On the equivalence of invariant integrals and minimal ideals in semigroups

N. A. Tserpes and A. G. Kartsatos

Let S be a Hausdorff topological semigroup and $C_b(S)$, $C_c(S)$, the spaces of real valued continuous functions on S which are respectively bounded and have compact support. A regular measure m on S is r*-invariant if $m(B) = m(t_{\pi}^{-1}(B))$ for every Borel $B \subseteq S$ and every $x \in S$, where $t_{\tau} : s \rightarrow sx$ is the right translation by x . The following theorem is proved: Let S be locally compact metric with the t_r 's closed. Then the following statements are equivalent: (i) S admits a right invariant integral on $C_{c}(S)$. (ii) S admits an r^{*} -invariant measure. (iii) S has a unique minimal left ideal. The above equivalence is considered also for normal semigroups and analogous results are obtained for finitely additive r^* -invariant measures. Also in the case when S is a complete separable metric semigroup with the t_r 's closed, the following statements are equivalent: (i) S admits a right invariant integral I on $C_h(S)$ such that I(1) = 1 and satisfying Daniel's condition. (ii) S admits an r^* -invariant probability measure. (iii) S has a right ideal which is a compact group and which is contained in a unique minimal left ideal. Finally, in order that a locally compact Sadmit a right invariant measure, it suffices that S contain a right ideal F which is a left group such that $(B \cap F)x = BX \cap Fx$ for all Borel $B \subseteq S$.

Received 21 March 1969. Received by J. Austral. Math. Soc. 8 November 1968. Revised 19 February 1969. Communicated by G.B. Preston. The authors wish to express their indebtedness to the referee for his remarks.

1. Introduction

In what follows S will be at least a Hausdorff topological semigroup and $C_b(S)$, $C_c(S)$, the spaces of all real valued continuous functions on S which are bounded, have compact support respectively. For $x \in S$, t_x denotes the right translation $s \rightarrow sx$ and for $B \subset S$, Bx^{-1} denotes the set $t_x^{-1}(B) = [s; sx \in B]$. By a right (left) ideal of S is meant a nonempty subset $A \subset S$ such that $AS \subset A$ ($SA \subset A$). S is called a left group if S is left simple (i.e., Sx = S for every $x \in S$) and contains an idempotent element; equivalently S is a left group if S is homeomorphic to a direct product $E \times G$ where G = qS, q being any (fixed) idempotent of S, is a group, and E is the set of idempotents of S. For example, consider the complex numbers $\frac{1}{2}$ 0 with multiplication $x \ast y = x |y|$.

In case S is locally compact then $C_{c}(S) \neq [0]$ and by an integral on S we mean a nontrivial positive linear functional $\,I\,$ on $\,{\cal C}_{_{\cal O}}(S)$. Given such a functional I on $C_{c}(S)$, an integral can be defined on $C_{b}(S)$ by $\overline{I}(\phi) = \sup[I(\psi) ; \psi \in C_{c}(S) , \psi \leq \phi] \text{ for } \phi \in C_{h}^{+}(S) \text{ , that is, } \overline{I} \text{ is the}$ usual "canonical extension" of an integral from $C_{c}(S)$ to $C_{b}(S)$. [See 6, p. 121]. In the non-locally compact case by an integral on S we will always mean a nontrivial non-negative linear functional I on $C_{h}(S)$. In general I would have to satisfy additional conditions in order to have a representation with respect to a measure. The support of an integral I on C_b is defined as the set of all $x \in S$ such that for every open $U \supset x$ there is $f \in C_h$, $0 \leq f \leq 1$, f = 0 on S - U , and $I(f) \neq 0$. We denote by B(S) [resp. B(S)] the Borel algebra [resp. σ -algebra] generated by all open sets of S . Unless otherwise specified, m will denote a measure, i.e., m is countably additive on B(S) . m is right invariant if $m(B) = \overline{m}(Bx)$ for every $B \in \mathcal{B}(S)$ and every $x \in S$, where \overline{m} is the completion of m relative to $\mathcal{B}(S)$. (Note that the definition includes that Bx be completion measurable.) m is r^* -invariant if $m(B) = m(Bx^{-1})$ for every $B \in B$ and every $x \in S$. The support of m, always denoted by F , is defined as the set of all $x \in S$, every open

