
1 Phases of Gauge Theories

Spontaneous breaking of global and local symmetries. — The Higgs regime.
— The Coulomb and infrared free phases. — Color confinement (closed and
open strings). Does confinement imply chiral symmetry breaking? — Conformal
regime. — Conformal window.

Illustration by Olga Kulakova: Open string in nonperturbative regime
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12 Chapter 1: Phases of Gauge Theories

1.1 Spontaneous Symmetry Breaking

1.1.1 Introduction

We will begin with a general survey of various patterns of spontaneous symmetry
breaking in field theory. Our first task is to get acquainted with the breaking of
global symmetries – at first discrete, then continuous. After that we will familiarize
ourselves with the manifestations of spontaneous symmetry breaking.

Assume that a dynamical system under consideration is described by a
Lagrangian L possessing a certain global symmetry G. Assume that the ground

Spontaneous
symmetry
breakdown:
what does
that mean?

state of this system is known. Generally speaking, there is no reason why the ground
state should be symmetric under G. Examples of such situations are well known. For
instance, although spin interactions in magnetic materials are rotationally symmetric,
spontaneous magnetization does occur: spins in the ground state are predominantly
aligned along a certain direction, as well as the magnetic field they induce. Even
though the Hamiltonian is rotationally invariant, the ground state is not. If this is
the case then, in fact, we are dealing with infinitely many ground states, since all
alignment directions are equivalent (strictly speaking, they are equivalent for an
infinitely large ferromagnet in which the impact of the boundary is negligible).

This situation is usually referred to as spontaneous symmetry breaking. This
terminology is rather deceptive, however, since the symmetry has not disappeared
but, is realized in a special manner. The reason why people say that the symmetry is
broken is, probably, as follows. Assume that a set of small detectors is placed inside
a given ferromagnet far from the boundaries. Experiments with these detectors will
not reveal the rotational invariance of the fundamental interactions because there is
a preferred direction, that of the background magnetic field in the ferromagnet. For
the uninitiated, inside-the-sample measurements give no direct hint that there are
infinitely many degenerate ferromagnets, which, taken together, form a rotationally
invariant family. Indeed, one can change the direction of only a finite number of spins

A learned
theoretician
will be able
to guess that
the
fundamental
interaction is
rotationally
invariant
from the
presence of
Goldstone
bosons.

at a time by tuning one’s apparatus. To obtain a ferromagnet with a different direction
of spontaneous magnetization, one will need to make an infinite number of steps.

Thus, the rotational symmetry of the Hamiltonian, as observed from “inside,”
is hidden. Of course, it becomes perfectly obvious if we make observations from
“outside.” However, in many problems in solid state physics and in all problems
in high-energy physics, the spatial extension is infinite for all practical purposes.
An observer living inside such a world, will have to use guesswork to uncover the
genuine symmetry of the fundamental interactions.

Since the terminology “spontaneous symmetry breaking” is common, we will use
it too, at least with regard to the breaking of global symmetries. Now we will discuss
discrete symmetries; the simplest example is Z2.

1.1.2 Real Scalar Field with Z2-Invariant Interactions

Let us consider a system with one real field φ(x) with action

S =
∫

dD x

[
1
2
(
∂μφ

) (
∂μφ

)
−U (φ)

]
, (1.1)
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13 1.1 Spontaneous Symmetry Breaking

where U (φ) is the self-interaction (or potential energy) and D is the number of
dimensions. In field theory one can consider three distinct cases, D = 2, D = 3,
and D = 4. The first two cases may be relevant for both solid state and high-energy
physics, while the third case refers only to high-energy physics.

The potential energy may be chosen in many different ways. In this subsection we
will limit ourselves to the simplest choice, a quartic polynomial of the form

U (φ) = 1
2 m2φ2 + 1

4g
2φ4, (1.2)

where m2 and g2 are constants. We will assume that g2 is small, so that a
quasiclassical treatment applies.

It is obvious that the system described by Eqs. (1.1), (1.2) possesses a discrete Z2

symmetry:

φ(x) −→ −φ(x). (1.3)

Indeed, only even powers of φ enter the action. This is a global symmetry since the
transformation (1.3) must be performed for all x simultaneously.

The
symmetry Z2
as an
example of
the discrete
global
symmetry

For the time being we will treat our theory purely classically but will use quantum-
mechanical language. We will refer to the lowest energy state (the ground state) as
the vacuum. To determine the vacuum states one should examine the Hamiltonian of
the system,

H =
∫

dD−1x
[

1
2 (∂0φ)(∂0φ) + 1

2

(
�∂φ
) (

�∂φ
)
+U (φ)

]
. (1.4)

Since the kinetic term is positive definite, it is clear that the state of lowest energy is
that for which the value of the field φ is constant, i.e., independent of the spatial and
time coordinates. For a constant-field configuration the minimal energy is determined
by the minimization of U (φ). We will refer to the corresponding value of φ as the
vacuum value.

Within the given class of theories with the potential energy (1.2) we can find both
dynamical scenarios: manifest Z2 symmetry or spontaneously broken Z2 symmetry,
depending on the sign of the parameter m2.

1.1.3 Symmetric Vacuum

Let us start from the case of positive m2; see Fig. 1.1. The vacuum is achieved at

φ = 0. (1.5)

This solution is obviously invariant under the transformation (1.3). Thus the ground
state of the system has the same Z2 symmetry as the Hamiltonian. In this case
we will say that the vacuum does not break the symmetry spontaneously. One can
make one step further and consider small oscillations around the vacuum. Since the
vacuum is at zero, small oscillations coincide with the field φ itself. In the quadratic
approximation the action becomes

S2 =

∫
dD x

[
1
2

(
∂μφ

) (
∂μφ

)
− 1

2 m2φ2
]

. (1.6)

We immediately recognize m as the mass of the φ particle. Moreover, from the
quartic term g2φ4 one can readily extract the interaction vertex and develop the
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14 Chapter 1: Phases of Gauge Theories

U (φ)

φ
0

Fig. 1.1 The potential energy (1.2) at positive m2.

U (φ)

φ
v−v

Fig. 1.2 The potential energy at negative m2.

corresponding Feynman graph technique. The Z2 symmetry of the interactions is
apparent. Because of the invariance under (1.3), if in any scattering process the initial
state has an odd number of particles then, so does the final state. Starting with any
even number of particles in the initial state one can obtain only an even number of
particles in the final state. Thus, a smart experimentalist, colliding two particles and
never finding three, five, seven, and so on particles in his detectors, will deduce the
Z2 invariant nature of the theory.

1.1.4 Nonsymmetric Vacuum

Let us pass now to another case, that of negative m2. To ease the notation we will
introduce a positive parameter, μ2 ≡ −m2. The new potential is shown in Fig. 1.2.
Strictly speaking, I am cheating a little bit here; in fact, what is shown in
Fig. 1.2 is not the potential (1.2). Rather, I have added a constant to this potential,
ΔU = μ4/(4g2), chosen in such a way as to adjust to zero the value of U at
the minima. As you know, numerical additive constants in the Lagrangian are
unobservable – they have no impact on the dynamics of the system.

The symmetric solution φ = 0 is now at a maximum of the potential rather than a
minimum. Small oscillations near this solution would be unstable; in fact, they would
represent tachyonic objects rather than normal particles.
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15 1.1 Spontaneous Symmetry Breaking

χ

χ

χ

χ

χ

χ

Fig. 1.3 The Feynman graph for the transition of two χ quanta into three in an asymmetric vacuum.

The true ground states are asymmetric with respect to (1.3),

φ = ±v, v =
μ

g
. (1.7)

The two-fold degeneracy of the vacuum follows from the Z2 symmetry of the
Lagrangian in (1.6). Indeed, under the action of (1.3) the positive vacuum goes into
the negative vacuum, and vice versa.

