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Abstract

In this paper we discuss the asymptotic behaviour, as t -> oo, of the integral solution u(t) of the non-
linear evolution equation u'(t) e A(t)u(t) + g(t), t > s, u(s) = JC0 e D(A(s)), where {A(t)},i0 is a
family of m-dissipative operators in a Hilbert space H, and g € L(oc(0, oo; H). We give some sufficient
conditions and some sufficient and necessary conditions to ensure that o(t) = t"' f*+l u(6) dO and u(f)
are weakly convergent.
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1. Introduction and preliminaries

Let H be a real Hilbert space with inner product (,) and norm |, |. We consider the
non-linear evolution equation

\u'(t)eA(t)u(t) + g(t), t>s

\u(s) =x0

where {A(/)},>0 is a family of m-dissipative operators in H, x0 € D(A(s)) and
g e Lloc{Q, oo; / / ) . Our objective is to study the asymptotic behaviour, as t —> oo, of
the integral solution u{t) of (1.1). In [6,7,9] the weak convergence of the autonomous
dissipative system

J«'(r) € Au{t)
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where A is an m-dissipative operator in H, x0 e D(A), has been studied. In [4,
10] Morosanu and Rouhani discussed the weak convergence of the quasi-autonomous
dissipative system

J u'(t)eAu(t) + g(t)
I «(0) = x0

where g e L(0, oo; H) (or more generally, g — goo € L(0, oo; H) for some g^ e H).
Throughout this paper we assume that A(t) satisfies the following conditions:

(Hi): there exists a continuous function f : R+ —> H and a bounded (on bounded
subsets) function L : R+ ->• R+ such that

(1.2) (y, - yi, *, - x2) < \f(t) - f(s)\ • |JC, - x2\ • L(\x2\)

for all 0 < s < t, [xi.yi] e A(t), [x2, y2] € A(s).

(H2): If tn t t in [s, +oo], xn e D(A(tn)), xn^xinH, then x e D(A(t)).

DEFINITION 1.1. If u(t) is continuous on [s, oo), u(s) = x0, u(t) e D(A(t)) for
t e [s, oo) and satisfies the inequality

(1.3) \u(l) -x\< \u(t) -x\+J ((y + 8(9), u(9) - x)+ + c\f(9 - f(r)\)d9

for all s < t < 1, r > s and [x, y] 6 A(r). Then u(t) is called an integral solution to
(1.1). Herec = L(\x\), (y,x)+ = limAi0(|j: + hy\ - \x\)/h and(y,x) = \x\{y,x}+.

Clearly, a strong solution u(t) to (1.1) is automatically an integral solution to (1.1),
and by [5] the problem (1.1) has a unique integral solution under our hypotheses, and
the inequality (1.3) is equivalent to

(1.4) l-(\u(t) - x\2 - \u(t) - x\2) < j (g(d) + y, u(9) - x) d6

J \u(9)-x\-\f(6)-f(r)\de

for all

s < t < t, r>s, [x,y]eA(r).
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2. Weak convergence of the integral solution

LEMMA 2.1. Suppose F is a non-empty closed convex set in H, PF is a projection
on F. Then

(2.1) (JC - PFx, z - PFx) < 0, Vz e F, x € H.
(2.2) \PFx-PFy\<\x-y\ Vx,y€H.
(2.3) \PFx-z\2 < \x-z\2- \PFx-x\2, WxeH,zeF.

Since Lemma 2.1 is well known, its proof will be omitted.

LEMMA 2.2. Suppose u(t) is an integral solution to (1.1). If there are r0 > s and
goo € H such that f - f(r0) e L(0, oo; H) and g - goo £ L(0, oo; H), then u(t) is
bounded on [s, oo) if and only ifA~l(r0)(—goo) ¥" 0-

PROOF. Firstly, we suppose that u(t) is bounded on [s, oo). Since u (t) is an integral
solution of (1.1), then for all / > s > 0 and [x, v] € A(r0) we have

(2.4) ^(Mt)-x)\2-\u0-x\2)< j

JL(\x\) J \u(0) - x\ • \f(0) - f(rQ)\d6.

