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A LOCAL HOPF BIFURCATION THEOREM 
FOR A CERTAIN CLASS 

OF IMPLICIT DIFFERENTIAL EQUATIONS 

TOMASZ KACZYNSKI AND WIESLAW KRAWCEWICZ 

ABSTRACT. The local Hopf Bifurcation theorem is extended to implicit differential 
equations in Rn, of the form x — f(x,x, a), which are not solvable for the variable x. 
The proof uses the Sl -degree of convex-valued mappings. An example of an implicit 
differential equation in R3 to which the presented theorem applies is provided. 

Introduction. There is a considerable amount of research that has been devoted to 
the existence of continua of periodic solutions from an equilibrium of a parametrised 
dynamical system, i.e. the so called Hopf Bifurcation Problem. In his original work, 
Hopf (cf [7]) proved the result on bifurcating periodic orbits under very strong and re
strictive assumptions such as: the analyticity of the function, simple characteristic root 
transversally crossing the imaginary axis, and no other imaginary characteristic roots. 
Even though his result allowed to deal with stability properties and other characteris
tics of bifurcating orbits, there was need for a more general type of bifurcation theorems 
for a diversity of problems arising from applications. We refer to the book by Marsden 
and McCracken [12] for a more detailed discussion of the history and background of the 
problem. 

Many techniques were developed and used for the study of Hopf bifurcation problems 
in more general settings. We could mention such methods as Lyapounov-Schmidt, center 
manifold, Fuller index, regular approximation, decomposition theory, etc. We refer the 
reader to [2] for details and an extensive bibliography. 

The concept of Sl-degree recently developed in [3] and [6] has been used to pro
vide purely topological proofs of local and global Hopf bifurcation theorems for certain 
classes of differential equations. In particular, [5] proved the existence of a bifurcation 
of nonconstant periodic solutions from a trivial solution of the functional differential 
equation 

(0.1) x = F(x,,a). 

The aim of this paper is to show how one can extend such results to implicit differ
ential equations, i.e., those where the derivative x is involved in the nonlinear part and 
the equation cannot be reduced to a quasi-linear equation by solving it for x. The proof 
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of our local bifurcation theorem is based on the S -degree of convex-valued mappings 
developed in [15] and on the techniques used in [5] and [11]. 

For simplicity of the presentation, we restrict the study to an ordinary differential 
equation (without delay or advanced arguments) of the form 

(0.2) x(t)=f(x(t),x(t),a). 

Analogous results for functional differential equations of the form 

(0.3) F(xtJxt,x,a) = 0 

will be presented in another paper. 
The existence of solutions of boundary value problems for various classes of implicit 

differential equations has been proved by using multi-valued mappings in [1], [4], [8], 
[9], and [10]. Nontrivial periodic solutions of a second order implicit differential equa
tions were studied in [14] with the use of A-proper mappings. In that paper, the equation 
was actually solvable for the second order derivative but the solution function did not 
have nice properties which would permit studying the solved quasilinear problem. It 
seems, however, that the bifurcation problem for implicit equations unsolvable for the 
variable x(t) is treated here for the first time. 

In Section 1 we formulate the problem and in Section 2 we prove the local bifurca
tion theorem. Section 3 contains two simple examples illustrating our theorem and its 
applications. 

1. Formulation of the problem. We shall study periodic solutions JC: /? —> Rn, with 
an unknown period p, of the following implicit differential equation 

(1.1) x(t)=f(x(t\ma), 

where a G R is a parameter and/: Rn x Rn x R —* Rn is a Cl function satisfying the 
following conditions (cf. Remark at the end of this section): 

(i) \\Dyf(x9y, a)\\ < 1 for all (x,y, a) G Rn x Rn x /?; 
(ii) For any constant K > 0, there exist constants M > 0 and 0 < c < 1 such that 

\\f(x,y,a)\\ <M + c\\y\\ provided ||(jc,a)|| < M, for ally G Rn. 
A point xo G Rn is called a stationary point of (1.1) for OLQ G R if/(*o,0, ĉ o) = 0; 

thus x(t) = JCO is a solution of (1.1). A stationary point (jto, oco) (i.e. a stationary point xç> 
for ao) is called nonsingular if the matrix Dxf(xo, 0, ao) is nonsingular. It follows from 
the implicit function theorem that if (jto, a0) G Rn x R is a nonsingular stationary point 
then there is a unique C1 curve (xa, a) of nonsingular stationary points passing through 
(xo, a0). 

