EQUAL INTEGRALS OF FUNCTIONS

BY
F. S. CATER

Abstract

Let f_{1}, \ldots, f_{k} be finitely many L_{1}-functions on a measurable set E, and let d and r be numbers such that $\int_{E} f_{i}=d>r>0$ for all j. Then there is a measurable subset S of E such that $\int_{S} f_{i}=r$ for all j.

1. In [1], Klamkin, McGregor and Meir observed that if f_{1} and f_{2} are L_{1}-functions on the real line, R, and if $\int_{R} f_{1}=\int_{R} f_{2}=1$, then for each real number $r(0<r<1)$, there is a measurable set $S_{r} \subset R$ such that

$$
\int_{S_{r}} f_{1}=\int_{S_{r}} f_{2}=r .
$$

In the present note, we prove the (apparently harder) statement that this works for any finite number of functions.

$$
\int_{E} f_{1}=\ldots=\int_{E} f_{k}>0
$$

Then for each real number $r\left(0<r<\int_{E} f_{j}\right)$, there is a measurable set $S_{r} \subset E$ such that

$$
\int_{S_{r}} f_{1}=\ldots=\int_{S_{r}} f_{k}=r .
$$

We show by example that this will not work for countably infinitely many functions f_{j} in general. To prove Theorem 1 we will construct a nest of measurable sets much like the nest of open sets constructed in the proof of Urysohn's Lemma in topology. When $k=2$ this construction can be easily avoided.

Slight modifications of our arguments will show that Theorem 1 holds when R is replaced by a measure space that contains no atoms, but we will not do that here. The main difference is that the absence of atoms is used to prove the case $k=1$. It can even be expressed in terms of finite signed measures on a σ-algebra of subsets of E. Let

[^0]u_{1}, \ldots, u_{k} be such measures where $\Sigma_{j}\left|u_{j}\right|$ has no atoms and $0<r<u_{1}(E)=\ldots=$ $u_{k}(E)$. Then there is a set $S_{r} \subset E$ such that $u_{j}\left(S_{r}\right)=r$ for $j=1, \ldots, k$.
2. The proof of Theorem 1 will be by induction on k. We begin with a lemma whose hypothesis appears excessive and requires positive functions, but it is precisely what we need in the induction argument. Notice the resemblance to the proof of Urysohn's Lemma.

Lemma 1. Let f_{1}, \ldots, f_{k} be positive L_{1}-functions on a measurable set $E \subset R$ such that $\int_{E} f_{1}=\ldots=\int_{E} f_{k}>0$. Suppose that whenever $A \subset E$ is measurable and d is a number such that

$$
0<d<\int_{A} f_{1}=\ldots=\int_{A} f_{k},
$$

there exists a measurable set $B \subset A$ such that

$$
\int_{B} f_{1}=\ldots=\int_{B} f_{k}=d .
$$

Then for each real number $r\left(0 \leq r \leq \int_{E} f_{j}\right)$ there is a measurable set V_{r} such that $V_{0}=\emptyset, V_{\mathcal{E}_{E j}}=E, \int_{V_{r}} f_{j}=r$ for all j and such that $V_{r} \subset V_{r^{\prime}}$ if and only if $r<r^{\prime}$.

Proof. By replacing f_{j} with $f_{j} / \int_{E} f_{j}$ we can (and do) assume, without loss of generality, that $\int_{E} f_{j}=1$ for all j. We first define V_{r} for dyadic rational numbers r between 0 and 1.

