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Abstract

In this paper we propose a general bivariate random effect model with special emphasis on
frailty models and environmental effect models, and present some stochastic comparisons.
The relationship between the conditional and the unconditional hazard gradients are
derived and some examples are provided. We investigate how the well-known stochastic
orderings between the distributions of two frailties translate into the orderings between
the corresponding survival functions. These results are used to obtain the properties of
the bivariate multiplicative model and the shared frailty model.
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1. Introduction

Random effect models have been widely used in the context of linear models. In linear
models, the random effect is introduced as the error variable and the distribution of this error
variable is reflected in the parameter estimates and other inferential problems. Besides this,
the random effect models have been used in survival analysis to model the heterogeneity
unexplained by the covariates. In assessing the effect of environmental factors, these models
have been used as random environmental models. The dependence structure created by the
random effects in survival analysis is quite different than in the linear models. Recently,
Rizopoulos et al. (2008), using the random effect model, investigated the association structure
between a longitudinal response process and the time to an event of interest using the shared
parameter framework.

As explained above, random effect models are used in different disciplines. We will present
our results in the context of survival analysis or, more specifically, in the context of frailty models
where the frailty is modeled as an unobservable random effect. Clayton (1978) and Clayton and
Cuzick (1985) introduced the proportional hazard frailty model, where a group of observations
is assigned a random effect that acts multiplicatively on the baseline hazard function. The
proportional hazard frailty model implies conditional independence—conditional on the frailty
terms, the event times are independent. However, unconditionally, they are dependent.
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Random effect bivariate survival models 427

1.1. Frailty models

As is well known, a particularly useful tool in handling heterogeneity unexplained by the
observed covariates is the ‘frailty model’, introduced in Vaupel et al. (1979). The classical
frailty model is given by

λ(t | v) = vλ0(t), t > 0, (1.1)

where λ0(t) is the baseline hazard independent of v.
Model (1.1) states that the hazard rate of an individual is the product of the individual specific

quantity v and the baseline hazard rate λ0(t) describing the age effect. We consider vλ0(t) to be
the conditional failure rate of a random variable T givenV = v, whereV is the frailty or mixing
random variable. Frailty models have often been used when groups of subjects have responses
that are likely to be dependent in some general way. For example, in an animal carcinogeneity
study, the responses of members of the same litter are not likely to be independent. Liang et
al. (1995) discussed the use of frailty models when multiple events have been observed on the
same subject.

It is well known that the choice of frailty distribution strongly affects the estimate of the
baseline hazard as well as the conditional probabilities; see Hougaard (1984), (1991), (1995),
(2000, pp. 213–262), Heckman and Singer (1984), and Agresti et al. (2004). Since different
distributions of frailty give rise to different population level distributions of analyzing survival
data, it is appropriate to investigate how the comparative effect of two frailties translates into the
comparative effect on the resulting distributions. In the shared frailty models, the assumptions
about the frailty distributions play an important role in the model’s interpretation since the
frailty distribution links the two processes of interest. For more discussion, see Rizopoulos et
al. (2008) and Sargent (1998). In this connection, in the univariate case, Gupta and Kirmani
(2006) investigated how well-known stochastic orderings between distributions of two frailties
translate into orderings between the corresponding survival functions. More recently, in the
univariate case, Gupta and Gupta (2009) studied a similar problem for a general frailty model
which includes the classical frailty model (1.1) as well as the additive frailty model. It may be
mentioned that, in the univariate setup, the above two papers reached results similar to the ones
contained in the present paper.

For model (1.1), the population level hazard function is given by

λ(t) = − d

dt
ln F̄ (t),

where
F̄ (t) = P(T > t) = MV (−�0(t)),

MV (·) denotes the moment generating function of V , and �0(t) = ∫ t
0 λ0(x) dx.

The overall population hazard function λ(t) is related to the baseline hazard function λ0(t)

by the relation
λ(t) = λ0(t)E(V | T > t).

Since
d

dt
E(V | T > t) = −λ0(t) var(V | T > t)

(see Gupta and Gupta (1996)), λ(t)/λ0(t) is a decreasing function of t . It can be seen that
if E(V ) ≤ 1 then λ(t) ≤ λ0(t), t > 0, or, equivalently, Ḡ(t)/F̄ (t) is decreasing on [0,∞),
where Ḡ(t) is the baseline survival function. In order to avoid identifiability problems, it is
generally assumed that E(V ) = 1. In the case of gamma frailty, see Hougaard (2000, p. 233).
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In this paper we study a general bivariate frailty model and present some stochastic com-
parisons using different distributions of the frailty. To this end, we define the bivariate hazard
functions as follows.

