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This talk is concerned with one of the most important 
class of theories of Large Scale Structure (hereafter 
L D S ) based on two principal assumptions. It is supposed 
that U ; the main process is gravitational instability in 
expanding universe and (di) the primordial perturbations 
a r e small Gaussian density fluctuations. Both assumptions 
are natural in inflationary model of the very early uni-
verse as well as in cosmological models dominated by 
Dark Hatter (Uli) in the form of Weakly Interacting Massive 
Particles (WIMIPs). Other possible models of LSS formation 
are discussed by H.Turok, J.Ostriker and A.Dekel. 

The advantage of theories of this k i n d is very 
well specified initial conditions uniquely determined by 
the s p e c t r u m of primordial density f l u c t u a t i o n s . In prin-
ciple all statistical characteristics of the observed LSS 
can be derived from the primordial s O e c t r u m . However this 
problem is extremely difficult mathematically. 

It is worth to remind that the simplest inflati-
onary model predicts fractal spectrum (so called Harrison 
-Peebles-Zeldovich spectrum) for primordial perturbations 
independently on the kind of WIMPs making up DM. However 
the following evolution of the density perturbations de-
pends on the kind of vVITPs that results in different 
kinds of spectrum say after decoupling epoch. This in turn 
results in different scenarios of L .oS formation. The well 
known extremes are a top-bottom scenario in the Hot Dark 
Matter (HDH) model and a bottom - t o p scenario in the Cold 
Dark Matter (CDM) model. Terms RDM and CDM (proposed by 
Dick Bond) specify the largest scale of perturbations 
erased by free streaming at relativistic stage. In the 
ΗΒΗ model this scale is about the size of superclusters 
and therefore t h e first objects formed at t h e non-linear 
stage are pancakes of similar sizes. In this scenario 
galaxies form later by fragmentation of the pancakes. 
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In the CDM model the free streaming scale is much less 
than globular star clusters therefore the formation of 
LBS goes in process similar to hierarchical clustering. 

By the present the most reliable estimates of 
statistical characteristics of LBS (e.g. two and three 
point correlation functions, percolation properties etc) 
prdicted in different scenarios have been made by means 
of numerical simulation. The main problem the numerical 
simulations encounter is large dynamical range (ratio L/l 
where L and 1 are the largest and smallest linear scales 
in numerical simulations) needed for adequate simulation 
of LBS formation. As I was told at jialatonf ured by M.Davis 
the record dynamical range L / 1 ~ 6 G 0 had been achieved by 
M.Davis, G.Efstathiou, C.l<lrenk and à.White in their recent 
simulations in the frame of CDM model. In typical simu-
lations L/l is about ten times less. Additional problems 
arise due to therestricted namber of mass points (typi-
cally about 2*1Cr particles) one can use in the simula-
tions. 

Keeping this in mind it is worth to try to develop 
an approximate analitical approach even paying the price 
of reasonable simplification of the problem. One of the 
most successful approach of this kind is well known 
Zeldovich's approximate solution for non-linear gravita-
tional instability in zero-temperature dust ( 1 9 7 0 ) . This 
solution proves very useful for analysis of L D S formation 
in KDH (massive neutrino) model (Shandarin, 1983; Shanda-
rin, Doroshkevich, Zeldovich, 1 9 8 3 ) . Unfortunately its 
application to formation of LBS in CUM model is much more 
restricted. The reason is that as has been said the L B S 
formation in CDM model has many essential features of 
hierarchical clustering that cannot be described adequate-
ly in the frame of Zeldovich's approximation. The main 
disadvantage of Zeldovich's solution is that it fails to 
follow the motion of collisionless matter after pancake 
formation. If one formally extrapolates Zeldovich 1s 
solution he comes to conclusion that thickness of pancakes 
grows unlirnitedly. However 1D numerical simulations 
(Doroshkevich et al, 1980) showed, that the motion of 
collisionless matter inside pancakes becomes oscillatary 
rather than progressive one. This slows down Ohe growth 
of the pancai-ce thickness substantially. Unreasonable 
to think that in realistic 3D geometry the mat τ; er oscil-
lating across the pancake keeps progressively moving along 
it. This results in the formation of filaments and clumps. 
3 D numerical simulations give support to this assumption. 

One possibility to describe this process is to 
consider the motion of dust with small viscosity. At every 
place where the velocity field is smooth the viscosity 
practically does not influence the motion of the matter 
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but viscosity prevents overturning of streams and for-
mation of rnultistream rerions. As a result very thin 
films of very dense matter form instead of pancakes. How-
ever what is important they have about the same masses 
as pancakes do. 

After very short description of general physical 
idea let us discuss the mathematical aspect of the problem. 

±irst let us introduce coordinates comrnoving to 
general expantion of the Universe 

x ± = r ± / a ( t ) 

and peculiar velocity 
,j · ζ dx. 
h = u i - a / a r i = a a T 1 ' 

here a(t) is a scale factor, â = da/dt. 