In terms of v the potential takes the form

U (φ) = 1
4g

2
(
φ2 − v2

)2
. (1.8)

To investigate the physics near one of the two asymmetric vacua, let us define a
new “shifted” field χ,

φ = v + χ, (1.9)

which represents small oscillations, i.e., the particles of the theory. First let us
examine the particle mass. To this end we substitute the decomposition (1.9) into
the Lagrangian with a potential term given by Eq. (1.8). In this way we get

L = 1
2

(
∂μχ

) (
∂μχ

) − (μ2χ2 + μgχ3 + 1
4g

2χ4
)

, (1.10)

using Eq. (1.7) for v. By comparing the kinetic term with the term μ2χ2 within the
large parentheses we immediately conclude, for the mass of the χ quantum, that

mχ =
√

2μ. (1.11)

In the unbroken case of positive m2 the particle’s mass was m (see Eq. (1.6)). We see
that changing the sign of m2 leads to a factor of

√
2 difference in the particle mass.

The occurrence of the term cubic in χ in (1.10) is even more dramatic. Indeed
this term, in conjunction with the quartic term, will generate amplitudes with an
arbitrary number of quanta. For instance, the scattering amplitude for two quanta
into three quanta is displayed in Fig. 1.3.1

The selection rule prohibiting the transition of an even number of particles into an
odd number, as was the case for positive m2 (a symmetric vacuum), is gone. Even
for a smart physicist, doing scattering experiments, it would be rather hard now to
discover the Z2 symmetry of the original theory.

1 Let us note parenthetically that there is an easy heuristic way to generate Feynman graphs in the
asymmetric-vacuum theory from those of the symmetric theory. In the symmetric-vacuum theory, where
all vertices are quartic, one starts for instance from the graph of Fig. 1.4a and replaces one external line
by the vacuum expectation value of φ (Fig. 1.4b). Since φvac is just a number, one immediately arrives
at the graph of Fig. 1.3.
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16 Chapter 1: Phases of Gauge Theories

−→

(b)(a)

v

Fig. 1.4 Converting Feynman graphs in the symmetric theory (a) into those of the theory with asymmetric vacua
(b). The cross on the broken line means that this line is replaced by the vacuum value of the fieldφ.

A trace of this symmetry remains in the broken phase, namely a relation between
the cubic coupling constant in the Lagrangian (−μg), the quartic constant (−g2/4),
and the particle mass squared (2μ2):

quartic constant = − (cubic constant)2

2m2
χ

. (1.12)

A qualitative signature of the underlying spontaneously broken Z2 symmetry is

This relation
does not hold
for generic
cubic and
quartic
interaction
vertices in
(1.2).

the existence of domain walls.

1.1.5 Equivalence of Asymmetric Vacua

Two questions remain to be discussed. Let us start with the simpler. What would
happen if, instead of the vacuum at φ = v, we (or, rather, nature) chose the second
vacuum, at φ = −v? The decomposition (1.9) would obviously be replaced by
φ = −v+χ. This would change the sign of the cubic term in the Lagrangian, which, in
turn, would entail the change in sign of all amplitudes with an odd number of external
lines. We should remember, however, that it is not amplitudes but probabilities that
are measurable. Since there is no interference between amplitudes with odd and even
numbers of external lines, the sign is unobservable. The physics in the two vacua is
perfectly equivalent!

This brings us to the second question: is there a direct manifestation of the fact
that the underlying theory is Z2 symmetric and the Z2 symmetry is spontaneously
broken by the choice of vacuum state? The answer is yes, at least in theory. We will
discuss this phenomenon at length later (see Chapter 2).

1.1.6 Spontaneous Breaking of the Continuous Symmetry

To begin with, we will consider the simplest continuous symmetry, U(1). Consider a
complex field φ(x) with action

S =
∫

dD x
[(
∂μφ

)∗ (
∂μφ

)
−U (φ)

]
, (1.13)

where the potential energy U (φ) in fact depends only on |φ |, for instance,

U (φ) = m2 |φ |2 + 1
2g

2 |φ |4. (1.14)
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17 1.1 Spontaneous Symmetry Breaking

In this case the Lagrangian is invariant under a (global) phase rotation of the field φ:

φ → eiαφ, φ∗ → e−iαφ∗. (1.15)

If the mass parameter m2 is positive, the minimum of the potential energy is
achieved at φ = 0. This is the unbroken phase. The vacuum is unique. There are
two particles, that is, two elementary excitations, corresponding to Reφ and Imφ.
The mass of both these elementary excitations is m.

Changing the sign of m2 from positive to negative drives one into the broken phase.
The potential energy can be rewritten (after addition of an irrelevant constant) as

U (φ) = 1
2g

2
(
|φ |2 − v2

)2
, (1.16)

where

v2 =
μ2

g2 ≡ −
m2

g2 ; (1.17)

U (φ) has the form of a “Mexican hat,” see Fig. 1.5. The degenerate minima in the
potential energy are indicated by the black circle. An arbitrary point on this circle is
a valid vacuum. Thus there is a continuous set of vacuum states, called the vacuum
manifold. All these vacua are physically equivalent.

As an example let us consider the vacuum state at φ = v. Near this vacuum the
field φ can be represented as

φ(x) = v +
1
√

2
ϕ(x) +

i
√

2
χ(x), (1.18)

where ϕ and χ are real fields. Then in terms of these fields

L = 1
2

[
(∂μϕ)2 + (∂μχ)2

]
−

[
g2v2ϕ2 +

g2v
√

2
ϕ(ϕ2 + χ2) +

g2

8
(ϕ2 + χ2)2

]
. (1.19)

The mass of an elementary excitation of the ϕ field is mϕ =
√

2gv =
√

2μ.
A remarkable feature is that the mass of the χ quantum vanishes: the potential energy
has no terms quadratic in χ in (1.19).

This is a general situation: the spontaneous breaking of continuous symmetries
entails the occurrence of massless particles, which are referred to as Goldstone
particles, or Goldstones for short.2 In solid state physics they are also known as

The
Goldstone
theorem,
Section 6.5.1 gapless excitations. For instance, in the example of the ferromagnet discussed at the

beginning of this section such gapless excitations exist too; they are called magnons.
Detecting magnons within the ferromagnet sample gives a clue that in fact one is
dealing with an underlying symmetry that has been spontaneously broken.

In the problem at hand, that of a single complex field, the spontaneously broken
symmetry is U(1). It has a single generator; hence the Goldstone boson, the phase of
the order parameter, is unique.

2 Sometimes the Goldstone bosons are referred to as the Nambu–Goldstone bosons. They were discussed
first by Nambu in the context of the Bardeen–Cooper–Schrieffer superconductivity and independently
by Vaks and Larkin who constructed a model now known as the Nambu–Jona-Lasinio model. [1]. In
the context of high-energy physics they were discovered by Goldstone [2].
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18 Chapter 1: Phases of Gauge Theories

Re φ

U(φ)

Im φ

Fig. 1.5 The potential energy (1.16). The black circle marks the minimum of the potential energy, the vacuum
manifold.

To conclude this section we will consider another example, with a slightly more
sophisticated pattern of symmetry breaking, which we will need in our study of
monopoles (Section 4.1).

The model for analysis is a triplet of real fields φa (a = 1, 2, 3) with the
Lagrangian

L = 1
2 (∂μ �φ)2 −

[
− 1

2μ
2 �φ2 + 1

4g
24(�φ2)2

]
, (1.20)

where �φ = {φ1,φ2,φ3} and μ2 > 0. It is obvious that this Lagrangian is O(3)-
symmetric while the vacuum state is not. The minimum of the potential energy is
achieved at �φ2 = μ2/g2; thus |φvac | = μ/g ≡ v. The angular orientation of the vector
of the vacuum field in the O(3) space (“isospace”) is arbitrary. The vacuum manifold
is a two-dimensional sphere of radius v. All points on this manifold are physically
equivalent.