Let T1 and T2 be two dependent random variables having absolutely continuous bivariate
survival function F̄ (t1, t2) = P(T1 > t1, T2 > t2). Then the hazard (failure) rates, defined as

λ(i)(t1, t2) = − ∂

∂ti
ln F̄ (t1, t2), i = 1, 2,

are often used in demography, survival analysis, and biostatistics when analyzing bivariate
survival data. Clearly, λ(1)(t1, t2) is the hazard rate of T1 given T2 > t2. Likewise, λ(2)(t1, t2)
is the hazard rate of T2 given T1 > t1. The vector (λ(1)(t1, t2), λ(2)(t1, t2)) is called the hazard
gradient. It is well known that the hazard gradient uniquely determines the survival function.
Thus, we consider the general bivariate frailty model

λ(i)(t1, t2 | v) = λ(i)(t1, t2, v), i = 1, 2, (1.2)

where v is the frailty associated with an individual.
As mentioned earlier, our aim in this paper is to develop the properties of the general bivariate

frailty model (1.2) and obtain some results for the stochastic comparisons using different frailty
distributions. As a special case, we will obtain results for the classical bivariate frailty model
and the shared frailty model. The organization of this paper is as follows. After giving the
aims and objectives together with the necessary definitions and background, we describe the
general bivariate frailty model along with some of the properties in Section 2. In Section 3,
our main results lie in seeing how the well-known stochastic orderings between distributions of
two frailties translate into the orderings between the corresponding survival functions. These
results are used, in Section 4, to investigate the stochastic order properties of the multiplicative
model and the shared frailty model. Finally, some conclusions and comments are given in
Section 5.

Before proceeding further, we present some definitions and background for various stochastic
comparisons.

Definition. Let X and Y be nonnegative absolutely continuous random variables with density
functions f (x) and g(x), and survival functions F̄ (x) and Ḡ(x), respectively. Then X and Y
can be defined as follows.

(i) X is said to be smaller than Y in the likelihood ratio ordering, written as X ≤lr Y , if
f (x)/g(x) is nonincreasing in x.

(ii) X is said to be smaller than Y in the failure (hazard) rate ordering, written as X ≤fr Y ,
if rF (x) ≥ rG(x) for all x, where rF (x) and rG(x) are the hazard rates of X and Y ,
respectively. This means that Ḡ(x)/F̄ (x) increases in x.

(iii) X is said to be smaller than Y in the stochastic ordering, written as X ≤st Y , if F̄ (x) ≤
Ḡ(x) for all x.

(iv) X is said to be smaller than Y in the mean residual life ordering, written as X ≤mrl Y , if
µF (x) ≤ µG(x) for all x. Deshpande et al. (1990) showed that X ≤mrl Y if and only if∫ ∞
x
F̄ (u) du/

∫ ∞
x
Ḡ(u) du is decreasing in x.

(v) Let X and Y be n-dimensional random vectors with hazard gradients

(λ
(1)
X (x), λ

(2)
X (x), . . . , λ

(n)
X (x)) and (λ

(1)
Y (y), λ

(2)
Y (y), . . . , λ

(n)
Y (y)),
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respectively. ThenX≤whr Y (weak hazard rate order) ifλ(i)X (t) ≥ λ
(i)
Y (t), i = 1, 2, . . . , n

and t ∈ R
n; see Shaked and Shanthikumar (2007, p. 271). Note that this condition is

weaker than the hazard rate orderings of vectors.

The following relations are well known:

X ≤lr Y �⇒ X ≤fr Y �⇒ X ≤mrl Y

⇓
X ≤st Y ;

see Shaked and Shanthikumar (2007, p. 271).

2. General bivariate frailty model

Consider a general bivariate frailty model defined by the absolutely continuous joint survival
function F̄ (t1, t2 | v), of a two-unit system, where v is the frailty effect associated with the two
variables. Define

λ(i)(t1, t2 | v) = − ∂

∂ti
ln F̄ (t1, t2 | v)

= − ∂

∂ti
ln F̄ (ti | Tj > tj , v)

= f (ti | Tj > tj , v)

F̄ (ti | Tj > tj , v)
, i, j = 1, 2, i 	= j.

That is, λ(i)(t1, t2 | v) is the failure rate function of the ith unit with the j th (i 	= j) unit
surviving until time tj , conditional on the frailty variable V .