We define $V_{i 2^{-p}}\left(0 \leq i \leq 2^{p}\right)$ by induction on p. For $p=0$, put $V_{0}=\phi$ and $V_{1}=$ E. Now suppose V_{r} has been chosen for $r=i 2^{-p}\left(0 \leq i \leq 2^{p}, 0 \leq p \leq P-1\right)$ such that the conclusion of Lemma 1 holds for these numbers r. We define $V_{i 2^{-P}}(0 \leq i \leq$ 2^{P}) as follows. For i odd, note that

$$
\int_{A_{i}} f_{1}=\ldots=\int_{A_{i}} f_{k}=2^{1-P}
$$

where

$$
A_{i}=V_{1 / 2(i+1) 2^{1-\mu} V_{1 / 2(i-1) 2^{1-p}} .}
$$

By hypothesis there is a measurable set $B_{i} \subset A_{i}$ such that

$$
\int_{B_{i}} f_{1}=\ldots=\int_{B_{i}} f_{k}=2^{-P} .
$$

Put

$$
V_{i 2^{-p}}=\left(V_{1 / 2\left(i-1,2^{1-p}\right.}\right) \cup B_{i} .
$$

Then

$$
\begin{aligned}
\int_{V_{i 2}-P} f_{j} & =\int_{V_{121 i-11^{1-P}}} f_{j}+\int_{B_{i}} f_{j} \\
& =1 / 2(i-1) 2^{1-P}+2^{-P}=i 2^{-P}
\end{aligned}
$$

for each i and j. It follows that the conclusion of Lemma 1 holds for $r=i 2^{-p}(0 \leq$ $\left.i \leq 2^{p}, 0 \leq p \leq P\right)$. Of course $V_{r}\left(r=i 2^{-P}\right)$ was already defined when i is even. By induction it follows that the desired measurable set $V_{i 2^{-}}$has been constructed for $0 \leq$ $i \leq 2^{p}, p \geq 0$.

For $0 \leq r \leq 1$, let $V_{r}=\bigcup_{i 2^{-r} \leq r} V_{i 2^{-r}}$. Then

$$
\int_{V_{r}} f_{j}=\sup _{i 2^{-p} \leq r} \int_{V_{i 2^{-r}}} f_{j}=r,
$$

and the rest is straight-forward.
If $k=1$ the conclusion can be obtained more easily. Note that $G(t)=\int_{E \cap(-t, t)} f_{1}$ is a continuous function of t where $G(0)=0$ and $\lim _{t \rightarrow \infty} G(t)=\int_{E} f_{1}$. For each $r\left(0<r<\int_{E} f_{1}\right)$ there is some value $t>0$ such that $G(t)=r$. Let $V_{r}=E \cap$ $(-t, t)$ for this t.

In our next lemma, the function g need not be positive, though of course the functions f_{j} must be positive.

Lemma 2. Let the hypothesis of Lemma 1 hold. Let g by any L_{1}-function. Then the function $G(r)=\int_{V_{r}} g$ is a continuous function of r for $0 \leq r \leq \int_{E} f_{j}$ where V_{r} is the set in the conclusion of Lemma 1 .

Proof. Take any $c>0$. Let S be a measurable set such that $\int_{R \backslash S}|g|<\frac{1}{2} c$ and $m(S)<\infty$. There is a $q>0$ such that if $A \subset S$ and $m(A)<q$, then $\int_{A}|g|<\frac{1}{2} c$.

Because f_{1} is positive on E, there is a number $d>0$ such that if $A \subset S \cap E$ and $\int_{A} f_{1}<d$, then $m(A)<q$.

Now suppose that $0 \leq r<r^{\prime} \leq 1$ and $r^{\prime}-r<d$. Then

$$
\int_{\left(V_{r}^{\prime} V_{r}\right) \cap S} f_{1} \leq \int_{V_{r^{\prime}} V_{r}} f_{1}=r^{\prime}-r<d, \quad \int_{\left(V_{r}^{\prime}, V_{r} \cap \cap\right)}|g|<\frac{1}{2} c
$$

and

$$
\begin{aligned}
\left|G\left(r^{\prime}\right)-G(r)\right|=\left|\int_{V_{r}, V_{r}} g\right| \leq & \int_{\left(V_{r}, V_{r}\right) \cap S}|g| \\
& \quad+\int_{R \backslash S}|g|<\frac{1}{2} c+\frac{1}{2} c=c .
\end{aligned}
$$

