{L} -class] containing $x \in S$ is denoted by R_x [resp. L_x].

Proposition 2.1. Let S be a partially ordered regular semigroup with maximum inverses. Then:

- (1) ee° [resp. $e^{\circ}e$] is the maximum idempotent of R_e [resp. L_e] for every $e \in E(S)$.
- (2) $(x^{\circ}x)^{\circ}x^{\circ} = x^{\circ}(xx^{\circ})^{\circ} = x^{\circ}$ for every $x \in S$.
- (3) xx° [resp. $x^{\circ}x$] is the maximum idempotent of R_x [resp. L_x] for every $x \in S$.
- (4) $x \mathscr{R} y$ [resp. $x \mathscr{L} y$] implies $xx^\circ = yy^\circ$ [resp. $x^\circ x = y^\circ y$] for every $x, y \in S$.
- (5) $(xx^{\circ})^{\circ} = x^{\circ\circ}x^{\circ}$ and $(x^{\circ}x)^{\circ} = x^{\circ}x^{\circ\circ}$ for every $x, y \in S$.

Proof. (1) Let $e, f \in E(S)$ with $e \mathscr{R} f$. Since $f \in V(e)$, $f \leq e^\circ$. Thus $f = ef \leq ee^\circ$. Since $e \mathscr{R} ee^\circ$, ee° is the maximum idempotent of R_e .

(2) Let $x \in S$. Since $x^{\circ}x \in V(x^{\circ}x)$, $x^{\circ}x \leq (x^{\circ}x)^{\circ}$, so that $x^{\circ} \leq (x^{\circ}x)^{\circ}x^{\circ}$. Conversely, since $(x^{\circ}x)^{\circ}x^{\circ} \in V(x)$, $(x^{\circ}x)^{\circ}x^{\circ} \leq x^{\circ}$. Thus $(x^{\circ}x)^{\circ}x^{\circ} = x^{\circ}$.

(3) Let $x \in S$. Then by (2) $xx^{\circ}(xx^{\circ})^{\circ} = xx^{\circ}$. Therefore, by (1) xx° is the maximum idempotent of $R_{xx^{\circ}} = R_x$.

(4) By (3), this is clear.

(5) Let $x \in S$. Since $x^{\circ} \mathscr{R} x^{\circ} x$, by (3) $x^{\circ} x^{\circ \circ} = x^{\circ} x (x^{\circ} x)^{\circ}$. By (2) we have $x^{\circ} x (x^{\circ} x)^{\circ} = (x^{\circ} x)^{\circ} x^{\circ} x (x^{\circ} x)^{\circ} = (x^{\circ} x)^{\circ}$, so that $x^{\circ} x^{\circ \circ} = (x^{\circ} x)^{\circ}$.

The following fact is very useful.

If S is a naturally ordered semigroup, then $e \leq f$ for $e, f \in E(S)$ implies e = efe ([1, Theorem 1.1]).

Proposition 2.2. Let S be a naturally ordered regular semigroup with maximum inverses. Then:

- (1) $e^{\circ\circ}$ is an inverse of e for every $e \in E(S)$.
- (2) $e^{\circ\circ}$ is an idempotent for every $e \in E(S)$.

TATSUHIKO SAITO

- (3) If e° is an idempotent for $e \in E(S)$, then $e^{\circ} = e^{\circ \circ}$.
- (4) $x^{\circ\circ\circ} = x^{\circ}$ for every $x \in S$.

(3) Since $e^{\circ\circ} \in V(e)$, $e^{\circ\circ} \leq e^{\circ}$. If e° is an idempotent, then $e^{\circ} \in V(e^{\circ})$, so that $e^{\circ} \leq e^{\circ\circ}$. Consequently $e^{\circ} = e^{\circ\circ}$.

(4) Let $x \in S$. By (5) of Proposition 2.1, $(xx^{\circ})^{\circ} = x^{\circ \circ}x^{\circ}$ is an idempotent, so that by (3) $(xx^{\circ})^{\circ} = (xx^{\circ})^{\circ \circ}$. Thus we have $x^{\circ \circ}x^{\circ} = (xx^{\circ})^{\circ \circ} = x^{\circ \circ}x^{\circ \circ \circ}$, and similarly $x^{\circ x^{\circ \circ}} = x^{\circ \circ \circ}x^{\circ \circ}$. Consequently $x^{\circ \circ \circ} = x^{\circ \circ \circ}x^{\circ \circ}x^{\circ \circ} = x^{\circ \circ}x^{\circ \circ}x^{\circ} = x^{\circ \circ}x^{\circ \circ}x^{\circ \circ} = x^{\circ}x^{\circ \circ}x^{\circ \circ} = x^{\circ \circ}x^{\circ \circ}$

In the following Lemmas 2.3, 2.4 and 2.5, S denotes a naturally ordered regular semigroup with maximum inverses and suppose that \mathcal{R} and \mathcal{L} are regular on S.