If h(v) denotes the probability density function (PDF) of the random environmental effect
V , then the unconditional joint PDF and the survival function are

f (t1, t2) =
∫ ∞

0
f (t1, t2 | v)h(v) dv

and

F̄ (t1, t2) =
∫ ∞

0
F̄ (t1, t2 | v)h(v) dv,

respectively. These functions are known as the population level joint density and survival
functions. The population level failure rate functions are defined as

λ(i)(t1, t2) = − ∂

∂ti
ln F̄ (t1, t2)

= − ∂

∂ti
ln F̄ (ti | Tj > tj )

= f (ti | Tj > tj )

F̄ (ti | Tj > tj )
, i, j = 1, 2, i 	= j.

In the following, we show that the population level hazard components are the averages of
the conditional hazard components.
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Theorem 2.1. The population level failure rate function of the ith unit in a two-unit system with
the j th unit of fixed age tj is the expected value of λ(i)(t1, t2 | v) with respect to the conditional
distribution of the frailty effect V given T1 > t1 and T2 > t2. That is,

λ(i)(t1, t2) = EV | {T1>t1, T2>t2}(λ(i)(t1, t2 | v)), i = 1, 2.

It is assumed that the conditional distribution of V given T1 > t1 and T2 > t2 is absolutely
continuous, so that the conditional density exists.

Proof. We first show that

h(v | T1 > t1, T2 > t2) = F̄ (ti | Tj > tj , v)h(v)

F̄ (ti | Tj > tj )
, (2.1)

where h(v | T1 > t1, T2 > t2) is the conditional density of V among survivors.
We have

h(v | T1 > t1, T2 > t2) = −(∂/∂v)P(V > v, T1 > t1, T2 > t2)

P(T1 > t1, T2 > t2)

= −(∂/∂v)P(V > v, Ti > ti | Tj > tj )

P(Ti > ti | Tj > tj )

= −(∂/∂v) ∫ ∞
v

∫ ∞
ti
f (u, xi | Tj > tj ) dxi du

F̄ (ti | Tj > tj )

= −(∂/∂v) ∫ ∞
v

∫ ∞
ti
f (xi | Tj > tj , u)h(u) dxi du

F̄ (ti | Tj > tj )

= −(∂/∂v) ∫ ∞
v
F̄ (xi | Tj > tj , u)h(u) du

F̄ (ti | Tj > tj )

= F̄ (ti | Tj > tj , v)h(v)

F̄ (ti | Tj > tj )
, i, j = 1, 2, i 	= j.

Therefore,

λ(i)(t1, t2) = f (ti | Tj > tj )

F̄ (ti | Tj > tj )

=
∫ ∞

0 f (ti | Tj > tj , v)h(v) dv

F̄ (ti | Tj > tj )

=
∫ ∞

0
λ(i)(t1, t2 | v) F̄ (ti | Tj > tj , v)h(v) dv

F̄ (ti | Tj > tj )

=
∫ ∞

0
λ(i)(t1, t2 | v)h(v | T1 > t1, T2 > t2) dv,

using (2.1). Thus, we have shown that

λ(i)(t1, t2) = EV | {T1>t1, T2>t2}(λ(i)(t1, t2 | v)), i = 1, 2.

Under a very mild condition, the following result addresses the monotonicity of the distri-
bution (survival) function of the random effect as a function of the ages of the two units.
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Theorem 2.2. If λ(i)(t1, t2 | v) is an increasing function of v, i = 1, 2, then H(v | T1 >

t1, T2 > t2) and H̄ (v | T1 > t1, T2 > t2) are increasing and decreasing functions of ti ,
respectively, where

H(v | T1 > t1, T2 > t2) =
∫ v

0 F̄ (ti | Tj > tj , u)h(u) du

F̄ (ti | Tj > tj )
, i, j = 1, 2, i 	= j,

is the conditional cumulative distribution function of the frailty variable among survivors and
H̄ = 1 −H .

Proof. We have

∂

∂ti
H(v | T1 > t1, T2 > t2) =

∫ v
0 (∂/∂ti)F̄ (ti | Tj > tj , u)h(u) du

F̄ (ti | Tj > tj )

− (∂/∂ti)F̄ (ti , Tj > tj )

[F̄ (ti , Tj > tj )]2

∫ v

0
F̄ (ti | Tj > tj , u)h(u) du

=
∫ v

0 F̄ (ti | Tj > tj , u)h(u) du

F̄ (ti | Tj > tj )
[−A(v)+ A(∞)],

where

A(v) =
∫ v

0 λ
(i)(t1, t2 | u)F̄ (ti | Tj > tj , u)h(u) du∫ v

0 F̄ (ti | Tj > tj , u)h(u) du
.

We now show that A(v) is increasing in v > 0. We have

d

dv
A(v) = 1

(
∫ v

0 F̄ (ti | Tj > tj , u)h(u) du)2

×
((∫ v

0
F̄ (ti | Tj > tj , u)h(u) du

)
λ(i)(t1, t2 | v)F̄ (ti | Tj > tj , v)h(v)