We may imbed (1.1) into the family of equations parametrized by a constant 0 < 
k< 1, 

(1.2) x(t) = kf(x(t\x(t),ot). 
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Let us note that ( 1.2) has the same set of nonsingular stationary points and the same 
curves (xa, a) as (1.1), for all k G (0,1] The linearization of (1.2) at its stationary point 
(*o, &o) leads to the following characteristic equation: 

(1.3) detA,0,ao,,(A) = 0 

where AXoao^(A) = X[I — kDyf(xo,0,ao)] — kDxf(xQ,0,OCQ) is a complex n x n matrix-
valued function of À G C Since det A ^ ^ : C —> C is a polynomial in A, the equation 
(1.3) has finitely many solutions A for each given (XQ, a0, k). Any such solution is called 
a characteristic value of (jto, <*o> &)• The assumption that (JCO, «o) is nonsingular implies 
that A = 0 is not a characteristic value of (*o, ao,k),0 <k <l. 

The conditions (i) and (ii) imply that/, as a function of y only, is lipschitzian with the 
constant 1 and that it maps a ball of a certain radius about the origin in Rn into itself. By 
the fixed point theorem for nonexpansive mappings, the set 

(1.4) F(x,a,k) = {yeRn:y = lf(x9y9a)} 

is nonempty, compact and convex. The Banach contraction principle implies that if k < 1 
then Fix, a, k) is a singleton which we identify with its unique element, so that (1.2) is 
equivalent to x(t) G F(x(f)9 a, l) if k = 1 and toi;(0 = F(x{t), a,k)ifk< 1. In the last 
case, / — kDyf is nonsingular and DXF — k[I — Dyf]~lDxf. As a consequence, we obtain 
the following 

PROPOSITION 1. Ifk<\, then, for any (JC, a) G Rn x R, 

det AXt(Xtk(\) = 0& det[A/ - DxF(x, a, k)] = 0. 

A nonsingular stationary point (JCO, «o) of (1.1) is called a center if (JCO, ao> 1) has a 
purely imaginary characteristic value. It is called an isolated center if there is a neigh
bourhood of (JCO, tfo) where (1.1) has no other centers than (*o, ĉ o). In what follows we 
make the following assumption: 

(iii) There exists an isolated center (*o, #o) for (1.1). 
Let now (JCO, #o) be an isolated center for (1.1) and i(3o its purely imaginary charac

teristic value. We should emphasize that we allow i/3o to be a multiple root of the char
acteristic equation and we do not exclude the possibility of the existence of other purely 
imaginary roots. Since the roots of (1.3) are conjugate, we may assume that /?o > 0. 
Let (jca, a) be the previously discussed curve of nonsingular stationary points through 
(JCO, ao), with xao — XQ. For simplicity, we write A ^ for AXa^k and Aa for A^^i . We 
choose a > 0 and b > 0 such that the closure of £1 = (0, a) x (/30 - b, (30 + b) C R2 = C 
contains no root of det Aao(A) other then i(3o- By (iii), for all sufficiently small 6 > 0 
if 0 < | a - a0 | < à then iR H {A G C : detAa(A) = 0} = 0. The continuity of 
(a,&, A) —» detÀa>fc(À) and the compactness of 3Q imply the existence of 8 > 0 and 
r G (0,1] such that det Aao±^(A) has no zero on d£l for all k G [r, 1]. 

https://doi.org/10.4153/CMB-1993-027-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1993-027-0


186 T. KACZYNSKI AND W. KRAWCEWICZ 

We define the crossing number for (1.2) at (xo, <*o) by 

(1.5) l(k) = deg( det (-),Q.) - deg( det (.),Q) 
xaQ-6,k ' yao+à,k ' 

where deg is the usual Brouwer degree. Explicitly, l(k) is the difference between the 
number of zeros of Aao_^ in Q, and that of Aao+^*, counting the multiplicities. As an 
immediate consequence of the homotopy invariance, we get the following 

PROPOSITION 2. 7(&) is independent ofk e [r, 1]. 