Suppose that we choose �φvac = {0, 0, v}, i.e., we align the vacuum value of the field
along the third axis in isospace. The original symmetry is broken down to U(1). The
fact that there is a residual U(1) is quite transparent. Indeed, rotations in the isospace
around the third axis do not change φvac. Thus, in this problem we are dealing with
the following pattern of symmetry breaking:

O(3) → U(1). (1.21)

Two out of three generators are broken; hence, we expect two Goldstone bosons. Let
us see whether this expectation comes true.

Parametrizing the field �φ near this vacuum as �φ(x) = {ϕ(x), χ(x), v + η(x)}
and calculating U (ϕ, χ, η), it is easy to see that only one field, η, has a mass term,
mη =

√
2μ, while the fields ϕ and χ have only cubic and quartic interactions and

remain massless. The fields ϕ and χ present two Goldstone bosons in the problem
at hand. The interaction depends on the combination ϕ2 + χ2 and is invariant under
the U(1) rotations

ϕ → ϕ cos α + χ sin α, χ → −ϕ sin α + χ cos α, (1.22)

in full agreement with the existence of an unbroken U(1) symmetry.
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19 1.2 Spontaneous Breaking of Gauge Symmetries

ℬ

ℳ ℒ
L

L

Fig. 1.6 Four towns on the map form a perfect square. Dotted lines are for orientation.

Summarizing, if continuous (global) symmetries are spontaneously broken then
massless Goldstone bosons emerge, one such boson for each broken generator. The
occurrence of Goldstones (gapless excitations) is the signature of spontaneous con-
tinuous symmetry breaking. A reservation must be added immediately: Goldstone

The
signature of
discrete
symmetry
breaking is
the
occurrence
of domain
walls (kinks).

bosons do not appear in D = 1 + 1 theories unless they are sterile. We will discuss
this subtle aspect in more detail later (see Section 6.5.2).

The interactions of Goldstone bosons respect the unbroken symmetries of the
theory. These symmetries are realized linearly; the broken part of the original
symmetry is realized nonlinearly.

Exercise

1.1.1 Mayors of four towns located as shown in Fig. 1.6 decided to build a railroad
connecting all four towns A, B, L, and M with each other (possibly with
connections). They also decided that its length must be minimal. The towns
A, B, L, M form a square on the map exhibiting a Z4 symmetry – the
symmetry with respect to rotations by π/2. What is the symmetry of the map
with the minimal-length railroad?

1.2 Spontaneous Breaking of Gauge Symmetries

1.2.1 Abelian Theories

The simplest example of the spontaneous breaking of gauge symmetries is
provided by the quantum electrodynamics (QED)3 of a charged scalar field whose

3 Strictly speaking, QED per se is under-defined at short distances, where the effective coupling grows
and hits the Landau pole. Thus to make it consistent an ultraviolet completion is needed at short
distances. For instance, one can embed QED into an asymptotically free theory. The Georgi–Glashow
model, Section 4.1.1, gives an example of such an embedding. It is important to understand that
different ultraviolet completions do not necessarily lead to the same physics in the infrared. For instance,
Polyakov’s confinement in three-dimensional QED illustrates this statement in a clear-cut manner;
see Section 9.7.
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20 Chapter 1: Phases of Gauge Theories

self-interaction is described by the potential depicted in Fig. 1.5. This theory is
obtained by gauging the model (1.13) with global U(1) symmetry that was studied
in Section 1.1.6. In other words we add the photon field, whose interaction with the
matter fields is introduced through a covariant derivative, giving

S =
∫

dD x
[
− 1

4e2 FμνFμν +
(
Dμφ

)∗ (
Dμφ

)
−U (φ)

]
, (1.23)

where e is the electromagnetic coupling and the covariant derivativeD is defined as

Dμ = ∂μ − iAμ. (1.24)

The kinetic term of the photon field is standard. Now the Lagrangian is invariant
under the local U(1) transformation

φ(x) → eiα(x)φ(x), Aμ (x) → Aμ (x) + ∂μα(x). (1.25)

If the potential has the form (1.16), the field φ develops an expectation value and the
gauge U(1) symmetry is spontaneously broken.

I hasten to add that the terminology “spontaneously broken gauge symmetry,”
although widely accepted, is, in fact, rather sloppy and confusing.4 What exactly does
one mean by saying that the gauge symmetry is spontaneously broken? The gauge
symmetry, in a sense, is not a symmetry at all. Rather, it is a description of x physical
degrees of freedom in terms of x + y variables, where y variables are redundant
and the corresponding degrees of freedom are physically unobservable. Only those
points in the field space that are given by gauge-nonequivalent configurations are to
be treated as distinct.

If we decouple the photon by setting e = 0, the action (1.23) is invariant under
global phase rotations. The condensation of the scalar field breaks this invariance, but
the invariance of the “family of models” is not lost. Under this phase transformation
one vacuum goes into another that is physically equivalent. Say, if we start from the
vacuum characterized by a real value of the order parameter φ, then in the “rotated”
vacuum the order parameter is complex. The spontaneous breaking of any global
symmetry leads to a set of degenerate (and physically equivalent) vacua.

Switching on the electromagnetic interaction (i.e., setting e � 0), we lose the
vacuum degeneracy – the degeneracy associated with the spontaneous breaking of
the global symmetry. Indeed, all states related by phase rotation are gauge equivalent.
They are represented by a single state in the Hilbert space of the theory. In other
words, one can always choose the vacuum value of φ to be real. This is nothing other
than the (unitary) gauge condition. Thus, the spontaneous breaking of the gauge
symmetry does not imply, generally speaking, the existence of a degenerate set of
vacua as is the case for the global symmetries. Then what does it mean, after all?

Unitary
gauge, first
appearance
of the Higgs
field

By inspecting the action (1.23) it is not difficult to see that if φ has a nonvanishing
(and constant) value in the vacuum, the spectrum of the theory does not contain
any massless vector particles. The photon acquires three polarizations and a mass
mV =

√
2ev, where v is a real parameter, v = 〈φ〉. The remaining degree of freedom

is a real (rather than complex) scalar field, the Higgs field, with mass mH =
√

2gv.

4 At present theorists tend to say that the theory is “Higgsed” when there is a spontaneously broken gauge
symmetry.
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21 1.2 Spontaneous Breaking of Gauge Symmetries

This is seen from the decomposition (1.18), where χ must be set to zero because
the field φ is real in the unitary gauge. The theoretical discovery of the Higgs
phenomenon goes back to [3–5]. This regime is referred to as the Higgs phase. One
massless scalar field is eaten up by the photon field in the process of the transition
to the Higgs phase. In the Higgs phase the electric charge is screened by the vacuum
condensates. Probe (static) electric charges will see the Coulomb potential ∼ 1/R at
distances less than m−1

V and the Yukawa potential ∼ exp(−mV R)/R at distances larger
than m−1

V . Moreover, the gauge coupling runs, according to the standard Landau
formula, only at distances shorter than m−1

V and becomes frozen at m−1
V .

1.2.2 Phases of the Abelian Theory

Quantum electrodynamics was historically the first gauge theory studied in detail.
This model is simple, with no mysteries. Nevertheless, it is nontrivial exhibiting
three different types of behavior at large distances.

We have just identified the Higgs regime, in which all excitations are massive. At
large distances there is no long-range interaction between charges.

Now we replace the scalar charged matter fields by spinor fields (electrons) with
mass m. The same probe charges will experience a totally different interaction at
large distances, the Coulomb interaction, with potential proportional to

V (R) ∼ e2(R)
R

,

where R is the distance between the probe charges. Classically e2 is a constant.
Quantum corrections due to virtual electron loops make e2 run.

Its behavior is determined by the well-known Landau formula, which tells us that
at large distances e2 decreases logarithmically:

e2(R) ∼ 1
ln R

. (1.26)

If m is finite, the logarithmic fall-off is frozen at R ∼ m−1. The corresponding
limiting value of e2 is

e2
∗ = e2(R = m−1).