Lemma 2.3.
$$V(x) \cap S^\circ = \{x^\circ\}$$
 for every $x \in S$.

Proof. Let $x \in S$ and let $a \in V(x) \cap S^{\circ}$. Then $a = y^{\circ}$ for some $y \in S$. By (4) of Proposition 2.2, $a = y^{\circ} = y^{\circ \circ \circ} = a^{\circ \circ}$. Since $a \in V(x)$, $a \leq x^{\circ}$. Thus $aa^{\circ} \leq x^{\circ}x^{\circ \circ}$ since \mathscr{R} is regular on S. Conversely, $x \in V(a)$ implies $x \leq a^{\circ}$, so that $x^{\circ}x \leq a^{\circ \circ}a^{\circ} = aa^{\circ}$ since \mathscr{L} is regular on S. Thus we have $x^{\circ}x^{\circ \circ} = x^{\circ}xx^{\circ}x^{\circ \circ} = x^{\circ}x(x^{\circ}x)^{\circ} \leq aa^{\circ}(aa^{\circ})^{\circ} = aa^{\circ}$. Consequently $x^{\circ}x^{\circ \circ} = aa^{\circ}$. Similarly $x^{\circ \circ}x^{\circ} = a^{\circ}a$. Therefore $a^{\circ} = a^{\circ}axaa^{\circ} = x^{\circ \circ}x^{\circ}xx^{\circ}x^{\circ \circ} = x^{\circ}$, so that $a = a^{\circ \circ} = x^{\circ \circ \circ} = x^{\circ}$.

Lemma 2.4. $e^{\circ} \in E(S^{\circ})$ for every $e \in E(S)$.

Proof. Let $e \in E(S)$. By Proposition 2.2, $e^{\circ\circ} \in V(e) \cap E(S^{\circ})$. Since $e^{\circ} \in V(e) \cap S^{\circ}$, by Lemma 2.3 $e^{\circ} = e^{\circ\circ}$. Consequently e° is an idempotent of S° .

Lemma 2.5. $(xy)^{\circ} = (x^{\circ}xy)^{\circ}x^{\circ} = y^{\circ}(xyy^{\circ})^{\circ}$ for every $x, y \in S$.

Proof. Let $x, y \in S$. Then $xy \mathscr{L} x^{\circ} xy$, so that $(xy)^{\circ} xy = (x^{\circ} xy)^{\circ} x^{\circ} xy$. Since

$$xy(xy)^{\circ} \mathscr{R} xy(x^{\circ}xy)^{\circ} x^{\circ}, xy(xy)^{\circ} = xy(xy)^{\circ} (xy(xy)^{\circ})^{\circ} = xy(x^{\circ}xy)^{\circ} x^{\circ} (xy(x^{\circ}xy)^{\circ} x^{\circ})^{\circ}.$$

Since

$$xx^{\circ}, xy(x^{\circ}xy)^{\circ}x^{\circ} \in E(S)$$

and

NATURALLY ORDERED REGULAR SEMIGROUPS

$$xy(x^{\circ}xy)^{\circ}x^{\circ} = xx^{\circ}xy(x^{\circ}xy)^{\circ}x^{\circ} = xy(x^{\circ}xy)^{\circ}x^{\circ}xx^{\circ}, xy(x^{\circ}xy)^{\circ}x^{\circ} \leq xx^{\circ},$$

so that $xy(xy)^\circ = xy(x^\circ xy)^\circ x^\circ (xy(x^\circ xy)^\circ x^\circ)^\circ \le xx^\circ (xx^\circ)^\circ = xx^\circ$. Thus $x^\circ xy(xy)^\circ \le x^\circ$. Since $(x^\circ xy)^\circ x^\circ \in V(xy)$, $(x^\circ xy)^\circ x^\circ \le (xy)^\circ$. Then we have $xy(xy)^\circ = xy(x^\circ xy)^\circ x^\circ xy(xy)^\circ \le xy(x^\circ xy)^\circ x^\circ \le xy(xy)^\circ$. Consequently $xy(xy)^\circ = xy(x^\circ xy)^\circ x^\circ$, so that $(xy)^\circ = (xy)^\circ xy(xy)^\circ = (xy)^\circ xy(x^\circ xy)^\circ x^\circ = (x^\circ xy)^\circ x^\circ xy(x^\circ xy)^\circ x^\circ = (x^\circ xy)^\circ x^\circ$. Similarly we obtain $(xy)^\circ = y^\circ (xyy)^\circ$.