We may therefore write 7 = l(k), k G [r, 1]. Our main result is the following 

THEOREM 1. Suppose that the hypotheses (i), (ii), and (Hi) are satisfied. Ifl ^ 0 then 
there exists a bifurcation of nonconstant periodic solutions of (1.1) from (xo,<*o) with 
derivatives defined a.e. and square integrable. More precisely, there exists a sequence 
Uxn(t), a„,/3n)| such that xn(i) —> xofor all t G Rn, an —+ ao, fln —> Po as n —> oo, 
xn(t) is a nonconstant periodic solution of (1.1) with a = an, period pn = ^-, and 
xneLlc(R,Rn). 

REMARK. The conditions (i) and (ii) are imposed on the global behaviour of/, for the 
simplicity of arguments. Since our result has a local character, we only need to assume 
(i) and (ii) for (JC, a) in some neighbourhood of our discussed stationary point (JCO, ao)-

2. Proof of the theorem. The first step is to normalize the period of the problem. 
By the change of variable z(t) = x(fy)9 we bring (1.2) to an equivalent form 

(2.1) z(t)=jf(z(t),pm,<x) 

where (3 = y is the circular frequency. Clearly x(t) is p-periodic if z is 2ir periodic. The 
equation (2.1) is next equivalent to the differential inclusion 

(2.2) z(t)eFk{z(t),a,l3) 

where Fk(z,a,(3) = {y G Rn : y = |/"(z,/3,v, a}. By the same arguments as in (1,3), 
Fk(z, oc,(3) is nonempty, compact, convex, and by the closed graph property, the map 
(z, a, /3, k) —-> Fk(z, a, /3) is upper semicontinuous. 

We next putS1 = R/2TTZ,C° = C(S\Rn\Hl = Hl(S\Rn\<mdL2 - L2(S\Rn).The 
spaces Hl and L2 are isometric Hilbert representations of the group G — S1 acting by 
shifting the argument, and the equivariant operator Lx = x is regarded as an unbounded 
Fredholm operator of index zero from Dom(iL) = Hx C L2 into L2. Note that Ker(X) ^ 
Rn is the set of all constant functions and the operator K: L2 —-> L2 defined by Kx = 
j ^ Jo ̂  XW dt is an equivariant resolvent of L. We next define the Nemytskii operator 
F*: C° x R2 x [T, 1] —> col? (convex subsets of L2) by 

F*k(z,a,P) = {ueL2 : u(t) e Fk{z(t),ot,f3) a.e.t.} 
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It is known that F* has nonempty weakly compact convex values, that it is S^-equivariant 
(Sl acts trivially on the component /?2), and that its composition with any linear compact 
operator is upper semicontinuous (cf. [13] and [15]). We have the following diagram 

C° ^ L2 

j \ / L 

where j : Hl —* C° is the completely continuous inclusion. The equation (1.2) subject to 
periodic condition x(t + p) — x(t) is now equivalent to 

(2.3) z£Gk(z,a,P) 

where G: C° x R2 x [T, 1] —> co C° the homotopy defined by 

Gk(z,a,P)=j[L + K]-l[F*k(z,a,P) + Kz] 

Let now è and Z? be as in the discussion following the assumption (iii), Section 1, and let 
TV C Ker(X) x R2 ~ Rn x R2 be a 2-dimensional submanifold defined by 

TV = {(xa, a, (3) : a0 - 6 < a < a0 + 6 and f3o - b < fi < (30 + b}. 