The potential between two distant static charges is

V (R) ∼
e2
∗

R
, R→ ∞. (1.27)

The dynamical regime having this type of long-distance behavior is referred to as the
Coulomb phase. In the case at hand we are dealing with the Abelian Coulomb phase.5

Now let us ask ourselves what happens if the electron mass vanishes. Unlike the
massive case, where the running coupling constant is frozen at R = m−1, in the theory
with m = 0 the logarithmic fall-off (1.26) continues indefinitely: at asymptotically
large R the effective coupling becomes arbitrarily small.

5 Behavior like (1.27) can occur in non-Abelian gauge theories as well, as we will see later. Such
non-Abelian gauge theories, with long-range potential (1.27), are said to be in the non-Abelian
Coulomb phase.
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22 Chapter 1: Phases of Gauge Theories

Thus, in the asymptotic limit of massless spinor QED we have a free photon and a
massless electron whose charge is completely screened. The theory has no localized
asymptotic states and no mass shell, nor S matrix in the usual sense of this word.
Still, it is well defined in, say, a finite volume.

This phase of the theory is referred to as an infrared-free phase. Sometimes it is
also called the Landau zero-charge phase.

Summarizing, even in the simplest Abelian example we encounter three different
phases, or dynamical regimes: the Coulomb phase, the Higgs phase, and the free
(Landau) phase, depending on the details of the matter sector. All these regimes are
attainable in non-Abelian models too.

The non-Abelian gauge theories are richer since they admit more dynamical
regimes, to be discussed in Section 1.3.

1.2.3 Higgs Mechanism in Non-Abelian Theories

The Higgs mechanism in QED, considered in Section 1.2.1, extends straightfor-
wardly to non-Abelian theories. The only difference is that U(1) is replaced by a
non-Abelian group, which is then gauged. The essence of the construction remains
the same.

Instead of the single complex field φ of QED (see Eq. (1.23)), we start with
a multiplet of scalar fields φi belonging to a representation R of a non-Abelian
group G. The representation R may be reducible; for simplicity, however, we will
assume R to be irreducible for the time being. The generators of the group G in the
representation R will be denoted Ta, where[

T a, Tb
]
= i f abcT c , Tr

(
TaTb

)
= T (R)δab , (1.28)

and f abc are the structure constants of the group G. In this book we will deal mostly
with the unitary groups SU(N ). Occasionally, the orthogonal groups O(N ) will be
involved.

In the mathe-
matical
literature
T (R) is
known as the
Dynkin
index.

Assume the self-interaction of the fields φ to be such that the lowest-energy state –
the vacuum – breaks

G → H , (1.29)

where H is a subgroup of G. A particular case is H = 1, corresponding to the
complete breaking of G. In accordance with the general Goldstone theorem, the
spontaneous breaking (1.29) entails the occurrence of dim G − dim H GoldstoneSee

Section 6.5.1.
bosons (here dim G is the dimension of the group, i.e., the number of its generators).

Now, to gauge the theory, instead of the conventional derivative ∂μ we introduce a
covariant derivative

Dμ = ∂μ − iAμ, (1.30)

where

Aμ ≡ Aa
μTa (1.31)
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23 1.2 Spontaneous Breaking of Gauge Symmetries

and Aa
μ are the gauge fields. If φ(x) transforms as φ → U (x)φ for any U (x) ∈ G

thenDμφ must transform in the same way:

Dμφ(x) → U (x)
(
Dμφ(x)

)
. (1.32)

This requirement defines the transformation law of the gauge fields:

Aμ → U AμU−1 + i U∂μU−1. (1.33)

The gauge field strength tensor (to be denoted by Gμν rather than Fμν , to distinguish
the non-Abelian and Abelian cases) is defined as6

Gμν ≡ i[Dμ,Dν] = ∂μAν − ∂νAμ − i[Aμ, Aν]

=
(
∂μAa

ν − ∂νAa
μ + f abc Ab

μAc
ν

)
T a ≡ Ga

μνT
a. (1.34)

The kinetic term of the gauge field is

LYM = −
1

4g2 Ga
μν Gμν,a, (1.35)

while the scalar fields are described by the Lagrangian

Lmatter = Dμφ
∗
(
Dμφ

)
−U (φ) (1.36)

where summation over the multiplet-R index is implied. In what follows we will use
the notationsDμφ∗ andDμφ̄ indiscriminately.

Reminder: The canonical form of the Yangs–Mills Lagrangian (corresponding to
canonically normalized kinetic term) is

LYM = −
1
4

Ga
μνG

μν, a, Ga
μν = ∂μAa

ν − ∂νAa
μ + g f abcT2 Ab

μAc
ν , Dμ = ∂μ − igAμ.

In this form the coupling constant g appears in the interaction vertices. This
convention is preferred in perturbation theory. In nonperturbative studies a more
convenient convention is a (noncanonical) form obtained from the canonical one
by the substitution Aμ −→ 1

g
Aμ. Then the coupling constant g disappears from all

vertices, e.g.,

Ga
μν −→

1
g

(
∂μAa

ν − ∂νAa
μ + f abc Ab

μAc
ν

)
.

The factor g2 appears in the numerator of the gluon propagators. Equations (1.30),
(1.34), and (1.35) refer to the noncanonical normalization. In this book I use both.

Now the dim G − dim H Goldstone bosons that existed before gauging are paired
up with the gauge bosons to produce dim G−dim H three-component massive vector
particles. In the unitary gauge one imposes dim G − dim H gauge conditions. If
instead of 〈vac|φ |vac〉 we use the shorthand φvac then T aφvac = 0, provided that
T a ∈ H . The corresponding dim H gauge bosons stay massless. The masses of the
remaining dim G − dim H gauge bosons are obtained from the matrix

Mass
formula for
gauge
bosons m2

ab = 2g2
(
φ∗vacT

aTbφvac

)
, Ta,b ∈ G/H . (1.37)

6 It is obvious that the transformation law of Gμν under the gauge transformation is

Gμν →UGμνU
−1.
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24 Chapter 1: Phases of Gauge Theories

Referring to [6] for a more detailed discussion of the generalities, in the remainder
of this section we will focus on two examples of particular interest.

1.2.3.1 From SU(2)local to SU(2)global

The model discussed in this subsection is the Glashow–Weinberg–Salam (GWS)
model of electroweak interactions – part of the Standard Model (SM) of particle
physics.7

The gauge group is SU(2). The structure constants are f abc = εabc , where εabc

is the Levi–Civita tensor (a, b, c = 1, 2, 3). The matter sector consists of an SU(2)
doublet of complex scalar fields φi , where i = 1, 2. In other words, the φi are the
scalar quarks in the fundamental representation. The covariant derivative acts on φi

as follows:

Dμφ(x) ≡
(
∂μ − i Aa

μTa
)
φ, T a = 1

2τ
a, (1.38)

where the τa are the Pauli matrices. We will choose the φ self-interaction potential
to be in the form

U = λ
(
φ̄φ − v2

)2
. (1.39)

Quite often it is said that this theory has just SU(2) gauge symmetry and nothing
else. This is wrong. In fact, its symmetry is

SU(2)gauge × SU(2)global. (1.40)

One can prove this in a number of ways. Probably, the quickest proof is as follows.
Let us introduce the 2 × 2 matrix

X =

(
φ1 −(φ2)∗

φ2 (φ1)∗

)
. (1.41)

The Lagrangian of the model rewritten in terms of X takes the form [7]

L = − 1
4g2 Ga

μνG
μν,a +

1
2

Tr
(
DμX

)† (
DμX

)
− λ

(
1
2

Tr X†X − v2
)2

. (1.42)

Note that the generators Ta in the covariant derivativeD act on the matrix X through
matrix multiplication from the left. This Lagrangian is obviously invariant under the
transformation

X (x) → U (x)X (x)M−1, (1.43)

supplemented by (1.33), where M is an arbitrary x-independent matrix from
SU(2)global. The symmetry (1.40) is apparent. In the vacuum, 1

2 Tr X†X = v2. Using
gauge freedom (three gauge parameters), one can always choose the unitary gauge
in which the vacuum value of X is

Xvac = v

(
1 0
0 1

)
. (1.44)

7 The latter also includes QCD.
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25 1.2 Spontaneous Breaking of Gauge Symmetries

This vacuum expectation value breaks the SU(2)gauge and SU(2)global symmetries, but
the diagonal global SU(2) symmetry corresponding to U = M remains unbroken.
Thus, the symmetry-breaking pattern is

SU(2)gauge × SU(2)global → SU(2)diag. (1.45)

Three would-be Goldstone bosons are eaten up by the gauge bosons, transforming
them into massive W bosons belonging to the triplet (adjoint) representation of the
unbroken SU(2)diag symmetry. There are no massless particles in this model. The
physically observable excitations are three W bosons with mass mW = gv/

√
2 and

one Higgs particle (a singlet with respect to SU(2)global) with mass 2
√
λv.