Dividing by t — s > 0, we obtain

(2.5)

^^- [
t -s Js

, a{t) -x) + ̂ ^ - [ \u(6) ~ x\ • \f{9) - f(ro)\d6
t s J

for all t > s > 0, [x, y] e A(r0), where a(t) = (t — s)'1 J's u(9) dO is bounded on
[s, 00). Therefore there exists a sequence tn -*• 00 such that a(tn) converges weakly
to p € H. If we take t = tn in (2.5) and let n -+ 00, then

(2.6) (y + goo,x-p)<0 for ail [x,y]eA(ro).

The maximality of A(r0) implies that [p, —goo] e A(r0), that is, i4~'(r0)(-goo) is
non-empty.

Conversely, if A'1 (r0)(-goo) ^ 0, then there exists an element x e D(A(r0)) such
that-goo e A(ro)x. Wetakev = —goo in (2.4) and by a variant of Gronwall's Lemma
(see [2, p. 157]) we deduce that u(t) is bounded on [s, 00). The proof is complete.

https://doi.org/10.1017/S1446788700000574 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700000574


96 Song Guozhu [4]

THEOREM 2.3. Suppose u(t) is an integral solution to (1.1). If there are f^,
goo 6 Handxn -> oo such that f(rn) = /«,(/!€ N), F = f ) ~ , A-'foX-**,) # 0,

f/jere is p € F such that

PFu(t) -4 p and a(t) -4 p (? -> oo).

PROOF. We may assume goo = 0, F = (~~}n=1 A (T«)(0) (without loss of gener-
ality). Since A~l(t) is maximal dissipative, then F is a closed convex subset in H.
Take x e F, r = xn. By the 'if part of Lemma 2.2, u(t) is bounded on [s, oo) and for
all x e F, t > t > s > 0

(2.7) \u(t) - x\ - \u(t) - x\ < J (\g(6)\

Hence, for every x e F, the function/ -> |M(/)-

is non-increasing and bounded on [s, oo). Since g, / —/oo € L(0, oo; //) we conclude
that there exists a limit

(2.8) lim \u{t) -x\= a(x) for every x e F.

We set u(0 = PFU(I). According to Lemma 2.1 (ii), v(t) is bounded on [5, 00). Let
Ci =sup,>JL(|u(OI); for fixed/ > 5 we denote y,(h) = u(t + h), h > 0. Then y,(h)
is an integral solution of the following equation:

dy,(h)
(2.9) dh

e A(t + h)y,(h) + g(t + h)

y,(0) = M(0.

By the same argument above we obtain the function

h^ \y,(h) - v(t)\ - / (igdS + Ol + d
Jo

is non-increasing. Hence Vr > s, h > 0,

/

t+h

(l*(0)l + C,|/(e) - /ool)^ < \u(t) - w(0|.

This implies that for all t > s, h > 0,

h) - v{t)\ - f (\g(9)\ + Cx\f(O) -
Js

/

t+h

(\g(9)\+Cl\f(e)-foo\)d0

- I {
Js

- v(t)\ - I {\g{6)\
J
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Thus the function t ->• \u(t) - v(t)\ -fi(\g(0)\ + Ci | /(0) - / J ) dG is non-increasing
on [s, +00) and there exists lim^oo |M(O — v(t)\.

Next, by Lemma 2.1 (iii)

(2.11) \v(t + ft) - v(t)\2 < \u(t + A) - v(t)\2 - \v{t + A) - u(t + h)\2.

From (2.10) and (2.11) one obtains

\v(t + h)- v(t)\2 < \u(t) - v(t)\2 - \u(t + ft) - v(t + h)\2

/

t+h

This implies that there exists lim^oo v(t) = p and p € F.
Now suppose a{tk) -*• y (tk ->• 00). By the 'only if part of Lemma 2.2 for every

n e ^ f w e have y e Fn = A~l(rn)(—goo); thus v e F. According to Lemma 2.1 (i)
we have

1 r'k+s

(2.12) /

(ii(0 - v(t), z - v(t)) < 0, Vz e F,

1 r'k+s

- / (w(<9) - v(6), z - v(0)) d9 < 0, Vz e F.

Letting tk —> 00 in (2.12), one obtains

(y - p, z - p) < 0, Vz € F.

This implies that y = p and a(t) —>• p {t -+ 00). The proof is complete.

REMARK 2.4. If A{t) = A, s = 0 and F = A"1 (-goo) # 0, then from Theorem
2.3 we may obtain respectively the Ergodic Theorem of autonomous systems and
quasi-autonomous dissipative systems in [4, 10, 5].