One may regard the space of constant functions Ker(X) as a closed (complemented) 
subspace of C° and thus N is regarded as a submanifold of C° x R2. 

We will now argue by contradiction. Suppose that (JCO, OCQ) is not a bifurcation point. 
Then, following [5], one can construct an Sl invariant tubular neighbourhood U of TV with 
the property that (z, a,/3) G £7 is a trivial solution of (2.3) (i.e. z is a constant solution 
corresponding to a and /?) if and only if (z, a,/3) G N Pi Û. By again following [5], 
one can construct an Sl -invariant complementing function (/?:£/—• i?2 with the property 
<p(z, a,/3) ^ 0 if (z, a,f3) E NDÛ. It follows that the convex-valued mapping T:Û x 
[T, 1] -> co(C° x tf2) defined by 

Tk(z, a, 0) = [z - G*fc a, /?)] x {</>(z, a, /3)}, r < * < 1, 

is an S^equivariant homotopy between convex-valued compact vector fields TT and T\. 
The inclusion 0 G r*(z, a, /?) is equivalent to the pair of equations 

(2.4) Pz(t) = kf(z(t\f3z(t\ot)-

(2.5) ¥>(z(f),a,/ï)=0; 

for (z, a,P) G 0. It follows that Tj has no zero in Ù, so S^Deg^i, U) = 0 (cf. [15]). 
Consequently, there exists ro G [r, 1] such that ^-DegO^, U) — 0 for all k G [TO, 1]. 
However, if k G [TO, 1), the equation (2.4) is equivalent to 

z(t)=-F(z(t),a,k), 

where F is the continuous function defined by (1.4). It follows from Proposition 1, [5], 
and Proposition 3.2 in [11] that 0 = Sl-Deg(Tk, U) — l(k) which in the view of Propo
sition 2, contradicts the assumption 7 ^ 0 . 
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3. Examples. Let a,b,a G R and let u and v be real functions defined by 

u(t)= I - 1 -tn(-t) iff < - l 
\\ + ln(f) if r > 1 

v(t) 
t2 

\+t2 

We have chosen u and v so to have C1 functions of sublinear growth with \u\ < 1, 
w(0) = 0, u(t) = t for small |f|, v(0) = v(0) = 0. 

Let us consider the following system of equations 

(3.1) lx2 =xi+ax2 + v(\\x\\) 
[ x3 — ax\ + bx2 + XT, + u(x3) 

Due to the third equation, the system cannot be continuously solved for the variable x 
in any neighbourhood of the origin in R3 xR3 x R. Our theorem, however, can be applied 
to show the existence of a bifurcation: Indeed, JC0 = 0 is a unique stationary point for all 
a G R with characteristic values À = a ± / of multiplicity 1, and (JCO, <*o) = (0,0) is the 
unique center. The assumptions (i), (ii) and (iii) are clearly satisfied. For the computation 
of the crossing number, we may take Q = (0, a) x (0,2), where a > 0 is arbitrary, and 
5 > 0 any number less than a. Then deg(A§(-), Q) = 1, deg(A_(5(), Q) = 0, so 7 = - 1 . 

For the second example, we simplify our system by taking a — b — 0 and v = 0. The 
new system 

I x\ = ax\ — X2 
x2 — x\ + ax2 

x3 = x 3 +u(x3) 

also is unsolvable for the variable x. In this case, however, we may substitute x3 = 0. 
Consequently, (3.2) has the bifurcation of periodic solutions whose trajectories are circles 
x\ + x\ = c2,*3 = 0 . Evidently, any such solution also is a solution of the linear system 

I x\ — ax\ — X2 
x2 = x\ + ax2 
J C 3 - O 

which shows that our theorem may even bring improvements to explicit (quasi-linear) 
equations such as those considered in [5], [6], or [11]: It may allow to weaken the non-
singularity conditions imposed on the differential of the right-hand side. 
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