− F̄ (ti | Tj > tj , v)h(v)

∫ v

0
λ(i)(t1, t2 | u)F̄ (ti | Tj > tj , u)h(u) du

)

= F̄ (ti | Tj > tj , v)h(v)

(
∫ v

0 F̄ (ti | Tj > tj , u)h(u) du)2

×
(∫ v

0
{λ(i)(t1, t2 | v)− λ(i)(t1, t2 | u)}F̄ (ti | Tj > tj , u)h(u) du

)

> 0,

since λ(i)(t1, t2 | v) > λ(i)(t1, t2 | u) for all u < v.

Corollary 2.1. If λ(i)(t1, t2 | v) is an increasing function of v, i = 1, 2, then E(V | T1 >

t1, T2 > t2) is decreasing in ti , i = 1, 2.

Proof. The hypothesis implies that H̄ (v | T1 > t1, T2 > t2) is decreasing in ti > 0. Thus,

E(V | T1 > t1, T2 > t2) =
∫ ∞

0
H̄ (v | T1 > t1, T2 > t2) dv

is decreasing in ti > 0, i = 1, 2.
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Remark 2.1. The statement of Corollary 2.1 is a precise statement of the heuristically obvious
fact that the weaker units in the population fail earlier than the others, so the remaining units
are more robust than the rest.

Remark 2.2. The condition λ(i)(t1, t2 | v) is an increasing function of v will be satisfied by
all the examples considered in the later sections.

The following results compare the frailty distribution of two groups, one with Ti > ti1 and
Tj > tj , and the other with Ti > ti2 and Tj > tj , where ti1 < ti2, i, j = 1, 2, i 	= j .

Theorem 2.3. If λ(i)(t1, t2 | v) is an increasing function of v then

V | {Ti > ti2, Tj > tj } ≤lr V | {Ti > ti1, Tj > tj }, 0 < ti1 < ti2, i = 1, 2.

Proof. We have

h(v | Ti > ti2, Tj > tj )

h(v | Ti > ti1, Tj > tj )
= F̄ (ti2 | Tj > tj , v)h(v)

F̄ (ti1 | Tj > tj , v)h(v)

F̄ (ti1 | Tj > tj )

F̄ (ti2 | Tj > tj )

= exp

{
−

∫ ti2

ti1

λ(i)(t1, t2) dti

}
F̄ (ti1 | Tj > tj )

F̄ (ti2 | Tj > tj )
.

Since λ(i)(t1, t2 | v) is an increasing function of v, h(v | Ti > ti2, Tj > tj )/h(v | Ti >
ti1, Tj > tj ) is decreasing in v. This means that the family of random variables V | {Ti >
ti, Tj > tj } is decreasing in ti > 0 in the sense of the likelihood ratio.

We now present a general result comparing a random variable with its weighted version.

Lemma 2.1. Let V1 and V2 be two random variables with density functions h1(·) and h2(·)
such that

h2(v) = g(v)h1(v)∫ ∞
0 g(v)h1(v) dv

,

where if g(v) is a decreasing function of v then V1 ≥lr V2, and if g(v) is an increasing function
of v then V1 ≤lr V2.

Proof. Since h2(v)/h1(v) is nonincreasing in v, the result follows by definition.

The following result shows how the ordering between two frailties is preserved for surviving
individuals.

Theorem 2.4. Let V1 and V2 be two frailty random variables such that V2 ≤lr V1. Then
V2 | {T1 > t1, T2 > t2} ≤lr V1 | {T1 > t1, T2 > t2}.

Proof. We have

H2(v | T1 > t1, T2 > t2) =
∫ v

0 F̄ (t1, t2 | u)h2(u) du∫ ∞
0 F̄ (t1, t2 | u)h2(u) du

=
∫ v

0 F̄ (t1, t2 | u)g(u)h1(u) du∫ ∞
0 F̄ (t1, t2 | u)g(u)h1(u) du

.

This means that the distribution of V2 | {T1 > t1, T2 > t2} is the weighted version of the
distribution of V1 | {T1 > t1, T2 > t2} by weight g(v), a decreasing function of v. By applying
Lemma 2.1 we obtain the result.

https://doi.org/10.1239/jap/1276784901 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1276784901


Random effect bivariate survival models 433

2.1. Examples

Suppose that

F̄ (t1, t2 | v) = e−vψ(t1,t2),

where ψ(t1, t2) is a differentiable function in both arguments such that F̄ (t1, t2 | v) is a
conditional survival function.