LEMMA 2.5. Suppose u(t) is an integral solution to (1.1). ThenforallT > 0, h >
0, r > r > 5 > 0 and r + h < T, we have

(2.13) \u(r + h)- n(r + A)| < \u(r) - u(t)\

f
Jx

where C2 = sup{L(/) : 0 < t < sup{|«(6>)| : s < 6 < T + (r - r)} + 1}.
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PROOF. From Theorem 1 (ii) in [11] we get

(2.14) \u(t + hi) — u(t)\ < \u(x + h{) — u(x)\

+ J (C\f(0 + hi) - f(9)\ + \g(0 + A,) - g(9)\)d9

for all s < x < t < T and hi > 0 , where C — sup{L(r) : 0 < t < sup{|«(^ + h{)\ :
s <e <T} + i}.

For h > 0, r > x > s, let t = x + h and r - x = hx in (2.14). One obtains (2.13).
The proof is complete.

THEOREM 2.6. Suppose u(t) is an integral solution to (1.1). If there are r0 > s
and goo e H such that -g^ <E R(A(r0)), f - f(rQ) € L(0, oo; H) and g - gx e
L(0, oo; H), then there exists p e A~l(r0)(—goo) such that tu-lim,.,.,*, a(t) = p.

PROOF. Firstly, by Lemma 2.2, sup,2i |«(0l = M < oo. We set ex{r, x) =

/

OO /»OO

M\f(9 + (r - T ) - f(6)\d6+ I \g(9 + ( r - r ) ) - g(0)\ d9, r>x,
-(r~x))-g(9)\d9, r<x.

/

J
r, T) = 0. By Lemma 2.5 and Definition 3.1 in [10] we know that the

curve (M(0)(>J is almost non-expansive in H. Hence by Theorem 3.8 in [10] and the
'only i f part of Lemma 2.2 there exists w-lim,^^ a(t) = p and p e A"'(ro)(—goo)-

COROLLARY 2.7. Suppose u{t) is an integral solution to (1.1). Ifthereare / » , g^, e
H andT > 0 such that / - / « , € L(0, oo; H), g - gx e L(0, oo; H) and F =
P) r > r A~l(t)(—goo) 7̂  0, then o(t) is weakly convergent as t -*• oo.

THEOREM 2.8. Suppose u{t) is an integral solution to (1.1). If there exist r0 > s
and goo € H such that f — f(r0) € L(0, oo; H) and g — g^ € L(0, oo; H), then
there exists u;-lim,_ooH(0 if and only if F — A~l(r0)(—goo) ^ 0 and cow(x0) C F,
vv/iere &>W(J:O) w f/ie set of weak cluster points of{u(t) : t > s}.

PROOF. 'Only i f part: Suppose u>-lim,_).ooM(0 = p. This implies that u>-lim,_).ooa(f)
= p . From (2.5) it follows that p e F.

' I f part: Since F ^ 0 and o^Oto) C F , according to Lemma 2.2, u>w{x0) ^ 0.
Let p, q be arbitrary in cow(x0) C F . We have

(2.15) \u{t)-p\2 = \u{t)-q\2+2{u{t)-q,q-p) + \q-p\\ t>s.
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Now for all t > t > s, x e F we have

\u(t) — JC| — |«(0 - x\ < J Qg(O) - 8oo\ + L( | JC | ) | / ( 0 ) - f(ro)\)d9.

Thus the function

I
Jo

is non-increasing on [s, oo) and there exists lim,-,.,*, \u(t) —x\ = a(x). N o w p,q € F\

then from (2.15) we get

(2.16) a2(p)-a2(q) = \q-p\2

and

(2.17) a2(q)-a2(p) = \p-q\2.

Hence p = q, cow(x0) contains only one element and m-lim,-^ u(t) = p. The proof
is complete.

LEMMA 2.9. Suppose u (t) is an integral solution to (1.1) with g(t) = 0 and Xf, = x
and F is a closed subset of H. If cow(x) C Fforallx € D(A(s)) theno)w(x) C F for
allx &D(A(s)).