neighborhood of x has positive measure. m is regular if m is finite on compact sets, m is outer regular [i.e., m(B), $B \in B$, is the inf of the measures of its open supersets], and $m(U) = \sup[m(C) ; C = \operatorname{compact} \subset U]$ for all open $U \subset S$. m is weakly regular if m is outer regular and $m(B) = \sup[m(K) ; K = \operatorname{closed} \subset B]$ for every $B \in B$. m is a probability measure if m(S) = 1. An integral Ion a locally compact S is right invariant if $I(f) = \overline{I}(f \circ t_x) \equiv \overline{I}(f_x)$, for every $f \in C_c(S)$ and every $x \in S$. In the non-locally compact case an integral I on $C_b(S)$ is right invariant if $I(f) = I(f_x)$ for every $f \in C_b(S)$ and every $x \in S$. In many of our theorems we will require that S be complete, i.e., that S admit a uniformity compatible with its topology with respect to which S is a complete uniform space. Metric, paracompact, realcompact [3b, pp. 114, 226; called Q-spaces by Hewitt] spaces are complete in the above sense.

Argabright [2] proved the following result:

THEOREM 1.1. Let S be locally compact and satisfy

(#) Cx^{-1} is compact for every $x \in S$ and every compact $C \subset S$. Then the following statements are equivalent:

(i) There is a right invariant integral I on $C_{\rho}(S)$.

(ii) There is an r^* -invariant regular measure m on S.

(iii) S has a unique minimal left ideal.

In this paper we consider the above equivalence for normal or locally compact metric semigroups without the compactness condition (#). It turns out that if S is metric then (#) can be replaced by a weaker condition, i.e., by

(C) All right translations t_r , $x \in S$, are closed maps.

Substantial use of (C) in connection with invariant integrals was made in [7, p. 186] and it was implied by the conditions used in a related work in [8]. Using a characterization of r^* -invariant measures on left groups given in [2, p. 378] we give a sufficient condition for the existence of a regular right invariant measure (integral) on a locally compact semigroup.

2. Some useful lemmata

LEMMA 2.1. ([2]) Each right invariant integral I (resp. each r^* -invariant measure m) on a locally compact left group $S = E \times qS$ is given by $I(f) = \int_S f(x) d(m_1 \times m_2)$, where $m_1 = a$ Borel measure on E and $m_2 = a$ right Haar measure on the locally compact group qS (resp. $m = m_1 \times m_2$, which is also right invariant on S, the mappings t_x on left groups being homeomorphisms). Moreover if m is r^* -invariant on a Hausdorff semigroup S and m(S-F) = 0, then F is a right ideal of S and Fx = F for all $x \in S$. [Fx = the closure of Fx in S].

LEMMA 2.2. The closure of a left subgroup F of S which is also a right ideal of S is also a left subgroup.

Proof. By continuity, every right identity for F is also a right identity for \overline{F} ; for if $x_{\beta} \rightarrow z \in \overline{F}$, $x_{\beta} \in F$, and e is an idempotent in F (e is also a right identity), then $x_{\beta}e \rightarrow ze$, so that ze = z. Hence for $a \in F$, there is $c \in F$ such that ca = e and so $\overline{F}a \supset \overline{F}ca = \overline{F}$. Next for $z \in \overline{F}$, $\overline{F}z \supset \overline{F}fz$, f being any element of F, and $fz \in F$, so that $\overline{F}z \supset \overline{F}$.

That condition (#) implies condition (C) is shown by the following LEMMA 2.3. Let $f: X \to Y$ be any map, X,Y Hausdorff spaces; then (i) f closed and $f^{-1}(y) = \text{compact}$, for all $y \in Y$, implies (ii) $f^{-1}(C) = \text{compact}$, for all compact $C \subset Y$.