In this variable! the equationsjgoverning the evo-
lution of density perturbations are as follows (e.g. 
reebles, 1980; 

dt a ι a v χ I , 

V x f = 4 - η - Ga 2( (x.,t) - ^ ( t ; ) , (1) 

+ 3 i f + H x ( f V = °> 
here *f is perturbation of gravitational potential, 
^>(x^,t) is the density of mass, and ^> (t) is the mean 

density. 

The next step is a very important assumption that 
zeldovich 1 s solution approximately describes the motion 
of matter outside pancakes as well as of the pancakes as 
a whole even after the formation of them. In comoving 
coordinates Zeldovich's approximation takes the following 
form 

x ± = q ± + b ( t ) . S i ( q d ) , (2) 

where x^and are Eulerian and Lagrangian coordinates, 

b(t) is a function of time describing the evolution of 
growing mode of density perturbations in linear regime, 
and s^C^j) = V q ^ o ^ j ^ "*~s a Potential vector field speci-
fying the spatial distribution of density at the linear 
stage. 

One can reduce the system of three equations to 
the system of two equations calculating approximately the 
gravitational acceleration from Zeldovich's solution 
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a-r = ( ! *1 ) V 
Introducing new variables n(x. ,t) = a^ p ( x . , t ) , v. (x_. ,t) = 

1 1 / 1 1 J 
— Γ V .(x.,t) and excluding the equation for gravitational 
a-a 3 

potential one easily obtains the system of two equations 
approximately describing the evolution of density pertur-
bations 

~3 vi ^> vi , a b 

^ a k ^ x k â b 1 

(3) 

hereinafter v/e will use a(t) istead. of t. 

In SL = 1 cosmology the right hand side term of 
the first equation equals zero exactly bee use of in this 
case a = b. However if Si < 1 this term is negative 
that can be interpreted as friction due to too fast exr^an-
tion of the open Universe. For simplicity we shall discuss 
only the flat Universe -Xl^ = 1 . 

An evident solution of (3) is (2) with b = a and 
si (<!-;) being interpreted as initial velocity field ν . = 

-L <J v / - J -

S-;(q.:)« This is neither surprising nor new and reflects 
only the selfconsistency of the using Zeldovich's solution. 

The second very important step is the inserting of 
a viscosity term in the first equation of system (3) that 
results in 

= 9 Δ v ± . (Ό 

The particular form of the viscosity term has been chosen 
to obtain well known Burgers' equation that has the analy-
tical solution in the case of potential motion (Burgers, 
194-0, 1974) 

Îx· — q. 

ν a; = - 5 L2 . (5 ) a 

fexp(- ^ 5 - G(xj ,q^ ,a))d : 5q 
J 2 

(x, -

where G(x^,q^,a) = S Q(q^) + — — a n d S o ^ q j ' > i S t h e 
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potential of the initial velocity field ν·(χ.,0) =ν̂ π(̂ -;) 
(at a = 0 x. = q.J. By the way S is proportional to gra-

vitational potential at the linear stage. 

To obtain solution (5) one needs to make Hopf -
Cole substitution: v.(x.,a) = ^ S(x.,a) and S(x.,a) = 

- 2 ν In U(xj,a) that transfers equation (4) into linear 

one Ί>I]/*? a = ι) 4 ϋ . 

The first ideas of using Burgers' equation for 
the problem of LoS formation were published by Gurbatov, 
baichev and Shandarin (1984, 198SJ. 

It is interesting that in limiting case of v) Q 
one can reduce solution (5 ) to very simple form 

x i ~ <*i 

which is eouivalent to Zeldovich's solution (2) with b = a 
at - J O - = 1. 

However we know that ZeUdovich's solution predicts 
the formation of pancake sjwhere three stream flows of 
matter arise. It must be stressed that the system with 
arbitrary small viscisity described by equation (4) behaves 
in a drastically different manner than pure collisionless 
matter. Viscosity makes impossible the formation of multi-
stream flows independently on \> . Its value determines 
the thickness of dense layers: the less \) the thiner 
the layers. At Ρ 0 layers,filaments and clumps turn 
into infinitely thin films, threads and points respective-
ly. We shall not discuss the inner structure of layers at 
finite viscosity \) . Instead of let us consider the 
general evolution of matter distribution predicted by 
Burgers 1 model. 

To analyse solution (5) at ^ 0 it is helpful lx> 
use the following geometrical interpretation. Directly 
from equation (5 ) one can see that the greatest input into 
integrals in (5 ) (at given x^ and a) is given by point 

q^ where G(x^,q^,a) co^idered as a function of q^has the 

deepest minimum. On the other hand at the same points 
parabaloid P(x^,q^,a) = - (x^ - q^) /2a + II touches 

hypersurface S (q^J for the first time when Η grows 

from - o o . At the linear stage of the density pertur-
bation growth a is small and paraboloid Ρ is very 
narrow (asymptotically a needle at a -j 0) therefore it 
can touch hypersurface S at every point. This is inter-
preted as follows. At small a a point with Lagrangian 
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coordinates of the point of touching arrives at the point 
in Eulerian space having the coordinates of the parabolo-
id apex. Thus at small a one can find Eulerian position 
of every point from Lagrangian space by moving parabolo-
id Ρ keeping its touching hypersurface S Q . 