This model will be discussed in more detail in Section 5.4.12 in the context of
instanton calculus.

1.2.3.2 From SU(2)local to U(1)local

Below, I will outline the Georgi–Glashow model [8]. If necessary, it can be easily
generalized to SU(N ), with the gauge-symmetry-breaking pattern

SU(N ) → U(1)N−1.

The Lagrangian of the model is

L = − 1
4g2 Ga

μνG
μν,a +

1
2

(Dμφ
a)(Dμφa) − λ(φaφa − v2)2, (1.46)

where φa is the triplet of real scalar fields in the adjoint representation; the covariant
derivative in the adjoint acts as

Dμφ
a = ∂μφ

a + εabc Ab
μφ

c . (1.47)

One can always choose a gauge (the unitary gauge) in which

φ1 = φ2 ≡ 0, φ3 � 0. (1.48)

The vacuum value of the field φ is

With matter
fields in the
adjoint rep-
resentation,
one can
say that
O(3)→O(2).

φ3
vac = v, (1.49)

which implies that the SU(2)gauge symmetry breaks down to U(1)gauge. Since T3 acts
on φvac trivially, A3

μ remains massless (a “photon”), while the two other gauge bosons
become W bosons, acquiring mass mW = gv, where

W± =
A1
μ ± iA2

μ
√

2g
.

Besides the two W bosons and the photon there is another physical particle, the Higgs
boson, with mass mH = 2

√
2λv. At distances much larger than m−1

W the W bosons
decouple and the theory reduces to QED.

This model will be discussed in Chapter 4.
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26 Chapter 1: Phases of Gauge Theories

Exercise

1.2.1 Assume we have Yang–Mills theory with the gauge group SU(3) and the
Higgs sector consisting of one real scalar field in the adjoint representation
of SU(3). The latter develops a generic vacuum expectation value (large
compared to Λ, the dynamical scale of the theory). Determine the most
general pattern of Higgsing and the masses of all gauge bosons.

1.3 Phases of Yang–Mills Theories

The phase structure of non-Abelian gauge theories is richer than that of QED. In
addition to the three regimes described in Section 1.2.2, which were known already in
the 1960s, Yang–Mills theories can exhibit confining and conformal phases, phases
with or without chiral symmetry breaking, and so on.

1.3.1 Confinement

We will start by discussing the confining phase. Consider pure Yang–Mills theory
(1.35), where the gauge group is assumed to be SU(N ) for arbitrary N . At short
distances the running coupling constant falls off logarithmically [9],

α(p)
2π
=

1
β0 ln(p/Λ)

, β0 =
11N

3
, (1.50)

the interaction switches off, and one can detect – albeit indirectly – the gluon degrees
of freedom as described by (1.35). The parameter Λ is the so-called dynamical scale.

Asymptotic
freedom

At large distances we enter a strong coupling regime. The physically observed
spectrum is drastically different from what we see in the Lagrangian. In the case
at hand an experimentalist, if he or she could exist in the world of pure Yang–
Mills theories, would observe a spectrum of glueballs that are, generally speaking,
nondegenerate in mass. One can visualize the glueballs as a closed string (or, better,
a tube), in a highly quantum state, i.e., a string-like field configuration which wildly
oscillates, pulsates, and vibrates; see Fig. 1.7. If we add nondynamical (i.e., very
heavy) quarks into the theory and set the quark and antiquark at a large distance
from each other, such a string will stretch between them (as shown in the figure on the

Fig. 1.7 A quantum closed string as a glueball.
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27 1.3 Phases of Yang–Mills Theories

T

L

P = 2 (L+T)

x1

x4

A = LT,

Fig. 1.8 A Wilson contour C, with area A and perimeter P. The probe quark is dragged along this contour.

opening page of this chapter), connecting the pair of probe quarks8 in an inseparable
configuration. What is depicted in that figure is a highly quantum (presumably,
nonperturbative) open string configuration with quarks attached at the ends. If we
try to pull the quarks apart we just make the string longer, while the energy of the
configuration grows linearly with separation.

This phase of the theory, whose existence was conjectured in 1973 [9], is
referred to as color confinement. Although there is no analytic proof of color
confinement that could be considered exhaustive, there is ample evidence that this
regime does, indeed, occur. First, a version of color confinement was observed in
certain supersymmetric Yang–Mills theories [10]. Second, the formation of tube-
like configurations connecting heavy probe quarks was demonstrated numerically, in
lattice simulations. I will not dwell on the dynamics leading to color confinement
(this topic will be postponed until we have learned more of the underlying physics;
see Chapters 3 and 9). It is worth noting, however, that there are distinct versions of
confinement regimes, such as oblique confinement [11], Abelian and non-Abelian
confinement, both of which are found in Yang–Mills theories, etc. Some examples
will be considered in Chapter 9. The impatient and curious reader is directed to the
original literature or the review paper [12].

Kenneth Wilson was the first to suggest [13] a very convenient criterion indicating
whether a given gauge theory is in the confinement phase. Consider a gauge theory
in Euclidean space–time. Introduce a closed contour, as shown in Fig. 1.8. Assume
that T  L  Λ−1, i.e., the contour is large.9 Consider the Wilson operator

W (C) =
1

dimR
Tr P exp

[
i
∮
C

Aa
μ (x)T a

R dxμ
]

, (1.51)

where the subscript R indicates the representation of the gauge group to which the
probe quark belongs (usually the fundamental representation).

8 Probe quarks Q are those for which pair production in the vacuum can be ignored. This can be achieved
by endowing them with a mass mQ → ∞. In contrast, dynamical quarks q are either massless or light,
mq � Λ, where Λ is the same scale parameter as in (1.50).

9 Generally speaking the contour does not have to be rectangular, but for the rectangular contour the result
is simpler to interpret.
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28 Chapter 1: Phases of Gauge Theories

The asymptotic form of the vacuum expectation value of W (C) is

〈W (C)〉vac ∝ exp[−(μP + σA)], (1.52)

where A = LT is the area of the contour and P = 2(L + T ) is the perimeter; μ and
σ are numerical coefficients of dimension mass and mass squared, respectively. If
we have

σ � 0 (1.53)

then the theory is in the confinement phase, while at σ = 0 the theory does not
confine.10 We refer to these cases as the area law and the perimeter law, respectively.

Why does the area law implies confinement? The reason is that, on general
grounds,

〈W (C)〉vac ∝ exp[−V (L)T] (1.54)

if the contour is chosen as in Fig. 1.8. Hence, the area law means that the potential
V (L) between distant probe quarks Q and Q̄ is V (L) = σL at L  Λ−1. The
coefficient σ is the string tension (in many publications it is denoted by T rather
than σ).

1.3.2 Adding Massless Quarks

From pure Yang–Mills theory we pass to theories with matter. Considering Nf

massless quarks in the fundamental representation is the first step. Each quark is
described by a Dirac spinor and the overall number of Dirac spinors is Nf . At N = 3
and Nf = 3 we obtain quantum chromodynamics (QCD), the accepted theory of
strong interactions in nature.