Theorem 2.6. Let S be a naturally ordered regular semigroup in which every element x has a maximum inverse x° , and on which \mathcal{R} and \mathcal{L} are regular. Then the set $S^\circ = \{x^\circ: x \in S\}$ of maximum inverses of S is a multiplicative inverse transversal of S.

Proof. We show that S° is a quasi-ideal of S. Let $a, b \in S^\circ$ and let $x \in S$. Then $a = a^{\circ\circ}$ and $b = b^{\circ\circ}$. By Lemma 2.5, we have $axb(axb)^\circ aa^\circ = axb(a^\circ axb)^\circ a^\circ aa^\circ = axb(a^\circ axb)^\circ a^\circ = axb(axb)^\circ = aa^\circ axb(axb)^\circ$, so that $axb(axb)^\circ \leq aa^\circ$. Similarly $(axb)^\circ axb \leq b^\circ b$. Therefore we have

$$(axb)^{\circ\circ}(axb)^{\circ}axb = (axb(axb)^{\circ})^{\circ}axb(axb)^{\circ}axb \leq (aa^{\circ})^{\circ}aa^{\circ}axb$$

$$= axb = axb(axb)^{\circ}axb \leq (axb)^{\circ \circ}(axb)^{\circ}axb,$$

consequently $axb = (axb)^{\circ\circ}(axb)^{\circ}axb$. Similarly we obtain $axb = axb(axb)^{\circ}(axb)^{\circ\circ}$. Thus we have $axb = (axb)^{\circ\circ}(axb)^{\circ}axb(axb)^{\circ}(axb)^{\circ\circ} = (axb)^{\circ\circ} \in S^{\circ}$, which shows S° is a quasi-ideal of S. Since S is a regular semigroup, a quasi-ideal of S is a subsemigroup. By Lemma 2.3, S° is an inverse transversal. By Lemma 2.4 and Theorem 1.3, S° is multiplicative.

3. The ordering on regular semigroups

Throughout this section S denotes a regular semigroup with a multiplicative inverse transversal S°. If $x \in S$, the unique element of $V(x) \cap S^{\circ}$ is denoted by x° , and $x^{\circ\circ}$ denotes $(x^{\circ})^{\circ}$. Let $I = \{e \in S: ee^{\circ} = e\}$ and $\Lambda = \{f \in S: f^{\circ}f = f\}$. Then, I [resp. Λ] is a left [resp. right] normal band, i.e. efg = egf [resp. efg = feg] for every $e, f, g \in I$ [resp. Λ] [4]. The following fact has been obtained by Blyth and McFadden in [2]:

S is algebraically isomorphic to

$$W = \{ [e, a, f] \in I \times S^{\circ} \times \Lambda : e^{\circ} = aa^{-1}, f^{\circ} = a^{-1}a \},\$$

where multiplication in W is defined by

$$(e, a, f)(g, b, h) = (eafga^{-1}, afgb, b^{-1}fgbh).$$

We shall define a relation \leq on *I* by $e \leq g$ if and only if ge = e or $ge = e^{\circ}$ for any $e, g \in I$, and similarly on Λ , using the same symbol \leq ; $f \leq h$ if and only if fh = f or $fh = f^{\circ}$ for any $f, h \in \Lambda$.

TATSUHIKO SAITO

Lemma 3.1. The above defined relation on I [resp. Λ] is an order relation.

Proof. It is evident that $e \leq e$ for every $e \in I$.

Let $e, g \in I$ with $e \leq g$ and $g \leq e$. The following three cases can be considered:

(1) ge=e and eg=g. (2) ge=e and $eg=g^{\circ}$. (3) $ge=e^{\circ}$ and $eg=g^{\circ}$. For (1), since *I* is left normal, e=ge=ege=eeg=eg=g. For (2), we have $g=gg^{\circ}=geg=gge=ge=e$. For (3), we have $e^{\circ}g^{\circ}=e^{\circ}g=e^{\circ}eg=e^{\circ}e^{\circ}=e^{\circ}$ and similarly $e^{\circ}g^{\circ}=g^{\circ}e^{\circ}=g^{\circ}$, so that $e^{\circ}=g^{\circ}$. Thus we have $e=ee^{\circ}=ege=g^{\circ}e=e^{\circ}e=e^{\circ}$ and similarly $g=g^{\circ}$. Consequently e=g.

