Dietary arachidonic acid: harmful, harmless or helpful?

Mammalian cells and tissues contain substantial amounts of the n-6 PUFA arachidonic acid, especially in their membrane phospholipids. For example, platelets from human adults living on a typical Western diet have about 25% phospholipid fatty acids as arachidonic acid, while for human mononuclear cells, neutrophils, erythrocytes, skeletal muscle, cardiac tissue and liver phospholipids, arachidonic acid contents are about 22%, 15%, 17%, 16%, 9% and 20% total fatty acids, respectively. This arachidonic acid can have two origins: the diet or endogenous synthesis from a precursor, particularly linoleic acid, which is consumed in fairly high amounts in most diets. Important dietary sources of preformed arachidonic acid are eggs and meat; fish also contain arachidonic acid. Typical intakes of arachidonic acid have been estimated to be between 50 and 300 mg/d for adults consuming Western-style diets, with average intakes of about 175 mg/d. This is not unlike typical intakes reported for adults in Western countries. Habitual arachidonic acid intake was estimated to range between 110 and 270 mg/d with an average of about 175 mg/d. Habitual intakes of EPA and DHA ranged from 42 to 691 and from 98 to 991 mg/d, respectively, with average intakes of about 310 and 550 mg/d respectively.

An article in the current issue of the *British Journal of Nutrition* assesses the impact of increased dietary intake of arachidonic acid in an adult population with high fish intake. This is the first study of arachidonic acid intake in such a population; previous studies in healthy adult human subjects have been conducted in low fish consumers in the USA and in the UK. In this new study, approximately 840 mg arachidonic acid/d was consumed by Japanese adults for 4 weeks. Habitual arachidonic acid intake was estimated to range between 110 and 270 mg/d with an average of about 175 mg/d. Habitual intakes of EPA and DHA ranged from 42 to 691 and from 98 to 991 mg/d, respectively, with average intakes of about 310 and 550 mg/d respectively. These are much greater than long chain n-3 PUFA intakes among those subjects involved in studies of arachidonic acid previously (e.g. 90 and 150 mg/d for EPA and DHA, respectively). In this new study, the amount of arachidonic acid was increased in serum phospholipids (from 9.6 to 13.7 g/100 g total fatty acids) and TAG (from 1.4 to 2.3 g/100 g total fatty acids) with maximum incorporation occurring at 2 weeks of supplementation. The increase in arachidonic acid content of serum phospholipids is consistent with that seen in plasma phospholipids in adults in the UK supplementing their diet with 680 mg arachidonic acid/d (from 9.3 to 15.9 g/100 g total fatty acids), in which maximum incorporation occurred at 4 weeks (an earlier time point was not examined). A washout period of 4 weeks resulted in a return of arachidonic acid in serum phospholipids and TAG to levels seen prior to starting supplementation. Again, this is consistent with earlier observations for plasma phospholipids after a 4-week washout period. In the study of Kusumoto et al. there was no effect of supplemental arachidonic acid on blood pressure, serum lipid and glucose concentrations or serum markers of liver function. These findings are consistent with an earlier study conducted in the USA using 1.5 g arachidonic acid/d, which showed no effects on blood lipid or lipoprotein concentrations. However, the main focus of this new study is platelet aggregation. Given this, it is unfortunate that the authors do not report the fatty acid composition of platelet phospholipids. Studies using data across populations with different patterns of PUFA intake have reported that platelet aggregation is highly related to the arachidonic acid and EPA contents of platelets. In this new study, maximal aggregation of platelets in response to ADP, collagen or arachidonic acid and platelet sensitivity to ADP or collagen were not affected by dietary arachidonic acid supplementation. Thus, the main conclusion from this new study is that increasing arachidonic acid intake by 840 mg/d does not
result in a pro-aggregatory state. One reason for this may be that the starting platelet content of arachidonic acid was already above that which results in a maximal aggregatory response. Additionally, the relatively high long-chain n-3 PUFA content expected to be present in these platelets may have prevented any pro-aggregatory effect of an increased arachidonic acid content from occurring. However, without seeing the data on platelet fatty acid composition in this study it is not possible to assess this further. Furthermore, no arachidonic acid-derived eicosanoids such as prostaglandin-I₂ and thromboxane-A₂ are reported here and so it is not possible to properly assess the functional impact of the supplement. As indicated earlier, an early study reported a marked increase in platelet aggregation after 6 g arachidonic acid/d for 3 weeks. This was associated with increased arachidonic acid in platelets and increased urinary appearance of a prostaglandin-E₂ metabolite. In another study, arachidonic acid (1·5 g/d for 7 weeks) only slightly increased platelet arachidonic acid (from 21 to 22·5 % of total fatty acids) and did not alter platelet aggregation in response to ADP, collagen or arachidonic acid, or prothrombin, partial thromboplastin or bleeding times. The limited effect of 1·5 g arachidonic acid/d on platelet fatty acid composition probably accounts for the lack of a functional effect. Furthermore, this study suggests that platelet fatty acid composition probably accounts for the lack of a functional effect. Furthermore, this study suggests that platelet fatty acid composition in the study by Kusumoto et al., which used 840 mg arachidonic acid/d, may have been little affected; this would account for the lack of functional effect on platelets. This strengthens the need to see the data for platelet fatty acid composition.