Lemma 3. Let the hypothesis be as in Lemmas 1 and 2, and let $\int_{E} g=\int_{E} f_{j}$. Let $0<r<\int_{E} g$. Then there is a measurable set $S \subset E$ such that

$$
\int_{S} f_{1}=\ldots=\int_{S} f_{k}=\int_{S} g=r
$$

Proof. We first consider the case in which $r=(1 / n) \int_{E} f_{j}$ for some positive integer n. By hypothesis, we can partition E into mutually disjoint sets E_{1}, \ldots, E_{n} such that

$$
\int_{E_{i}} f_{j}=r(1 \leq i \leq n, 1 \leq j \leq k)
$$

We assume without loss of generality that for each $i, \int_{E_{i}} g \neq r$. Reindex so that $\int_{E_{1}} g<r<\int_{E_{2}} g$.

By Lemma 1, we construct sets V_{t} and $W_{t}(0 \leq t \leq r)$ such that $V_{t} \subset E_{1}, W_{t} \subset E_{2}$, $V_{0}=W_{0}=\phi, V_{r}=E_{1}, W_{r}=E_{2}, V_{t} \subset V_{t^{\prime}}$ and $W_{t} \subset W_{t^{\prime}}$ if and only if $t<t^{\prime}$, and $\int_{V_{t}}$ $f_{j}=\int_{W_{t}} f_{j}=t$ for all $j=1, \ldots, k$. Put

$$
G(t)=\int_{V_{t} \cup W_{r-t}} g=\int_{V_{t}} g+\int_{W_{r-t}} g(0 \leq t \leq r)
$$

By Lemma 2, G is continuous and $G(0)=\int_{W_{r}} g=\int_{E_{2}} g>r, G(r)=\int_{V_{r}} g=$ $\int_{E_{1}} g<r$. There is a $t_{0}\left(0<t_{0}<r\right)$ with $G\left(t_{0}\right)=r$. But then $r=\int_{V_{t_{0}} \cup w_{r-t_{0}}} g=t_{0}+$ $\left(r-t_{0}\right)=\int_{t_{t_{0}} \cup w_{r-t_{0}}} f_{j}(j=1, \ldots, k)$.

In the general case, let n_{1} be the smallest integer such that $0<\left(1 / n_{1}\right) \int_{E} g<r$. Let $X_{1} \subset E$ be a measurable set such that $\int_{X_{1}} g=\int_{X_{1}} f_{j}=\left(1 / n_{1}\right) \int_{E} g$ for all j. Then $\int_{E \backslash X_{1}} g=\int_{E \backslash X_{1}} f_{j}$ for all j. Let n_{2} be the smallest integer such that $0<\left(1 / n_{2}\right) \int_{E \backslash X_{1}} g<$ $r-\int_{X_{1}} g$. Let $X_{2} \subset E \backslash X_{1}$ such that $\int_{X_{2}} g=\int_{X_{2}} f_{j}=\left(1 / n_{2}\right) \int_{E \backslash X_{1}} g$ for all j. Note that $r-\int_{X_{1}} g \leq \frac{1}{2} r$ and $r-\int_{X_{1} \cup X_{2}} g \leq \frac{1}{2}\left(r-\int_{X_{1}} g\right) \leq \frac{1}{4} r$. We continue in the obvious way to construct a sequence of mutually disjoint measurable sets $X_{1}, X_{2}, \ldots, X_{i}, \ldots$ such that for each i,

$$
0<r-\int_{X_{1} \cup \ldots \cup X_{i}} g=r-\int_{X_{1} \cup \ldots \cup X_{i}} f_{j} \leq 2^{-i} r
$$

Finally $S=\bigcup_{i=1}^{\infty} X_{i}$ satisfies

$$
\int_{S} g=\int_{S} f_{j}=r \quad(j=1, \ldots, k)
$$

We are ready to prove Theorem 1 for positive f_{j}.

LEmma 4. Theorem 1 holds when all the functions f_{j} are positive on E.

The proof is by induction on k. For $k=1$, note that $G(t)=\int_{(-t, t) \cap E} f_{1}$ is a continuous function of t for $0 \leq t<\infty$. Also $\lim _{t \rightarrow \infty} G(t)=\int_{E} f_{1}$ and $G(0)=0$. For some $s>$ $0, G(s)=r$. Let $S_{r}=(-s, s) \cap E$.