Then

λ(i)(t1, t2 | v) = v
∂

∂ti
ψ(t1, t2), i = 1, 2.

This gives (for i = 1, 2)

λ(i)(t1, t2) = Ev | {T1>t1, T2>t2}(λ(i)(t1, t2 | v))
=

∫ ∞

0
v
∂

∂ti
ψ(t1, t2)h(v | T1 > t1, T2 > t2) dv,

where h(v | T1 > t1, T2 > t2) is the PDF of V given T1 > t1 and T2 > t2. Thus,

λ(i)(t1, t2) = ∂

∂ti
ψ(t1, t2)E(V | T1 > t1, T2 > t2)

= λ
(i)
0 (t1, t2)E(V | T1 > t1, T2 > t2),

where λ(i)0 (t1, t2) (i = 1, 2) is the ith component of the hazard gradient without incorporating
the frailty effect. Thus,

λ(i)(t1, t2)

λ
(i)
0 (t1, t2)

= E(V | T1 > t1, T2 > t2).

It can be verified that

∂

∂ti
E(V | T1 > t1, T2 > t2) = −λ(i)0 (t1, t2) var(V | T1 > t1, T2 > t2).

This means that λ(i)(t1, t2)/λ
(i)
0 (t1, t2) is a decreasing function of ti , i = 1, 2.

2.1.1. Special case. IfT1 andT2 are conditionally independent given the frailty, thenψ(t1, t2) =
A1(t1) + A2(t2), λ

(1)
0 (t1, t2) = A′

1(t1), and λ(2)0 (t1, t2) = A′
2(t2), where the prime denotes the

derivative.
The conditional survival function given V = v is

F̄ (t1, t2 | v) = exp{−v(A1(t1)+ A2(t2))}.
The unconditional survival function is

F̄ (t1, t2) = MV [−(A1(t1)+ A2(t2))],
where MV (·) is the moment generating function of V .

In the following examples, we use this setup and assume that T1 and T2 are independent
given the frailty variable.
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2.1.2. Specific examples.

Example 2.1. Suppose that V has a gamma distribution with PDF

h(v) = 1

βα�(α)
vα−1e−v/β, v > 0, α > 0, β > 0.

So

F̄ (t1, t2) = [1 + βA1(t1)+ βA2(t2)]−α.
The hazard components are given by

λ(i)(t1, t2) = − ∂

∂ti
ln F̄ (t1, t2) = αβA′

i (ti )

1 + βA1(t1)+ βA2(t2)
, i = 1, 2.

Furthermore,

E(V | T1 > t1, T2 > t2) = αβ

1 + βA1(t1)+ βA2(t2)

and

var(V | T1 > t1, T2 > t2) = αβ2

[1 + βA1(t1)+ βA2(t2)]2 .

The above expressions yield the square of the coefficient of variation of V given T1 > t1
and T2 > t2 as 1/α. It can be verified that a constant value of the coefficient of variation occurs
only in the case of gamma frailty.

Example 2.2. Suppose that V has an inverse Gaussian distribution with PDF

h(v) = (2πav3)−1/2 exp

{
− (bv − 1)2

2av

}
, v > 0, a > 0, b > 0.

This gives

F̄ (t1, t2) = exp

{
b

a

(
1 −

(
1 − 2a

b2 (A1(t1)+ A2(t2))

))−1/2}
.

The hazard components are given by

λ(i)(t1, t2) = Ai(ti)

[b2 + 2a(A1(t1)+ A2(t2))]1/2 , i = 1, 2.

Furthermore,

E(V | T1 > t1, T2 > t2) = 1

[b2 + 2a(A1(t1)+ A2(t2))]1/2

and

var(V | T1 > t1, T2 > t2) = a

[b2 + 2a(A1(t1)+ A2(t2))]3/2 .

https://doi.org/10.1239/jap/1276784901 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1276784901


Random effect bivariate survival models 435

3. Comparisons of frailty models

There is no firm basis for choosing the probability distribution of the frailty random vari-
able V . It is therefore important to see how the overall survival function of the ith unit, i = 1, 2,
responds to the change in the probability distribution ofV . To be more precise, if the true model
for the probability distribution of the frailty random variable is that of V1 and the adopted model
assumes the distribution ofV2, then we would like to know the relationship between the resulting
random variables. Our main objective in this section is to see how some of the well-known
stochastic orderings between V1 and V2 translate into the orderings between the component
lifetimes.

Theorem 3.1. Let λ(i)(t1, t2 | v) be an increasing function of v > 0, i = 1, 2. If V2 ≤lr V1
then (T11, T21) ≤whr (T12, T22).