Let $e, g, m \in I$ with $e \leq g$ and $g \leq m$. Then the following four cases can be considered: (1) ge = e and mg = g. (2) $ge = e^{\circ}$ and mg = g. (3) ge = e and $mg = g^{\circ}$. (4) $ge = e^{\circ}$ and $mg = g^{\circ}$. For each case, we can prove that $e \leq m$. In each case, the proof is simple but tedious, so the proofs are omitted.

I [resp. Λ] is clearly naturally ordered under the above defined order \leq . Since $I \cap \Lambda = E(S^{\circ})$, we have $e^{\circ} \omega f^{\circ}$ in E(S) if and only if $e^{\circ} \leq f^{\circ}$ in I [resp. Λ] for $e^{\circ}, f^{\circ} \in E(S^{\circ})$.

Lemma 3.2. $I(\cdot, \leq)$ [resp. $\Lambda(\cdot, \leq)$] is a naturally ordered left [resp. right] normal band, and e° is the maximum inverse of $e \in I$ [resp. Λ].

Proof. Let $e, g \in I$ with $e \leq g$ and let $m \in I$. If ge = e, then mgme = mmge = me and gmem = gemm = em, so that $me \leq mg$ and $em \leq gm$. If $ge = e^\circ$, then $mgme = mmge = me^\circ = me$ and $gmem = gemm = e^\circ m = e^\circ m^\circ = (em)^\circ$, so that $me \leq mg$ and $em \leq gm$. Let $e \in I$ and let $g \in V(e) \cap I$. Then $e^\circ = g^\circ$, so that $e^\circ g = g^\circ g = g^\circ$. Consequently $g \leq e^\circ$.

Lemma 3.3. Let $e, g \in I$ with $e \leq g$ and let $f, h \in \Lambda$ with $f \leq h$. Then $f \in \omega hg$.

Proof. The following four cases can be considered: (1) ge = e and fh = f. (2) $ge = e^{\circ}$ and fh = f. (3) ge = e and $fh = f^{\circ}$. (4) $ge = e^{\circ}$ and $fh = f^{\circ}$. Since S° is multiplicative, $fe, hg \in E(S^{\circ})$. Then, for (1), we have $hgfe = fehg = fhgehg = fhge^{\circ}hg = fhghge^{\circ} = fhge = fe$, so that fewhg. For each other case, we can similarly prove that fewhg.

It is well-known that an inverse semigroup S° can be partially ordered by setting, for any $a, b \in S^{\circ}$, $a \leq b$ if and only if a = eb for some $e \in E(S^{\circ})$. We use the cartesian ordering on $W = \{(e, a, f) \in I \times S^{\circ} \times \Lambda : e^{\circ} = aa^{-1}, f^{\circ} = a^{-1}a\}$: $(e, a, f) \leq (g, b, h)$ if and only if $e \leq g$ in $I, a \leq b$ in S° and $f \leq h$ in Λ .

Theorem 3.4. Under the cartesian ordering

$$W = \{(e, a, f) \in I \times S^{\circ} \times \Lambda : e^{\circ} = aa^{-1}, f^{\circ} = a^{-1}a\}$$

is a naturally ordered regular semigroup in which each element (e, a, f) has the maximum inverse ($f^{\circ}, a^{-1}, e^{\circ}$), and on which \mathcal{R} and \mathcal{L} are regular.

Proof. Let $(e, a, f), (g, b, h) \in W$ with $(e, a, f) \leq (g, b, h)$ and let $(m, c, n) \in W$. Then $e \leq g$, $a \leq b$ and $f \leq h$, so that $a^{-1} \leq b^{-1}$ and by Lemma 3.3 $fm \leq hm$ in S°. Therefore $afmc \leq bhmc$, $afma^{-1} \leq bhmb^{-1}$ and $c^{-1}fmc \leq c^{-1}hmc$ in S°, so that $afma^{-1} \leq bhmb^{-1}$ in I and $c^{-1}fmc \leq c^{-1}hmc$ in A. Thus $eafma^{-1} \leq gbhmb^{-1}$ in I and $c^{-1}fmc \leq c^{-1}hmc$

in A. Consequently $(e, a, f)(m, c, n) \leq (g, b, h)(m, c, n)$. Similarly we can show $(m, c, n)(e, a, f) \leq (m, c, n)(g, b, h)$.

