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In an article,* published some time since, the author of the
present paper deduced an asymptotic expression for the functions
of the elliptic cylinder, which expression took the following form :

(1) r/ = ̂ [i>cos(a- * f ) +<2sin ( a - *£)] .

Here P and Q are certain asymptotic series, and C and a arbitrary
constants. General expressions for these constants were not
determined in the aforementioned article on account of the
difficulties there set forth, though it was pointed out that their
numerical calculation for any particular problem was simply a
matter of arithmetic computation. I t is the object of the present
paper to deduce general expressions for these constants C and a
in terms of the two parameters which appear in the defining
equation for U.

The starting point in this investigation is an important and
far-reaching result due to Whittaker,f that the periodic solutions
of the differential equation,

(2) ^ + (* + *'cos»*)y = 0

satisfy the homogeneous integral equation,

(3) y (z) +

* Am. Jour, of Math. Vol. XXXI., (1909), p. 311.

t E. T. Whittaker. International Congress of Mathematicians, Cam-
bridge, 1912.
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It is by means of this fact that we are enabled to express the
functions of the elliptic cylinder in the form of definite integrals,
and these lead easily to the desired end.

If the equation defining the functions of the elliptic cylinder
be taken in the form,

(4) ^ - 2 + (A2 cosh2 w+ a ) t f = 0 ,

(ill

then the relations

kz i
(5) e" = z,— = x,Ui = Uz\
transform (4) into

(6) ^

dx-

where
(7) /> = y

An asymptotic solution for (6) is for large values of x,

(8) U1 = C[Pcos(a-x) + Qsin(a-x)],

where P and Q are given by

(9)* P=\ f°-(P< Q\ f*(P> 1^ MP> ?)
X2 X* X6

o_ A(p, q) , fs(p, q) MP, q) ,
X 3? « • • -

and where C and a are to be so determined, that (8) is, for large
values of x, an approximation to one of the fundamental
integrals of (6).

If now use is made of a theorem similar to Whittaker's
Theorem mentioned above, it is found that a solution of (6) can be
expressed in the form of the definite integral

(10) Uj = (~\ f ^ cos \( x + — ^ cos 6 1 S (6) d 6,
' \ k ) Jo L\ 4*/ J

* Am. Journal of Math. Vol. XXXI. (1909) p. 311, et seq.
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provided that S(6) is a periodic solution, of period 2ir oj the equation

(11)

The periodic solutions of an equation differing but slightly from
equation (11) form the subject of an article by Dannacher.*
Following this method, if we change the constants in equation (11)
by putting,

(12)

equation (11) goes over into

(13) ^ - ( 8 / 3 2

A periodic solution of this equation is

(14) S (6) = 1 a0 + «, cos 2 0 + a.z cos 4 d + ...

in which a0 is arbitrary, and in which the following recurrence
formulas hold for the other a's.

(15) o,=

<H =

« 3 =

m
2

-a.

- « .

On

fi2

« i

a..

(4

(4

m +

TO +

22)

4?)

«„ = - «n-2 - ^ - [ 4 m + (2n - 2)'] ,

and in which also,

(16) m

It may be remarked, though this is foreign to our present purpose,
that the series (14) is not convergent for all values of m and /8,

* S. Dannacher. Dins. Zurich, 190&
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but only for certain special values, which appear as the roots of a
certain "limiting function" containing the constants m and f3.*
We have then that a solution of

may be expressed in the form of the definite integral

(10) U'= \J ) \ cos^x+—j cos d \S(d)d6,

where S (0) is given by (14) together with the relations (15) and
(16). The problem is now to determine the approximate value of
the integral in (10) as x increases. To do this, in (10) put
c o s 0 = l - s , then on splitting up the interval from 0 to 2 7r into
the intervals 0 to IT, and IT to lir, (10) goes over into

(17) ( ^ ^ ^ ]
\ * / Jo LA \x> J V2s- r

where T{s) is the expression obtained when in (14) cos 6 is replaced

by 1-s.

Now since the cosines of even multiples of an angle can be
expressed as polynomials in even powers of the cosines of the angle,
and since moreover the sum of the coefficients in such a polynomial
equals unity, T («) must have the form

(18) r(s) = i(i0 + o1?1 + a ! f t + . . .

where px, p,, p3... are polynomials in s, each of the form 1 +
powers of s.

In equation (17) put now sx — t; then (17) becomes

^ - J / F
Jst--

where qlt q2, (fa ••• a r e polynomials of the form 1 + powers of —.

* See Dannacher, /. c., for a study of this function in the case of the
related equation.
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The integral (19) may now be written

(20) Ui = (%-) 2 \\os(x+—) cos (t + -!—)\
\k/ Jo V W \ 4x2/

, dt

and for large values of a; this becomes approximately,

/ 2 \ i r
(21) Z7, = l-r-J 2

/ 2 \J r
(~j-j 2 si
\ * / Jo

| 7
o V

dt
sing sin< (̂  ao + a,+ ao+...)

jTt'

This may be written finally

/ O O \ TT /I \

/ f" cos < rf< . f" sin t dt\
cos a; I —= + sin x I 7̂ =̂  I.

V io J t Jo V< /

The integrals in (22) are well-known, each being equal to +1—

There results then

(23) £7, = — ( | Oo + ai + aa+ •••) ( A / — c o s * + A / — s ' n * ) i

which gives as the final approximate value of Ui, for large x,

(24) *7i =

Returning to the expression for L\ as given by

(6) TJX = C[P cos ( a - a;) + Q sin (a -a;)]
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where

(7) p ^
x4

n _ A (p, q) ,/> (p, q)
x x

it is evident that (6) becomes for large values of x, approximately,

(25) l\ = C cos (a - x).

Comparing this with (24) the desired results are obtained, namely,

(26) C

It may be noted that the expression for U1 as given by (24)
can also be deduced from a result of Heine's*

The equation studied by Heine is

(27) <tJL + (x*cosi4>-L)E = 0.
a <p~

]f in this we put i<f> = u, A.- = - k2 and replace L by a. and E by U,
equation (27) goes over into

((28) —

which is exactly equation (4).
Now, a solution of (27), as Heine shows, can be expressed in

terms of Bessel's functions of even order, thus,

(29) B(<f}) = -£a0 Jo (iX cos <j>) - <

If in this there be substituted i<f> = u, X = ki, and if E is replaced
by U, th?re appears a solution of (28) or (4) in the form,

(30) U = | a9 «/0 ( - k cosh u) -alJi(-k cosh u) + ...

In this make the transformations (5), then a solution of

(«) S
* E. Heine. Handbuch der Kugdfunktionen. 2te Auf. Band I. S. 414.
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has the form

For large values of x this becomes approximately, using the
asymptotic expressions for Jo, </2,...*

which reduces to
ft / _

(33) Ui = ——= cos( x

and this differs only by a constant multiplier from the approximate
value given by (24).

* Nielson. Handbuch d Theorie d. CylinderfunUiontn, S. 156.
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