Proof. From (2.1) we have

λ
(i)
v1 (t1, t2)− λ

(i)
v2 (t1, t2)

=
∫ ∞

0
λ(i)(t1, t2 | u)h1(u | T1 > t1, T2 > t2) du

−
∫ ∞

0
λ(i)(t1, t2 | u)h2(u | T1 > t1, T2 > t2) du

= λ(i)(t1, t2 | u)[H1(u | T1 > t1, T2 > t2)−H2(u | T1 > t1, T2 > t2)]∞0
−

∫ ∞

0

d

du
λ(i)(t1, t2 | u)[H1(u | T1 > t1, T2 > t2)−H2(u | T1 > t1, T2 > t2)] du

=
∫ ∞

0

d

du
λ(i)(t1, t2 | u)[H2(u | T1 > t1, T2 > t2)−H1(u | T1 > t1, T2 > t2)] du

> 0.

The rest of the proof follows by using the fact that λ(i)(t1, t2 | v) is an increasing function
of v and V2 ≤lr V1.

Before presenting the next result, we give the following definition and the composition
formula.

Definition 3.1. A real-valued function f (t, v) is said to be RR2 (reverse rule of order 2) or TP2
(total positive of order 2) on [0,∞)× [0,∞) if

f (t1, v1)f (t2, v2) ≤ f (t1, v2)f (t2, v1)

or, respectively,
f (t1, v1)f (t2, v2) ≥ f (t1, v2)f (t2, v1)

for all 0 < t1 < t2 and 0 < v1 < v2.

Remark 3.1. The concepts of RR2 and TP2 are used to study the dependence between two
variables; see Karlin (1968, pp. 11–45).

The following statements are equivalent.

1. A real-valued function f (t, v) is RR2 on [0,∞)× [0,∞).
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2. f (t, v1)/f (t, v2) is increasing in t > 0 and 0 < v1 < v2.

3. ∂2 ln f (t, v)/∂t∂v < 0.

4. f (t | v) or f (v | t) is RR2, where f (t | v) and f (v | t) are the conditional densities.

Similarly, the following statements are also equivalent.

1. A real-valued function f (t, v) is TP2 on [0,∞)× [0,∞).

2. f (t, v1)/f (t, v2) is decreasing in t > 0 and 0 < v1 < v2.

3. ∂2 ln f (t, v)/∂t∂v > 0.

4. f (t | v) or f (v | t) is TP2, where f (t | v) and f (v | t) are the conditional densities.

See Holland and Wang (1987).
We now present the following result.

Theorem 3.2. Suppose that the conditional joint PDF of Ti and V given Tj > tj , i, j =
1, 2, i 	= j , is RR2. Then

(a) V is stochastically decreasing in the right tail with respect to Ti , that is, H̄ (v | Ti >
ti, Tj > tj , i 	= j) is a decreasing function of ti , i = 1, 2;

(b) Ti is stochastically decreasing in the right tail with respect to V , that is, F̄ (ti | V >

v, Tj > tj , i 	= j) is a decreasing function of v.

Proof. See Shaked (1977).

We now present the following well-known composition formula, which will be used in the
sequel.

Definition. (Composition formula.) Let f (t, v) be an RR2 or TP2 function in t ∈ R and v ∈ A,
and let hi(v) be a TP2 function on {1, 2} × A, where hi(v) is a probability density function in
v for each i. Then

	i(t) =
∫
A

f (t, v)hi(v) dv

is RR2 or, respectively, TP2 on {1, 2} × R. For a proof, see Karlin (1968).

The following result shows how the likelihood ratio ordering of V1 and V2 is inherited by
T1 and T2.

Theorem 3.3. Suppose thatV1 ≤lr V2. If f (ti | v, Tj > tj ) is RR2 or TP2 on [0,∞)×[0,∞),
then

Ti,v1 | Tj > tj ≥lr Ti,v2 | Tj > tj or, respectively, Ti,v1 | Tj > tj ≤lr Ti,v2 | Tj > tj .

Proof. The condition V1 ≤lr V2 implies that h2(v)/h1(v) is increasing in v > 0. That is,
the map (k, v) → hk(v) is TP2 on {1, 2} × [0,∞). If f (ti | v, Tj > tj ) is RR2 or TP2 in
ti and v then, using the composition formula, the map (k, ti) → fk(ti | Tj > tj ) is RR2 or,
respectively, TP2 on {1, 2} × [0,∞), where fk(ti | Tj > tj ) is given by

fk(ti | Tj > tj ) =
∫ ∞

0
f (ti | u, Tj > tj )hk(u) du, k = 1, 2.