The most obvious impact of adding massless quarks is the change in β0, the first
coefficient in the Gell-Mann–Low function. Instead of the expression of β0 in (1.50)
we now have

β0 =
11
3 N − 2

3 Nf . (1.55)

If Nf >
11
2 N then the coefficient changes sign, we lose asymptotic freedom, and

the Landau regime sets in. The theory becomes infrared-free, much like QED with
massless electrons. From a dynamics standpoint this is a rather uninteresting regime.

Let us assume that Nf ≤ 11
2 N . Now we will address the question: what happens if

Nf is only slightly less than the critical value 11
2 N? To answer this we need to know

the two-loop coefficient in the β function.

1.3.3 Conformal Phase

The response of Yang–Mills theories to scale and conformal transformations is
determined by the trace of the energy–momentum tensor

See
Sections 1.4
and 8.4

T
μ
μ ∝ β(α)Ga

μνG
μν,a, (1.56)

10 If σ � 0 the perimeter term is subleading. The parameter μ renormalizes the probe quark mass.
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29 1.3 Phases of Yang–Mills Theories

where β(α) is the Gell-Mann–Low function (also known as the β function). In
SU(N ) Yang–Mills theory with Nf quarks it has the form

β(α) =
∂α(μ)

∂ ln μ
= −β0

α2

2π
− β1

α3

4π2 − · · · , α =
g2

4π
, (1.57)

where β0 is given in (1.55) while

β1 =
17
3

N2 −
Nf

6N

(
13N2 − 3

)
. (1.58)

At small α the term ∼ β0 in (1.57) dominates and so the β function is negative,
implying asymptotic freedom at short distances. What is the large-distance behavior
of the running coupling constant α(μ)?

Assume that

Nf =
11
2 N − ν, 0 < ν � 11

2 N . (1.59)

Then the first coefficient, β0, is anomalously small,

β0 =
2
3
ν. (1.60)

At the same time the second coefficient is not suppressed; it is of a normal order of
The ratio
β1/β0 is
negative. magnitude,

β1 = − 25
4 N2 + 11

4 +
1
6 νN−1

(
13N2 − 3

)
, (1.61)

and negative!
As the scale μ decreases (at larger distances), the running gauge coupling constant

grows and the second term in (1.57) eventually becomes important. Generally
speaking, the second term takes over the first one at Nα/π ∼ 1 (the strong coupling
regime), when all terms in the α expansion of the β function are equally important
and one cannot limit oneself to the first two terms. However, if Nf is only slightly less

Position of
IR fixed
point than 11

2 N then the β function develops a zero at a value of α which is parametrically
small,11 namely, we have

Nα∗
2π
=

Nβ0

−β1
=

8
75

ν
N f (N , ν)

, (1.62)

where

f (N , ν) = 1 − 11
25N2 −

2ν
75N3

(
13N2 − 3

)
∼ 1. (1.63)

In other words, the second term catches up with the first one prematurely when
Nα/π � 1. Hence we are at weak coupling and higher-order terms are inessential.
The facts of the existence of this zero and its position are reliably established.

As an example, let me indicate that if N = 3 and Nf = 15 then

α∗
2π
=

1
44

. (1.64)

The β function is shown in Fig. 1.9.

11 By “parametrically” I mean that if, for instance, N is large while ν does not scale with N then
f (N , ν) → 1, and Nα∗/2π → (8/75)(ν/N ).
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Nα
2π

β

Fig. 1.9 The β function at Nf slightly less than 11
2 N. The horizontal axis presents Nα/2π. The zero of the beta

function is at 8
75 ν/N � 1.

The zero of the β function depicted in Fig. 1.9 is nothing other than the infrared
fixed point of the theory. If we start from the value of α lying between 0 and α∗ and
let α run then it will hit α∗ in the infrared (remember, in the ultraviolet α(μ) tends
to 0).

Hence at large distances β(α) = β(α∗) = 0, implying that the trace of the energy–
momentum tensor of the theory vanishes and so the theory is in the conformal phase.
There are no localized particle-like states in the spectrum; rather, we are dealing with
massless unconfined interacting quarks and gluons. All correlation functions at large
distances exhibit a power-like behavior.12 As long as α∗ is small, the interactions of
the massless quarks and gluons in the theory are weak at all distances, short and large,
and thus amenable to the standard perturbative treatment. In particular, the potential
between two probe, static, quarks at a large separation R will behave approximately
as α∗/R, reminding us of conventional QED with massive electrons.

Since we are absolutely certain that, slightly below Nf =
11
2 N , we are in the

conformal phase, on increasing ν (i.e., decreasing Nf ) we cannot leave this phase
straight away. There should exist a critical value N∗f of the number of flavors above
which the theory is conformal in the infrared. The intervalConformal

window

N∗f ≤ Nf ≤ 11
2 N (1.65)

is referred to as a conformal window.13 The exact value of N∗f is unknown. From
experiment we know that N∗f > 3 at N = 3. On general grounds one can argue that
N∗f ∼ cN , where c is a numerical constant of the order of unity. Of course, near the
left-hand (lower) edge of the conformal window one should expect Nα∗/2π ∼ 1 so
that the theory, albeit conformal in the infrared, is strongly coupled. In particular, in
this case there is no reason for the anomalous dimensions to be small.

Summarizing, if Nf lies in the interval (1.65) then the theory is in the conformal
phase. For Nf close to the right-hand (upper) edge of the conformal window the
theory is weakly coupled and all anomalous dimensions are calculable. Belavin and

12 We will see in Chapter 8, Section 8.4, that the trace of the energy–momentum tensor in Yang–Mills
theories with massless quarks is proportional to β(α)Ga

μνG
μν,a . Basic data on conformal symmetry

are collected in Appendix section 1.4. A more detailed discussion of the implications of conformal
invariance in four and two dimensions can be found, e.g., in [14].

13 This terminology was suggested in [12], and it took root.
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Fig. 1.10 Dynamical regimes change with the number of massless quarks Nf.

Fig. 1.11 The string between two probe quarks Q and Q can break through q̄q pair creation in Yang–Mills theories
with dynamical quarks.

Migdal considered this model in the early 1970s [15]. Somewhat later, it was studied
thoroughly by Banks and Zaks [16].

1.3.4 Chiral Symmetry Breaking

Next, in our journey along the Nf axis (Fig. 1.10) let us descend to Nf = 1, 2, 3, . . .
Strictly speaking, dynamical quarks (in the fundamental representation) negate
confinement understood in the sense of Wilson’s criterion – the area law for the
Wilson loop disappears. Indeed the string forming between the probe quarks can
break, through q̄q pair creation, when the energy stored in the string becomes
sufficient to produce such a pair (Fig. 1.11). As a result, sufficiently large Wilson
loops obey the perimeter law rather than the area law. However, intuitively it is clear
that, in essence this is the same confinement mechanism, although in the case at hand
it is natural to call it quark confinement. The dynamical quarks are identifiable at
short distances in a clear-cut manner and yet they never appear as asymptotic states.
Experimentalists detect only color-singlet mesons of the type q̄q or baryons of the
type qqq.

Theoretically, if necessary, one can suppress q̄q pair creation by sending N to ∞;
see Chapter 9.

At Nf ≥ 2 a new and interesting phenomenon shows up. The global symmetry of
Yang–Mills theories with more than one massless quark flavor is

SU(Nf )L × SU(Nf )R × U(1)V . (1.66)

The vectorial U(1) symmetry is simply the baryon number, while the axial U(1) is
anomalous (see Chapter 8) and hence is not shown in (1.66). The origin of the chiral
SU(Nf )L × SU(Nf )R symmetry is as follows. The quark part of the Lagrangian has
the form

Massless
quark sector

Lquark =
∑
f

Ψ̄f iD/Ψ f , (1.67)
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32 Chapter 1: Phases of Gauge Theories

where Ψ f is the Dirac spinor of a given flavor f and D/ = γμDμ. Each Dirac spinor
is built from one left- and one right-handed Weyl spinor,

Ψ
f
i =

���
ξ f
α,i

η̄α̇, f
i

	
� , (1.68)

where i is the color index (i.e., the index of the fundamental representation of
SU(N )color) while f is the flavor index, f = 1, 2, . . . , Nf . The left- and right-handed

Dirac spinor
from two
Weyl spinors Weyl spinors in the kinetic term (1.67) totally decouple from each other. Hence,

Lquark is invariant under the independent global rotations

ξ → Uξ and η̄ → U ′η̄, U ∈ SU(Nf )L , U ′ ∈ SU(Nf )R. (1.69)

Experimentally it is known that the chiral SU(Nf )L × SU(Nf )R symmetry is
spontaneously broken at N = 3 and Nf = 2, 3, leaving the diagonal SU(Nf )V
subgroup unbroken. N2

f − 1 massless Goldstone bosons – the pions – emerge as
a result of this spontaneous breaking. This phenomenon bears the name chiral
symmetry breaking (χSB). In Chapter 8 we will outline theoretical arguments
demonstrating χSB in the limit N → ∞ with Nf fixed.