Later when a is larger paraboloid Ρ becomes 
wider and it cannot touch some points of hypersurface 
D (q.) without intersection the hypersurface at other 
points but according to this interpretation this is not 
perr?ft5ted. At this time there are places where paraboloid 
Ρ touches S at two points simultaneousely. In these 
positions the apex of the paraboloid indicates the Eule-
rian coordinates of dense films (or infinitely thin pan-
cakes). There are also positions where the paraboloid 
touches S at three or four points simultaneously, in 
these cases uhe apex indicates filaments or clusters res-
pectively. 

With growth of a the paraboloid becomes even 
wider that results in approaching the touching points 
closer to minima of S . Asymptotically at large a tou-
ching points practically coinside with deepest minima of 
ο that control the positions of the clumps of mass, .it 
tnis stage most of the matter is contained in clumps 
which are moving and merging that makes them more massive. 

It is interesting that the approach based on 
.burgers' equation predicts that the evolution of the 
mass clumps is governed by negative peaks (deepest peaks 
are negative; of potential S . It is worth to remind 
that at present the h y p o t h e s i S according to which the 
highest peaks of filtered linear density fluctuations 
determine the evolution of galaxies and^lusters of galax-
ies is very popular (Peacock, and Heavens, 1985; Bardeen 
et al, 1986)· Formally the difference between two appro-
aches can be described as difference in kind of filtering. 
In the former case thejspectrum of potential Ρ is 

A 2(k) ^ - k " 4 & 2 ( k ) , where £ 2 ( k ) is the spectrum of 
density perturbations. In the latter case filtered 
spectrum is g 2 ( k ) e x p ( _ k 2 / k 2 ) w ± t h p a r a m e t e r ^ 

or similar. Both kinds of filtering give more weight to 
the longwave part of the initial spectrum of the density 
perturbations and reduce the influence of the shortwave 
part of the spectrum. Another difference is the role of 
the peaks. 

To illustrate the new model we give the asymptotic 
law for the evolution of the scale of clustering in a 
simple case of power law spectrum of linear density per-
turbations ρ 

S (k) ^ k , at k - * 0. 
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Burgers 1 model pred ic t s that the wel l known from l i n e a r 

(·
 6 } 

therory law M *>< a^3+5' i s v a l i d only in the cases of 
rather shallow spectra -1 4 η έ 1 (Gurbatov, Saichev, 
Shandarin, 1 9 8 4 , 1 9 8 5 ) · For spec tra l indexes n > 1 the 
sca le of c l u s t e r i n g grows with a l i m i t law 

M o * a 5 / 2 

independently on n, which i s in c d t l i c t with the genera l -
l y accepted r e s u l t . The discussed model pred ic t s stronger 
non- l inear e f f e c t s f o r i n i t i a l spectra with indexes 
1 ^ n c 

Summerizing t h i s short d i scuss ion of a new appro^ 
ach to the problem of evo lut ion of dens i ty perturbat ions 
at the non- l inear stage and formation of LSS I would l i k e 
to s t r e s s i t s advantages and disadvantages . 

The proposed model g ives a t o t a l q u a l i t a t i v e p i c -
ture of g r a v i t a t i o n a l i n s t a b i l i t y from l i n e a r stage up to 
i n f i n i t e future (assuming that ~TL = 1 ) . I f the spectrum 
of l i n e a r dens i ty f l u c t u a t i o n s has a cuto f f at some sca le 
the formation of LSS begins from the formation of pancakes 
of t h i s s c a l e . Later f i laments and c l u s t e r s form. In the 
course of time the mass moves from pancakes to f i laments 
and from f i laments to clumps the t y p i c a l mass of which 
grows with t ime . F i n a l l y p r a c t i c a l l y a l l the mass concen-
t r a t e s in c l u s t e r s that continue to move and merge. In 
the frame of the proposed model one can in p r i n s i p l e to 
c a l c u l a t e p o s i t i o n s , pecu l iar v e l o c i t i e s and masses of 
c l u s t e r s . 

The main disadvantage of the model i s that at 
present form i t cannot descr ibe the inner s tructure 
ne i ther pancakes nor f i laments and c l u s t e r s . 

In f a c t the dynamics of the model does not depend 
on the assumption that i n i t i a l perturbat ions are Gaussian 
thus i t can be appl ied to any type of i n i t i a l condit ions 
provided that the main process i s g r a v i t a t i o n a l i n s t a -
b i l i t y . 

An i m p o r t a n t advantage of the model i s i t s p o s s i b i -
l i t y to analyse the s t a t i s t i c s oijclumps of matter at 
a r b i t r a r y time without c a l c u l a t i o n of intermediate s t e p s . 
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