In contrast to what might be predicted, studies assessing a range of immune functions and inflammatory markers in healthy adults in response to increased intake of arachidonic acid (up to 1·5 g/d) have not identified any major effects. Taken together with the studies on blood lipids, platelet reactivity and bleeding time, including this latest study, it seems appropriate to conclude that a significant increase in arachidonic acid intake by healthy adults, up to an intake of, say, 1·5 g/d appears unlikely to have any adverse effect. However, the earlier study by Seyberth et al., suggests that higher intakes of arachidonic acid should be approached with caution. Furthermore, there is no information on the impact of increased arachidonic acid supply in disease. It is possible that inflammatory processes that already exist within an individual could be exacerbated by providing exogenous arachidonic acid. However, the discovery of novel anti-inflammatory mediators produced from arachidonic acid and the identification of hitherto unknown anti-inflammatory actions of mediators previously considered to be pro-inflammatory in nature indicate first, the complexity of this system and, second, that predicting the effect that increased arachidonic acid supply might have is difficult. Nevertheless, it is important to keep in mind that, just because there is little biological impact of an increase in arachidonic acid intake or status, there may still be significant benefit from a decrease in its intake or status.

It is important to note that a role for arachidonic acid in neurological development has been identified, that arachidonic acid-derived eicosanoids are not confined to pathology but have many physiological roles, that human breast milk contains arachidonic acid, that infant formulas, which include arachidonic acid (and DHA), are associated with improved growth and development and that formula containing arachidonic acid (and DHA) has been shown to enable preterm infants to achieve immune development similar to that seen with breast-milk feeding and to lower the risk of necrotising enterocolitis in preterm boys. These observations suggest an important role for arachidonic acid in the normal growth and development of infants and demonstrate that harmful actions are not seen as a consequence to its provision, at least when given in combination with DHA.

In conclusion, this new study by Katsumoto et al. adds valuable new information to our knowledge about the impact of increased dietary intake of arachidonic acid. Taken together with earlier studies, this study suggests that, rather than being harmful, moderately increased arachidonic acid intake is probably harmless in healthy adults, although the effect of intakes above 1·5 g/d are not known and the effect of increased intake in diseased individuals is not known. Furthermore, arachidonic acid appears to be an important constituent of infant formulas and in this setting may be helpful in growth, development and health.

Philip C. Calder
Institute of Human Nutrition
School of Medicine
University of Southampton
Bassett Crescent East
Southampton SO16 7PX
UK
pcc@soton.ac.uk

References

Dietary arachidonic acid

The arachidonic acid content of the Australian diet is lower 
than previously estimated. J Nutr 125, 2528–2535.
10. Seyberth HW, Oelz O, Kennedy T, Sweetman BJ, Danon A, 
Frolich JC, Heimberg M & Oates JA (1975) Increased 
arachidonate in lipids after administration to man: effects on 
triacylglycerol supplementation on serum fatty acids and 
platelet aggregation in healthy male subjects with a fish diet. 
Brit J Nutr. Published online: 20 April 2007. doi:10.1017/ 
S0007114507734566.
Ferretti A (1997) A human dietary arachidonic acid supple-
tation study conducted in a metabolic research unit: rationale 
and design. Lipids 32, 415–420.
(1997) The effect of dietary arachidonic acid on platelet 
function, platelet fatty acid composition, and blood coagula-
tion in humans. Lipids 32, 421–425.
14. Nelson GJ, Schmidt PC, Bartolini G, Kelley DS, Phinney SD, 
dietary arachidonic acid on plasma lipoprotein distributions, 
aproteins, blood lipid levels, and tissue fatty acid composition 
15. Ferretti A, Nelson GI, Schmidt PC, Kelley DS, Bartolini G & 
Flanagan VP (1997) Increased dietary arachidonic acid 
enhances the synthesis of vasoactive eicosanoids in humans. 
Lipids 32, 435–439.
donic acid supplementation enhances synthesis of eicosanoids 
without suppressing immune functions in young healthy men. 
Lipids 33, 125–130.
18. Thies F, Nebe-von-Caron G, Powell JR, Yaqoob P, Newsho-
holme EA & Calder PC (2001) Dietary supplementation 
with gamma-linolenic acid or fish oil decreases T lymphocyte 
proliferation in healthy older humans. J Nutr 131, 
1918–1927.
19. Thies F, Miles EA, Nebe-von-Caron G, Powell JR, Hurst TL, 
Newsholme EA & Calder PC (2001) Influence of dietary sup-
plementation with long-chain n-3 or n-6 polyunsaturated fatty 
acids on blood inflammatory cell populations and functions 
and on plasma soluble adhesion molecules in healthy adults. 
Lipids 36, 1183–1193.
20. Dyerberg J & Bang HO (1979) Haemostatic function and plate-
and immunity. Lipids 36, 1007–1024.
22. Calder PC (2003) N-3 polyunsaturated fatty acids and inflam-
mation: from molecular biology to the clinic. Lipids 38, 
343–352.
23. Calder PC (2006) N-3 polyunsaturated fatty acids, inflammation, 
Prostagland Leukot Essent Fatty Acids 73, 231–237.
Lipid mediator class switching during acute inflammation: 
requirements of the newborn. Can J Physiol Pharmacol 72, 
1483–1492.
27. Sauerwald TU, Demmelmaier H & Koletzko B (2001) 
Polyunsaturated fatty acid supply with human milk. Lipids 36, 
991–996.
supply and metabolism in human infants born at full term. 
Lipids 31, 79–83.
29. Makrides M, Neumann M, Simmer K, Pater J & Gibson R 
(1995) Are long-chain polyunsaturated fatty acids essential 
E & Clandinin MT (2000) Lower proportion of CD45RO+ 
cells and deficient interleukin-10 production by formula-fed 
infants, compared with human-fed, is corrected with supplemen-
tation of long-chain polyunsaturated fatty acids. J Pediatr 
31. Carlson SE, Montalto MB, Ponder DL, Werkman SH & 
Korones SB (1998) Lower incidence of necrotizing enterocolitis 
in infants fed a preterm formula with egg phospholipids. Pediatr 
Res 44, 491–498.