PROOF. Let x e D(A(s)) and let xn - • x with xn € D(A(s)). If y e cow(x)
then there exists a sequence tk -> oo such that M(4) = U(tk,s)x A j , where
U(t,s) is an evolution operator generated by A(/). For every fixed n the sequence
|f/(ft, s)xn\ is bounded and therefore U(tk, s)xn has a weakly convergent subsequence
U(tkj,s)xn A ya. Clearly yn € cow{xn) C F and

\yn-y\ < i im \U(tkj,s)xn - U(tkj,s)x\ < \xn - x\.

Thus >„ —> ̂  and y € F. The proof is complete.

THEOREM 2.10. Suppose u(t) is an integral solution to (1.1) with g(t) = 0 and
xQ = x, the function fit) in the condition (//i) is of bounded variation on [s, T] and
\JT

sif) = MT < Mo< oo for all T > s. If there exist To > s and f^eH such that
F = f}liTo A"1 (r)(0) 7̂  0, / - / « , € MO, oo; H) and satisfying the condition

(//3): There exists x0 € F such that xn —*• x, yn 6 A(tn)xn (tn —• oo)
limn^oo(yn, xn - A:0) = 0 imply x € F.
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Then u(t) = U(t, s)x is weakly convergent as t -*• oo.

PROOF. Since F is a closed convex subset of H, by Lemma 2.9 it is sufficient to
prove that cow(x) C F for every x G D(A(s)). Let x G D(A(s)) and v G <WU,(JC) be
such that M(4) = f/(f*, s )* -* y itk — r*-i > l,tk -+ oo). Set

D(A(s)) = {x e D(A(s)) : L(s,x) = Jha_h-l\U(h+s,s)x - x\ < oo}.

Then D(A(s)) C D(A(s)) C D ( A ( J ) ) and for x e £>(A(5)) we have

(2.18) |£/(F + s , s ) j c - t f ( /+s , s )x | <w-1(ew ' -ea")[^(^x) + Mr], Vo> > 0

(see [5, p. 25]). Since for x e £>(A(j)), u(t) = U(t, s)x is a strong solution to (1.1)
with g(t) = 0 and JC0 = x, we obtain

- — \u(t) - xo\
2 = (u'{t), u(t) - xo), a.e. t > s.

2 at

Analogously to Theorem 2.8 we can prove that there exists l im , . ^ \u(t) — xo\ for
x0 G F. Thus h{t) = (u'(t), M ( 0 - x0) € L(5, +oo). We shall now prove that there
exists a sequence T, such that T, —*• oo, A(T;) —> 0 and (/(z), ^)x A v. For every
€ > 0 (e < 1/2) let <2e = {? > 5 : /*(0 > e}. The measure of Q( is finite since
hit) G L(s, +oo) and therefore Qf can contain at most a finite number of the intervals
itk — e, tk). It follows that there exists a T large enough such that hix) < € and
0 < tk — x < € for some ?* large enough. Therefore, we can choose a sequence T,
such that tj —*• oo, 0 < fy. — T, < \/j and /J(T;) < 1/y. By (2.18) we have

\Uitkj,s)x - Uixj, s)x\ < -iLis, x) + Mo),

uiXj) = UiXj,s)x 4- y.

Since M'(T;) G A(T / )M(T J ) , limj^xx hixj) = (M'(T,-), « (T , ) -X0) = 0. By the condition
(//3) one obtains y G F . The proof is complete.

Next, we-shall consider the quasi-autonomous dissipative system

( 2 1 9 ) J I I ' ( 0 6 A I I ( 0 + / ( 0 , t>0

(«(0)=x, X e D(A)

where A is an m-dissipative operator and / G L(0, OO; H).

DEFINITION 2.11. A dissipative set A is 3-dissipative if Vuu u2, u3 e £>(A)

(2.20) (A«i, «i - «2) + (A«2, «2 - u3) + (AM3, w3 - ux) < 0.
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THEOREM 2.12. Suppose u(t) is an integral solution to (2.19), F = A~'(0) ^ 0.
If A is 3-dissipative, then for every x e D(A), cow(x) C F and u{t) is weakly
convergent as t —• oo

PROOF. Firstly, suppose f(t) is of continuous bounded variation on [0, T],
Vo (/) = Mr < Mo < oo (V7* > 0), and there exists To > s such that f(t) = O for
t > To. Set A(t)x = Ax + f(t) for all x € D{A) and r > 0. Then the equation (2.19)
is equivalent to the evolution equation