The proof of this lemma (formulated in different terminology) is essentially contained in N. Bourbaki [3a, pp. 101, 104 and p. 37, Prop. 3]. As an example, consider S = [0, 1/2) with ordinary multiplication and usual topology; clearly the t_x are closed but $[0]0^{-1} = S =$ not compact.

Theorems on invariant integrals and measures

The following theorem has an immediate application to locally compact metric semigroups satisfying (C).

THEOREM 3.1. Let S be locally compact, normal, 1st-countable,

satisfying (C). Then the following statements are equivalent:

(i) There is a right invariant integral I on $C_{\alpha}(S)$.

- (ii) There is a regular r*-invariant Borel measure m on S.
- (iii) S has a closed right ideal F which is a left group (and which is necessarily contained in a closed unique minimal left ideal L of S).

Proof. The proof that $(i) \Rightarrow (ii)$ is the same as in [2, p. 379]. To prove that $(ii) \Rightarrow (iii)$ we only need to show that F has an idempotent, since by (C) and Lemma 2.1, F is left simple and a right ideal. For if F is shown to be a left group, then $L = \bigcap Sx \supset F$ and by Lemma 3.2, x€S \overline{L} = L . [L is the unique minimal left ideal and also a right ideal.] Let $A = aa^{-1} \cap F = [x \in F; xa=a]$, for $a \in F$; $A \neq \phi$ since the t_a 's on Fare "onto" and F is left simple. If $IntA = Interior(A) \neq \phi$ then by r^* -invariance, m[a] > 0 and every $z \in aF$ is such that $m[z] \ge m[a]$; (note that for K = closed, $Kax^{-1} \supset K$ and so $m(Kax) \ge m(k)$); hence, if $z \in yy^{-1} \cap aF \neq \phi$ (aF is also left simple), $y \in aF$, then $[z, z^2, z^3, \ldots]$ is finite because $m[yy^{-1}] = m[y] > 0$ and $m[y] < \infty$. Since every finite semigroup has an idempotent, F is a left group. In case Int $A = \phi$, the boundary of A is countably compact by [9, p. 10] and since A is complete, A is a compact semigroup and hence it contains at least one idempotent. (See [3b], p. 237.)

Next we show that $(iii) \Rightarrow (i)$; by Lemma 3.1, F admits an r^* -invariant measure $m = m_1 \times m_2$ which can be extended to the whole S as in [2, p. 380].

The following theorem has an immediate application to separable metric semigroups satisfying (C).

THEOREM 3.2. Let S be normal, 1^{st} -countable, realcompact, satisfying (C). Then (i) \Leftrightarrow (ii) \Rightarrow (iii), where

(i) There is a right invariant integral I on $C_b(S)$ such that I(1) = 1 and $I(f_n) \lor 0$ whenever $f_n \lor 0$, $f_n \in C_b(S)$.

- (ii) There is an r*-invariant weakly regular probability measure m on S.
- (iii) S has a closed right ideal F which is a left group (and which is necessarily contained in a closed unique minimal left ideal L).

Proof. (i) \Rightarrow (ii): There is a weakly regular probability m such that $I(f) = \int f(x)m(dx)$, for $f \in C_b(S)$. (see [10, p. 63]). (Actually m is a Baire measure, i.e., m is defined on the σ -field generated by the closed G_{δ} 's and then it is extended to a Borel measure by $m(B) = \sup[m(K) ; K = closed \ G_{\delta} \subseteq B]$ as in [3, pp. 183, 203, 194].)

We can prove that m is r^* -invariant either by using an argument in [2, p. 379] replacing local compactness and compact sets by normality and closed sets respectively, or, a method of Markov [7] who studied finitely additive outer probability measures on normal spaces.

That $(ii) \Rightarrow (iii)$ follows as in Theorem 3.1 provided that we can show that such a support F for m exists. Since S is realcompact, the Baire restriction of m has a support F = (the intersection of all closed G_{δ} 's of measure 1). (See [1, p. 197] and [5, pp. 172-173]). [In particular if S is separable metric and m is a probability measure on S, then $F \neq \phi$ and m(S-F) = 0. See [12, p. 27].]