This implies that f2(ti | Tj > tj )/f1(ti | Tj > tj ) is decreasing or, respectively, increasing
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in ti > 0. Hence, Ti,v1 | Tj > tj ≥lr Ti,v2 | Tj > tj or, respectively, Ti,v1 | Tj > tj ≤lr
Ti,v2 | Tj > tj . This completes the proof.

The following result addresses the inheritance of failure rate orderings of V1 and V2 by T1
and T2.

Theorem 3.4. Suppose that

(a) V1 ≤fr V2; and

(b) λ(i)(t1, t2 | v1) ≤ λ(i)(t1, t2 | v2) or λ(i)(t1, t2 | v1) ≥ λ(i)(t1, t2 | v2), v1 < v2.

Then
Ti,v1 | Tj > tj ≥fr Ti,v2 | Tj > tj , i, j = 1, 2, i 	= j,

or, respectively, Ti,v1 | Tj > tj ≤fr Ti,v2 | Tj > tj , i, j = 1, 2, i 	= j.

Proof. Since V1 ≤fr V2, H̄2(v)/H̄1(v) is increasing in v > 0, which is equivalent to the map
(k, v) → H̄k(v) being TP2 on {1, 2} × [0,∞). Condition (b) implies that F̄ (ti | v, Tj > tj ) is
RR2 or TP2 in ti and v on [0,∞)× [0,∞). Also, (b) implies that

F̄ (ti | v1, Tj > tj ) ≥ F̄ (ti | v2, Tj > tj )

or, respectively,
F̄ (ti | v1, Tj > tj ) ≤ F̄ (ti | v2, Tj > tj )

for v1 < v2. This means that F̄ (ti | v, Tj > tj ) is decreasing or, respectively, increasing in v.
Define

F̄k(ti | Tj > tj ) =
∫ ∞

0
F̄k(ti | u, Tj > tj )hk(u) du.

Then the map (k, ti) → F̄k(ti | Tj > tj ) is RR2 or, respectively, TP2 on {1, 2}×[0,∞). There-
fore, F̄2(ti | Tj > tj )/F̄1(ti | Tj > tj ) is a decreasing or, respectively, increasing function of

ti > 0. Hence, λ(i)v1 (t1, t2) ≤ λ
(i)
v2 (t1, t2) or, respectively, λ(i)v1 (t1, t2) ≥ λ

(i)
v2 (t1, t2) for all ti > 0.

That is,
Ti,v1 | Tj > tj ≥fr Ti,v2 | Tj > tj

or, respectively,
Ti,v1 | Tj > tj ≤fr Ti,v2 | Tj > tj .

The following theorem shows the corresponding result for the stochastic orderings.

Theorem 3.5. IfV1 ≤st V2 and F̄ (ti | v, Tj > tj ) is a decreasing function ofv, thenTi,v2 | Tj >
tj ≤st Ti,v1 | Tj > tj , i, j = 1, 2, i 	= j .

Proof. We have

F̄2(ti | Tj > tj )− F̄1(ti | Tj > tj )

=
∫ ∞

0
F̄ (ti | v, Tj > tj )[h2(v)− h1(v)] dv

= −F̄ (ti | v, Tj > tj )[H̄2(v)− H̄1(v)]∞0
+

∫ ∞

0

d

dv
F̄ (ti | v, Tj > tj )[H̄2(v)− H̄1(v)] dv

=
∫ ∞

0

d

dv
F̄ (ti | v, Tj > tj )[H̄2(v)− H̄1(v)] dv.
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Since F̄ (ti | v, Tj > tj ) is a decreasing function of v andH2(v) ≥ H1(v) for all v > 0, we have
F̄2(ti | Tj > tj ) ≤ F̄1(ti | Tj > tj ) for all ti > 0. That is, Ti,v2 | Tj > tj ≤st Ti,v1 | Tj > tj .

4. Multiplicative model

We now consider the following model as a special case:

λ(i)(t1, t2 | v) = vλ
(i)
0 (t1, t2), t1 > 0, t2 > 0, v > 0, (4.1)

where λ(i)0 (t1, t2) is the baseline failure rate of the ith unit without taking into account the frailty
effect and is independent of v. In this case

F̄ (t1, t2 | v) = [Ḡ(t1, t2)]v, v > 0,

where Ḡ(t1, t2) is the joint baseline survival function. This gives the unconditional survival
function as

F̄ (t1, t2) =
∫ ∞

0
[Ḡ(t1, t2)]vh(v) dv, v > 0,

where h(v) is the PDF of the frailty effect V .
We now present the following result.