There are qualitative arguments showing that in four-dimensional Yang–Mills
theory χSB may be a consequence of quark confinement plus some general features
of the quark–gluon interaction. In particular, a well-known picture is that of Casher
[17] “explaining”14 why in Yang–Mills theories with massless quarks (no scalar
fields!) color confinement entails a Goldstone-mode realization of the global axial
symmetry of the Lagrangian. A brief outline is as follows. If we deal with massless
quarks, the left-handed quarks are decoupled from the right-handed quarks in
the QCD Lagrangian. If spontaneous breaking of the chiral symmetry does not
take place, this decoupling becomes an exact property of the theory: the quark

Casher’s
argument

chirality (helicity) is exactly conserved. Assume that we produce an energetic quark–
antiquark pair in, say, e+e− annihilation. Let us place the origin at the annihilation
point. If the quarks’ energy is high then they can be treated quasiclassically. Let us
say that in the given event the quark produced is right-handed and moves off in the
positive z direction; the antiquark will then move off in the negative z direction. If
the quark energy is high (EΛ, where Λ is the QCD scale parameter) the distance
L that the quark travels before confining effects become critical is large, L ∼ E/Λ2.
Color confinement means that the quark cannot move indefinitely in the positive
z direction; at a certain time T ∼ E/Λ2 it should turn back and start moving in
the negative z direction. Let us consider this turning point in more detail. Before
the turn, the quark’s spin projection on the z axis is +1/2. Since by assumption
the quark’s helicity is conserved, after the turn, when pz becomes negative, the
quark’s spin projection on the z axis must be −1/2 (Fig. 1.12). In other words,
ΔSz = −1. The total angular momentum is conserved, consequently, ΔSz = −1 must
be compensated. At the time of the turn, the quark is far from the antiquark and so
they do not “know” what their respective partners are doing; conservation of angular
momentum must be achieved locally. The only object that could be responsible for

14 I have used quotation marks since Casher’s discussion could be said to be a little nebulous and
imprecise.
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Sz

pz
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Fig. 1.12 Right-handed quark before and after the turning point.

compensating the quark ΔSz is a QCD string that stretches in the z direction between
the quark and the antiquark. The QCD string provides color confinement but it does
not have Lz (more exactly, it is presumed to have no Lz) and, thus, cannot support
the conservation of angular momentum in this picture. Thus, either the quark never
turns (no confinement) or, if it does, chiral symmetry must be spontaneously broken.

The relation between quark confinement and χSB is a deep and intriguing
dynamical question. Since I have nothing to add, let me summarize. There is a phase
of QCD in which quark confinement and χSB coexist. On the Nf axis this phase
starts at Nf = 2 and extends to some upper boundary Nf = N∗∗f . We do not know
whether N∗∗f coincides with the left-hand edge of the conformal window N∗f . It may
happen that N∗∗f < N∗f , and the interval N∗∗f < Nf < N∗f is populated by some other
phase or phases (e.g., confinement without χSB) . . .

1.3.5 A Few Words on Other Regimes

Using various ingredients and mixing them in various proportions to construct a
matter sector with the desired properties, one can reach other phases of Yang–
Mills theories. For instance, by Higgsing the theory, as in Section 1.2.3.2, and
breaking SU(N ) down to U(1)N−1 we can implement the Coulomb phase. Let us
ask ourselves what happens if this Higgsing is implemented through the scalar fields
in the fundamental representation, as in Section 1.2.3.1. If the vacuum expectation
value vΛ then the theory is at weak coupling; it resembles the standard model.
However, if v � Λ then the theory is at strong coupling. Our intuition tells us that
in this case it should resemble QCD, with a rich spectrum of composite color-singlet
mesons having all possible quantum numbers.

There are convincing arguments [18] that there is no phase transition between
these two regimes. Indeed, if the scalar fields are in the fundamental representation
then the color-singlet interpolating operators that can be built from these fields and
their covariant derivatives, and the gluon field strength tensor, span the space of
physical (color-singlet or gauge-invariant) states in its entirety. All possible quantum
numbers are covered. As the vacuum expectation value v changes from small to
large, the strong coupling regime gives place smoothly to the weak coupling regime,
possibly with a crossover in the middle. Each state existing at strong coupling is
mapped onto its counterpart at weak coupling.

For instance, consider the operator

Tr
(
X̄i
↔
DμXτa

)
. (1.70)
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At v�Λ this operator produces a ρ meson and its excitations. The low-lying
excitations could be seen as resonances. As v increases and becomes much larger
than Λ the very same operator obviously reduces to v2Wμ plus small corrections. It
produces a W boson from the vacuum. It produces excitations, too, but they are
no longer resonances; rather, they are states that contain a number of W bosons
and Higgs particles with the overall quantum numbers of a single W boson. Note
that the global SU(2) symmetry of the model of Section 1.2.3.1 is respected in both
regimes. All states appear in complete representations of SU(2), e.g., triplets, octets,
and so on.

In the general case the following conjecture can be formulated (Fradkin and
Shenker [18]):

Suppose that, in addition to gauge fields, a given non-Abelian theory contains a
set of Higgs fields in the fundamental representation, which, by developing vacuum
expectation values (VEVs) can “Higgs” the gauge group completely while the set
of gauge-invariant operators built from the fields of the theory spans the space of
all possible global quantum numbers (such as spin, isospin, and all other global
symmetries of the Lagrangian). Then on decreasing all the above VEVs in proportion
to each other from large to small values we do not pass through a Higgs-confinement
phase transition. Rather, a crossover from weak to strong coupling takes place. If in
addition there are massless fermions coupled to the gauge fields then there could
be a phase transition separating the chirally symmetric and chirally asymmetric
phases. This would be an example of χSB without confinement.15 The opposite –
confinement without χSB – is impossible in the absence of couplings between the
fermion and scalar fields.

Contrived matter sectors can lead to more “exotic” phases. I have already
mentioned oblique confinement. In supersymmetric Yang–Mills theories with matter
in the adjoint representation a number of unconventional phases were found in [19].
We will not consider them here, as this aspect goes far beyond our scope in the
present text.

Exercise

1.3.1 In QED with one massless Dirac fermion, identify the only one-loop diagram
that determines charge renormalization. Calculate this diagram and show that
the following relation holds for the running coupling constant:

1
e2(p)

=
1

e2(μ)
− 1

6π2 ln
p
μ

.

Regardless of the value of e2(μ), at p � μ (i.e., at large distances) we have
e2(p) → 0. This phenomenon is known as the Landau zero-charge or

Landau
formula

infrared freedom. However, at large p namely, p = μ exp[6π2/e2(μ)], we
hit the Landau pole in e2(p). When one approaches this pole from below,
perturbation theory fails.

15 Such examples are known in supersymmetric Yang–Mills theories.
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1.4 Appendix: Basics of Conformal Invariance

In this appendix we will review briefly some general features of conformal invari-
ance. For a comprehensive consideration of conformal symmetry and its applications
the reader is directed to [14, 20, 21].