COROLLARY 3.3. Let S be a complete separable metric semigroup with property (C). Then each of the statements (i), (ii) of Theorem 3.2 is equivalent to the statement

(iii) S has a right ideal F which is a compact group (and which is necessarily contained in a closed unique minimal left ideal L) .

Proof. We show $(ii) \Rightarrow (iii)$. As in the proof of Theorem 3.1, F is a left group and $F = E \times qF$, where E is the set of idempotents of Fand $q \in F$. Since $qFS = qFqS \subset qFF \subset qF$, qF is also a right ideal of S. We show next that qF is a compact group. Since $F = E \times G$, where G is a group, by using first compact rectangles and the fact that $AB^{-1} = [x ; xb \in A \text{ for some } b \in B]$ is closed whenever $A, B \subset F$ are compact, one easily verifies that AB^{-1} is compact. Let C be compact $\subseteq F$ such that $m(x^{-1}C) > 0$ for some $x \in F$. Such a C exists because the measure $\overline{m}(A) = m(x^{-1}A)$ is regular, since m is regular by [12, p. 29]. The proof of this fact given in [4, p. 179] is valid in our case. The function $m(x^{-1}C)$ is upper semi-continuous because $[x \in S; m(x^{-1}(S-C)) > \alpha]$ is open as in [4, p. 179] whose proof carries over to the present case. Let $\varepsilon > 0$ and K compact $\subseteq F$ such that $m(K) > 1-\varepsilon$; then for $x \notin CK^{-1}$, $m(x^{-1}C) < \varepsilon$ so that $f(x) = m(x^{-1}C)$ vanishes at infinity. Let $a \in F$ such that $f(a) \approx \sup f(x)$. Now $f(a)-f(ax) \ge 0$ and also $\int_{T} [f(a)-f(ax)]m(dx) = 0$ because m is an idempotent measure on F. (See [12, p. 67].) Since [x; f(a)-f(ax) > 0]is open, it must be empty. Hence f(a) = f(ax) for all $x \in F$, so that $\overline{aF} \subset M = [x \in F; f(x) = \sup f(s)]$ and so \overline{aF} is compact. Now \overline{aF} being **s**€S a compact semigroup has an idempotent e and therefore $eF = \overline{eF} \subset M$ and eF is compact group. (iii) \Rightarrow (i). The Haar measure on eF may be extended over the whole S as in [2, pp. 380-381].

THEOREM 3.4. Let S be a complete metric semigroup satisfying (C) and let the set of its idempotents be discrete in the relative topology. Then the following statements are equivalent:

- (i) There is a continuous r^* -invariant Borel measure m on S with non-empty support. (m is called continuous if m[x] = 0 for all $x \in S$.)
- S has a perfect right ideal F which is a left group (and which is necessarily contained in a closed unique minimal left ideal).

Proof. $(i) \Rightarrow (ii)$ as in Theorem 3.1. Next we show $(ii) \Rightarrow (i)$: Let $F = E \times qF$; since F has no isolated points, qF is dense-in-itself and a complete metric group. By [11, Th. 1.2], qF admits a right invariant continuous (infinite) Borel measure m_2 . By taking $m_1 =$ a probability on E, $m = m_1 \times m_2$ is r^* -invariant on F and it can be extended to the whole S. (Note that r^* -invariance and right invariance coincide on left groups.)

THEOREM 3.5. (Sufficient condition for existence of right invariant measure.) Let S be locally compact. Then, in order that S admit a right invariant regular Borel measure it suffices that S contain a right ideal F which is a left group and such that

(1) $(B \cap F)x = Bx \cap Fx$ for every $x \in S$ and every Borel $B \subset S$.

REMARK. Note that (1) is completely algebraic in nature, for if it holds for Borel B, then it holds for any $B \subset S$. In fact, we may consider \overline{B} and then easily prove that it holds for B, since F and \overline{F} are left groups by Lemma 3.2.