Now suppose that the conclusion holds for k such functions, f_{1}, \ldots, f_{k}. Let $\int_{E} f_{1}=$ $\ldots=\int_{E} f_{k}=\int_{E} f_{k+1}>0$ where $f_{1}, \ldots, f_{k}, f_{k+1}$ are positive L_{1}-functions on E. By Lemma 3, the required set S_{r} exists. This concludes the induction on k.

We use a trick to remove positivity.
Proof of Theorem 1. Let $H(x)=\left|f_{1}(x)\right|+\ldots+\left|f_{k}(x)\right|+e^{-x^{2}}$. Then H is a positive L_{1}-function on E. Let $F_{i}=f_{i}+H(i=1, \ldots, k)$. Then each F_{i} is a positive L_{1}-function and

$$
\int_{E} F_{i}=\int_{E} f_{i}+\int_{E} H=\int_{E} f_{1}+\int_{E} H>0 \quad(i=1, \ldots, k)
$$

By Lemma 4, the functions F_{i} satisfy the hypotheses of Lemmas 1 and 2 . Let V_{t} be the measurable set in the conclusion of Lemma 1 where $\int_{V_{t}} F_{i}=t$ for $i=1, \ldots, k$. By Lemma 2, $G(t)=\int_{V_{t}} f_{1}$ is a continuous function of t for $0 \leq t \leq \int_{E} F_{i}$. Also $G(0)=0$ and $G\left(\int_{E} F_{i}\right)=\int_{E} f_{1}$.

Now let r be any number such that $0<r<\int_{E} f_{1}$. Then by continuity of G, there is a $t_{0}, 0<t_{0}<\int_{E} F_{i}$, such that $G\left(t_{0}\right)=r=\int_{V_{i_{0}}} f_{1}$. But for $i=1, \ldots, k$,

$$
\int_{V_{t_{0}}} f_{i}+\int_{V_{t_{0}}} H=\int_{V_{t_{0}}} F_{i}=\int_{V_{t_{0}}} F_{1}=\int_{V_{t_{10}}} f_{1}+\int_{V_{t_{0}}} H=r+\int_{V_{t_{0}}} H .
$$

Thus $\int_{V_{t_{0}}} f_{i}=r$ for $i=1, \ldots, k$.
3. In this section we find that Theorem 1 does not hold in general for infinitely many functions f_{n}. In Example 1, it will not matter which number r in the open interval $(0,1)$ is used.

Example 1. Let $I_{1}, I_{2}, I_{3}, \ldots$ be the closed subintervals of the unit interval $(0,1)$ with rational endpoints enumerated. For each $n>0$, let $f_{n}(x)=1 / m\left(I_{n}\right)$ for x in I_{n} and $f_{n}(x)=0$ otherwise. Then $\int_{R} f_{n}=1$ for each $n>0$.

Choose any real number r with $0<r<1$. We claim that there is no measurable set E such that $\int_{E} f_{n}=r$ for all $n>0$. Suppose that there were. Then $m\left(I_{1} \cap E\right)>0$, so there is a nonvoid open set $U \subset(0,1)$ such that $m(U \cap E)>r m(U)$. Now U can be covered by countably many nonoverlapping intervals I_{j} from the sequence $\left(I_{n}\right)_{n=1}^{\infty}$. It follows that some one of the intervals $I_{j}-$ call it I_{i} - satisfies $m\left(I_{i} \cap E\right)>r m\left(I_{i}\right)$. So

$$
\int_{E} f_{i}=m\left(E \cap I_{i}\right) / m\left(I_{i}\right)>r m\left(I_{i}\right) / m\left(I_{i}\right)=r
$$

References

1. M. S. Klamkin, J. McGregor and A. Meir, Problem 6440, American Math. Monthly, 90, 8 (1983), p. 569 .

[^0]: Received by the editors January 4, 1984.
 AMS Subject Classification: 28A25.
 Key words: integral, L_{1}-function, measurable set.
 (c) Canadian Mathematical Society 1984.