In D-dimensional Minkowski space we have

Its general-
ization,
superconfor-
mal
symmetry, is
briefly
discussed in
Section
10.19.3.

ds2 = gμν (x)dxμdxν ,

where for D = 4, for example,

gμν = diag{1,−1,−1,−1} ≡ ημν . (1.71)

Under the general coordinate transformation

x → x ′

the original metric gμν is substituted by

gμν → g′μν (x ′) =
∂xα

∂x ′μ
∂xβ

∂x ′ν
gαβ (x), (1.72)

so that the interval ds2 remains intact. Clearly, the general coordinate transformations
form a very rich class that includes, as a subclass, transformations that change only
the scale of the metric:

g′μν (x ′) = ω(x)gμν (x). (1.73)

All transformations belonging to this subclass form, by definition, the conformal
group. It is obvious that, for instance, the global scale transformations

x → x ′ = λx, λ is a number, (1.74)

is a conformal transformation. Moreover, the Poincaré group (of translations plus
Lorentz rotations of flat space) is always a subgroup of the conformal group.
The Minkowski metric (1.71) is invariant with respect to translations and Lorentz
rotations.

In general, conformal algebra in four dimensions includes the following 15
generators:

Pμ (four translations);
Kμ (four special conformal transformations);
D (dilatation);
Mμν (six Lorentz rotations).

Below, a few simple facts concerning the action of the conformal group in
four dimensions are summarized. The set of 15 transformations given above forms
a 15-parameter Lie group, the conformal group. This is a generalization of the
10-parameter Poincaré group, that is formed from 10 transformations generated
by Pα and Mαβ. By considering the combined action of various infinitesimal
transformations taken in a different order, the Lie algebra of the conformal group
can be shown to be as follows:
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i[Pα, Pβ] = 0,

i
[
Mαβ, Pγ

]
= gαγPβ − gβγPα,

i
[
Mαβ, Mμν

]
= gαμMβν − gβμMαν + gανMμβ − gβνMμα,

i [D, Pα] = Pα,
i [D, Kα] = −Kα,

i
[
Mαβ, Kγ

]
= gαγK β − gβγKα,

i
[
Pα, K β

]
= −2gαβD + 2Mαβ,

i[D, D] = i[D, Mαβ] = i[Kα, K β] = 0. (1.75)

The first three commutators define the Lie algebra of the Poincaré group. The
remaining commutators are specific to the conformal symmetry. If they were exact

Conformal
algebra

in our world this would mean, in particular, that

eiαDP2e−iαD = e2αP2. (1.76)

The latter relation would imply, in turn, either that the mass spectrum is continuous or
that all masses vanish. In neither case can one speak of the S matrix in the usual sense
of this word. Instead of the on-shell scattering amplitudes, the appropriate objects for
study in conformal theories are n-point correlation functions of the type

〈O1(x1), . . . , On(xn)〉

whose dependence on xi − x j is power-like. The powers, also known as critical
exponents, depend on a particular choice of the operators Oi (and, certainly, on the
theory under consideration).

Before establishing the conditions under which a given Lagrangian L, which
depends on the fields φ, is scale invariant or conformally invariant, we must decide
how these fields φ transform under dilatation and conformal transformations. For
translations and Lorentz transformations the rules are well known:

δαTφ(x) = −i
[
Pα,φ(x)

]
= ∂αφ(x),

δ
αβ
L φ(x) = −i

[
Mαβ,φ(x)

]
=
(
xα∂β − xβ∂α + Σαβ

)
φ(x), (1.77)

where Σαβ is the spin operator. For the remaining five operations forming the
conformal group, the following choice is consistent with (1.75):

δDφ(x) = (d + x∂)φ(x), (1.78)

δαCφ(x) =
(
2xαxν − gαν x2

)
∂νφ(x) + 2xν

(
gναd − Σνα) φ(x), (1.79)

where d is a constant called the scale dimension of the field φ.
We can describe the generators of the conformal group in a slightly different

language. Consider the infinitesimal coordinate transformation

xμ → x ′μ = xμ + εμ (x); (1.80)

then

∂xβ/∂x ′ρ = δ
β
ρ − ∂εβ/∂xρ
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and to ensure that (1.73) holds one must take ∂ρεβ + ∂βερ as being proportional to
ηβρ, namely, that

∂ρεβ + ∂βερ =
2
D

(∂ε) ηβρ (1.81)

where ηβρ is the flat Minkowski metric. For D > 2 the maximal information one can
extract from this relation is as follows:

(i) εβ (x) is at most a quadratic function of x;
(ii) εβ (x) can include a constant part

εβ = aβ

corresponding to ordinary x-independent translations;
(iii) the linear part can be of two types, either εμ (x) = λxμ, where λ is a small

number (dilatation), or εμ (x) = ωμν xν , where ωμν = −ωνμ (Lorentz rotations);
(iv) finally, the quadratic term satisfying Eq. (1.81) has the form

εμ (x) = bμx2 − 2xμ (bx), (1.82)

where bμ is a constant vector. Equation (1.82) corresponds to special conformal
transformations. It is rather easy to see that the latter actually presents a
combination of an inversion and a constant translation,

x ′μ

x ′2
=

xμ

x2 + bμ. (1.83)

Loosely speaking, in three or more dimensions conformal symmetry does not
contain more information than Poincaré invariance plus scale invariance. If one
is dealing with a local Lorentz- and scale-invariant Lagrangian, its conformal
invariance will ensue.

Caveat: The above assertion lacks the rigor of a mathematical theorem and, in fact,

A digression
about the
possible
existence of
“abnormal”
theories

need not be true in subtle instances (such instances will not be considered in this
book). In “normal” theories the scale and conformal currents are of the form [22]

Sμ = xνT
μν , Cμ =

[
bνx2 − 2xν (bx)

]
Tμν , (1.84)

respectively. Here Tμν is the conserved and symmetric energy–momentum tensor16

that exists in any Poincaré-invariant theory and defines the energy–momentum

The vector
bν is the
same as in
(1.82) operator of the theory:

Pμ =
∫

dD−1xT0μ, Ṗμ = 0. (1.85)

Then the scale invariance implies that

∂μSμ = 0, (1.86)

16 Note that in some theories T μν is not unique. This allows for the so-called improvements, extra terms
which are conserved by themselves and do not contribute to the spatial integral in (1.85). For instance,
in the complex scalar field theory one can add

ΔT μν = const ×
(
gμν∂2 − ∂μ∂ν

)
φ†φ;

this improvement does not change Pμ but it does have an impact on the trace T
μ
μ .
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which, in turn, entails17

T
μ
μ = 0. (1.87)

Equation (1.87) then ensures that the conformal current is also conserved,

∂μCμ = 0. (1.88)

Logically speaking, the representation (1.84) need not be valid in “abnormal”
theories.18

For instance, Polchinski discusses [21] a more general extended representation in
which19

Sμ = xνT
μν + Sμ, (1.89)

where Sμ is an appropriate local operator without an explicit dependence on xν .
Then, (1.86) implies that

T
μ
μ = −∂μSμ, (1.90)

and the energy–momentum tensor is not traceless provided that ∂μSμ � 0. Generally
speaking, the absence of a traceless energy–momentum tensor (possibly improved) is
equivalent to the absence of conformal symmetry. Thus, “abnormal” scale-invariant
theories need not be conformal.

After this digression, let us return to “normal” theories – those treated in this
book. In such theories Eq. (1.84) is satisfied and scale invariance entails conformal
invariance.

Applying the requirement of conformal invariance is practically equivalent to
making all dimensional couplings in the Lagrangian vanish. In particular, all mass
terms must be set to zero.

Warning: this last assertion is valid at the classical level and is, in fact, a
necessary but not sufficient condition. Moreover classical conformal invariance may
be (and typically is) broken at the quantum level owing to the scale anomaly;
see Chapter 8. There are notable exceptions: for example N= 4 super-Yang–Mills
theory (Section 10.18.3) is conformally invariant at the classical level. It remains
conformally invariant at the quantum level too.
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