Proof. Since \overline{F} is a left group, Lemma 2.1 gives a right invariant measure $m = m_1 \times m_2$ on \overline{F} , and by defining $m^*(B) = m(B \cap \overline{F})$ for $B = \text{Borel} \subset S$, one easily proves that m^* is r^* -invariant on S [2, p. 380]. Now for $B = \text{Borel} \subset S$,

 $m^*(B) = m^*(B\cap \overline{F}) = m[(B\cap \overline{F})qx] = m[(B\cap \overline{F})x] = m(Bx\cap \overline{F}x) = m(Bx\cap \overline{F}) = \overline{m}^*(Bx)$, where $x \in S$ and q is any idempotent (and right identity) of \overline{F} . Note that since $(B \cap F)x = Bx \cap Fx = Bx \cap F$, we also have $(B \cap \overline{F})x = Bx \cap \overline{F}x = Bx \cap \overline{F}$, since the mappings t_x are homeomorphisms on F and \overline{F} .

4. Finitely additive measures

As it was mentioned earlier an integral I on $C_b(S)$ may not correspond to a Borel measure. However in many cases it is possible to find a finitely additive measure m whose domain of definition includes B(S)and which corresponds to the given functional I in the sense that I can be represented in terms of m as in [1, pp. 180-183]. A finitely additive probability measure m is a non-negative finitely additive set function on B(S) (= the Borel algebra of S) with m(S) = 1. The definition of regularity and of the support of m are the same as those given for a Borel measure in Section 1.

THEOREM 4.1. Let S be normal, 1^{st} -countable, complete, satisfying (C). Then (i) \Leftrightarrow (ii) \Rightarrow (iii), where

(i) There is a right invariant integral I on $C_b(S)$ with I(1) = 1 and with nonempty support.

- (ii) There is an r*-invariant weakly regular finitely additive probability measure on S with nonempty support.
- (iii) S has a closed right ideal which is a left group (and which is necessarily contained in a closed unique minimal left ideal of S).

Proof. (i) \Leftrightarrow (ii) follows as in [7]. (ii) \Rightarrow (iii) as in Theorem 3.1. It is not known if (iii) \Rightarrow (i) even when S is a separable metric semigroup.

References

- [1] L. Argabright, "Invariant means on topological semigroups", Pacific J. Math. 16 (1966), 193-203.
- [2] L. Argabright, "A note on invariant integrals on locally compact semigroups", Proc. Amer. Math. Soc. 17 (1966), 377-382.
- [3] S.K. Berberian, Measure and Integration, (MacMillan Co., New York, 1965).
- [3a] Nicolas Bourbaki, General Topology, Part 1, (Addison-Wesley, Reading, Mento Park, London, Ontario, 1966).
- [3b] Leonard Gillman and Meyer Jerison, Rings of continuous functions, (Van Nostrand, Princeton, 1960).
- [4] M. Heble and M. Rosenblatt, "Idempotent measures on a compact topological semigroup", Proc. Amer. Math. Soc. 14 (1963), 177-184.
- [5] Edwin Hewitt, "Linear functionals on spaces of continuous functions", Fund. Math. 37 (1950), 161-189.
- [6] Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis (Academic Press, New York, London, 1963).
- [7] A. Markov, "On mean values and exterior densities", Rec. math. Moscou (Mat. Sb.) 4 (1938), 165-190.
- [8] J.H. Michael, "Right invariant integrals on locally compact semigroups", J. Austral. Math. Soc. 4 (1964), 273-286.
- [9] Kiiti Morita and Satiro Hanai, "Closed mappings and metric spaces", Proc. Japan Acad. 32 (1956), 10-14.

- [10] J. Neveu, Mathematical foundations of the calculus of probabilities (Holden-Day Inc., San Francisco, 1965).
- [11] John C. Oxtoby, "Invariant measures in groups which are not locally compact", Trans. Amer. Math. Soc. 60 (1946), 215-237.
- [12] K.R. Parthasarathy, Probability measures on metric spaces (Academic Press, New York, London, 1967).
- [13] G.B. Preston, "Inverse semigroups with minimal right ideals", J. London Math. Soc. 29 (1954), 411-419.

Department of Mathematics, University of South Florida, Tampa, Florida, USA.

Department of Mathematics, University of Athens, Athens, Greece.