Let $(e, a, f), (g, b, h) \in E(W)$ with (e, a, f)(g, b, h) = (g, b, h)(e, a, f) = (e, a, f). Then $gbheb^{-1} = e$, afgb = a and $b^{-1}fgbh = f$. Thus ge = e and fh = f, so that $e \leq g$ and $f \leq h$. By Theorem 1.3, $a, b \in E(S^\circ)$. Therefore ba = ab = afgbb = afgb = a, so that $a \leq b$. Consequently W is naturally ordered.

Let $(e, a, f) \in W$ and let $(g, b, h) \in V((e, a, f))$. By Corollary 1.2, $b = a^{-1}$, so that $g \leq g^{\circ} = bb^{-1} = a^{-1}a = f^{\circ}$ and similarly $h \leq e^{\circ}$. Consequently $(g, b, h) \leq (f^{\circ}, a^{-1}, e^{\circ}) = (e, a, f)^{\circ}$. Thus each element $(e, a, f) \in W$ has the maximum inverse $(f^{\circ}, a^{-1}, e^{\circ})$.

Let $(e, a, f), (g, b, h) \in W$ with $(e, a, f) \leq (g, b, h)$. Then $a \leq b$, so that $aa^{-1} \leq bb^{-1}$. Since $(e, a, f)(e, a, f)^\circ = (e, aa^{-1}, aa^{-1})$ and $(g, b, h)(e, b, h)^\circ = (g, bb^{-1}, bb^{-1})$, $(e, a, f)(e, a, f)^\circ \leq (g, b, h)(g, b, h)^\circ$. Thus \mathscr{R} is regular on W. Similarly \mathscr{L} is regular on W.

We shall define a relation on S by, for any $x, y \in S$, $x \leq y$ if and only if $xx^{\circ} \leq yy^{\circ}$ in I, $x^{\circ\circ} \leq y^{\circ\circ}$ in S° and $x^{\circ}x \leq y^{\circ}y$ in Λ . Then $x \leq y$ in S implies $(xx^{\circ}, x^{\circ\circ}, x^{\circ}x) \leq (yy^{\circ}, y^{\circ\circ}, y^{\circ}y)$ in W. Conversely, $(e, a, f) \leq (g, b, h)$ in W implies $eaf(eaf)^{\circ} = e \leq g = gbh(gbh)^{\circ}$ in I, $(eaf)^{\circ\circ} = a \leq b = (gbh)^{\circ\circ}$ in S° and $(eaf)^{\circ}eaf = f \leq h = (gbh)^{\circ}gbh$ in Λ , so that $eaf \leq gbh$ in S. Thus the isomorphism $\theta: W \to S$ defined by $(e, a, f)\theta = eaf$ is isotone.

Thus we obtain:

Theorem 3.5. Let S be a regular semigroup with a multiplicative inverse transversal S°, and let $V(x) \cap S^\circ = \{x^\circ\}$ for every $x \in S$. Then S can be naturally ordered in such a way that x° is the maximum inverse of any element x of S and that \mathcal{R} and \mathcal{L} are regular on S.

REFERENCES

1. T. S. BLYTH and R. B. McFADDEN, Naturally ordered regular semigroups with a greatest idempotent. *Proc. Roy. Soc. Edinburgh* 91A (1981), 107–122.

2. T. S. BLYTH and R. B. McFADDEN, Regular semigroups with a multiplicative inverse transversal, *Proc. Roy. Soc. Edinburgh* 92A (1982), 253–270.

3. T. S. BLYTH and R. B. McFADDEN, On the construction of a class of regular semigroups, J. Algebra 81 (1983), 1-22.

4. D. B. MCALISTER and R. B. MCFADDEN, Regular semigroups with inverse transversals, Quart. J. Math. Oxford (2) 34 (1983), 459-474.

5. D. B. MCALISTER and R. B. MCFADDEN, Maximum idempotents in naturally ordered regular semigroups, *Proc. Edinburgh Math. Soc.* 26 (1983), 213–220.

6. TATSUHIKO SAITO, Construction of a class of regular semigroups with an inverse transversal, Proc. Conference on Theory and Application of Semigroups, at Greifswald (GDR) (1984), 108-113.

7. TATSUHIKO SAITO, Relationship between the inverse transversals of a regular semigroup, Semigroup Forum 33 (1986), 245-250.

Shimonoseki University of Fisheries Yoshimi, Shimonoseki Japan