Theorem 4.1. For model (4.1), the following statements hold.

(a) The ith component of the population level failure rate is given by

λ(i)(t1, t2) = λ0(t1, t2)EV (V | T1 > t1, T2 > t2).

(b) H(v | T1 > t1, T2 > t2) is an increasing function of ti , i = 1, 2.

(c) EV (V | T1 > t1, T2 > t2) is decreasing in ti > 0, i = 1, 2. Moreover, if λ(i)0 (t1, t2) is
decreasing in ti > 0 then λ(i)(t1, t2) is decreasing in ti > 0. That is, Ti | Tj > tj , i, j =
1, 2, i 	= j, is of decreasing failure rate.

(d) V | {Ti > ti2, Tj > tj } ≤lr V | {Ti > ti1, Tj > tj } for all ti1 < ti2, i, j = 1, 2, i 	= j .

(e) If V2 ≤lr V1 then V2 | {T1 > t1, T2 > t2} ≤lr V1 | {T1 > t1, T2 > t2}.
Proof. The proof of (a) follows from Theorem 2.1. For parts (b)–(e), since λ(i)(t1, t2 | v) =

vλ
(i)
0 (t1, t2) is an increasing function of v, Theorems 2.2–2.3 and Corollary 2.1 apply.

We now present the following result, which addresses the monotonicity of the conditional
survival function of the ith component given V and the survival of the j th component.

Theorem 4.2. The random variable Ti is stochastically decreasing in the right tail with respect
to V given Tj > tj , i = 1, 2. That is, F̄ (ti | v, Tj > tj ) is a decreasing function of v > 0.

Proof. We have

f (ti | v, Tj > tj ) = λ(i)(t1, t2 | v)F̄ (ti | v, Tj > tj ) = vλ
(i)
0 (t1, t2)[Ḡ(ti | Tj > tj )]v.

If 0 < v1 < v2 < ∞ then

f (ti | v2, Tj > tj )

f (ti | v1, Tj > tj )
= v2

v1
[Ḡ(ti | Tj > tj )]v2−v1
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is a decreasing function of ti > 0. Therefore, the conditional density of Ti given (v, Tj > tj )

is RR2 in ti and v on [0,∞)×[0,∞). Hence, the joint PDF of Ti and V given Tj > tj is RR2.
The result now follows from Theorem 3.2(b).

The following theorem shows how the stochastic comparisons between V1 and V2 translate
into stochastic comparisons between T1 and T2.

Theorem 4.3. Let A ∈ {lr, fr, st}. If V1 ≤A V2 then

Ti,v1 | Tj > tj ≥A Ti,v2 | Tj > tj , i, j = 1, 2, i 	= j.

Proof. (a) Since f (ti | v, Tj .tj ) is RR2 in ti and v, the result for lr follows from Theorem 3.4.

(b) Since λ(i)(t1, t2 | v) = vλ
(i)
0 (t1, t2) is an increasing function of v, the result for fr follows

from Theorem 3.4.

(c) Since F̄ (ti | v, Tj > tj ) = [Ḡ(ti | Tj > tj )]v is decreasing in v > 0, the result for st
follows from Theorem 3.5.

4.1. Shared frailty model

We now consider the following model, known as the shared frailty model:

λ(i)(t1, t2 | v) = vλ0i (ti ), i = 1, 2,

where λ0i (ti ) is the baseline failure rate of the ith unit, independent of the other unit and of v.
In this case

F̄ (t1, t2 | v) = [Ḡ1(t1)Ḡ2(t2)]v, v > 0,

where Ḡi(ti) is the baseline survival function of the ith unit. Thus,

F̄ (t1, t2) =
∫ ∞

0
[Ḡ1(t1)Ḡ2(t2)]vh(v) dv,

where h(v) is the PDF of V .

Remark 4.1. It is easily seen that the shared frailty model is a special case of the multiplicative
model discussed above, and all the results of Theorems 4.1–4.3 apply.

Remark 4.2. A more general, shared random effect model has been studied in Rizopoulos
et al. (2008), who investigated the association structure between a longitudinal response and
survival processes.

5. Conclusion and comments

In this paper we presented a general bivariate random effect model. Random effect models
are used in various disciplines. For example, in survival analysis they are used as frailty models
and in problems related to the environment they are used as environmental effect models.
We presented our results in the context of frailty models and studied their properties. We
also investigated the effect on the survival by using two different frailty distributions. The
corresponding results for the multiplicative and shared frailty models were also derived. The
two examples presented illustrate the effect on the survival by incorporating the frailty effect.
It is hoped that our results will be useful to researchers dealing with random effect models.
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