2 1 ) f « ' ( 0 G A(t)u(t), t>0

|M(0) = X , X 6

where A(f) is w-dissipative, F = r|,>7i) A~'(f)(O) = ^~'(°) ^ 0 and satisfies the
conditions (H{) and (H2). Take JC0 6 F, let xn ->• x, yn € A(f«)xn = Axn +
f{tn) (tn -+ oo) and (yn, xn -x0) ->• 0. By Definition 2.11, for w e £>(A) and u e A u
we have

0 > (Axn, xn - x0) + (A°x0, xo-u) + (v, u - xn)

= (yn,Xn ~ X0) + (A°X0, XO-U) + (U, M - Xn) - (/(?„), Xn - X0).

Letting n -> oo, one obtains (v, u — x) < 0, V[M, V] e A.
Thus x e F and the condition (H3) is valid. By Theorem 2.10, for every x e

D(A), cow(x) C F and there is w-lim,^^ u(t).
For / € L(0, oo; H) there exists /„ e C£°(0, oo; //) such that /„ -> / (in

L(0, oo; //)). If un{t) is an integral solution of an initial value problem

( 2 2 2 ) f i i ; ( O e A « ( O + / ( O ' > 0

[un(0)=x, xeD(A)
then clearly, there exists J -lim^oo un{t) = u(t) and the limit is uniformly convergent
ont > 0. Moreover, bythe proof above, for every n there exists lu-lim^ooW,,^) = pn.
This implies that there exist j-lim^oo pn = p and ly-lim,.,^ u(t) = p. The proof is
complete.

REMARK 2.13. If f(t) = 0 in Theorem 2.12, then for every x e D(A) there exists
w-lim^oo S(t)x, where S(t) is a non-linear contraction semigroup generated by A.
This implies the conclusion of Proposition 2.14 in [7].

Let — A = d<p be the subdifferential of an l.s.c proper convex function. Then A is
a maximal 3-dissipative operator. Hence we get the conclusion ofTheorem 2.3 in [4].

COROLLARY 2.14. Let —A = d<p be the subdifferential of an l.s.c proper convex
function, f e L(0, oo; H) and u(t) be an integral solution to (2.19). IfA'^O) ^ 0,
then for every x e D(A) there exists w-lim,_).ooM(r).
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3. Examples

[10]

Let fi be a bounded domain in Rn with smooth boundary 9fi and H = L2(fi). Let
P c IR1 x IR1 be a maximal monotone and 0 G D(P). Then there exists an l.s.c proper
convex function j : (—oo, +oo] such that P = dj.

EXAMPLE 3.1. Consider the equation

(3.1)

du
— G AM - P(u(t, x)) + f{t, JC), t > 0, a.e. x e fi
M(/,JC) = 0, x e 3fi, t > 0

(0, JC) = MO(JC), a.e. JC e fi.

Assume 0 G RiP). For example

'(JC — 1) if x < 0.

Then p c R1 x IR1 is maximal monotone and 0 G ^(0). We set

( M ) =
I grad«|2d*

+oo

;(«)</*, u € //„'(«), ;(«) e L(Q),

otherwise.

Then <p : / / ->• (—oo, +oo] is an l.s.c proper convex function. The subdifferential

d<p(u) = {v <= L2(ft) : v(x) G P(u(x)) - Au(x), a.e. x G fi}

and 3 ^ - ' (0) # 0. If «0 e L2(fi) and / ( / , x) G L(0, OO; / / ) , by Corollary 2.14 the
integral solution u{t) of the problem (3.1) is weakly convergent as t -*• oo in L2(fi).

EXAMPLE 3.2. Let

p(t)x =
e-\x-\)

if JC = 0

if JC < 0.

forr>0

Then Pit) is a maximal monotone set in IR1 x IR1 for each t > 0, 0 G DiPit)), 0 G
Pit)(0) for t > 0 and DiPit)) — IR1 is independent of f. We consider the equation

(3.2)

du
— G A - P(t)u + g(t, x), t > 0, a.e. x e fi
at
u(t,x) = 0
u(0, x) = uo(x),

x G 3fi, f > 0

a.e. JC e fi
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where g(t,x) € L(0, oo; H) and fi{t) = {[«, v] : u, v € L2(Q) and v(x) €
), a.e. ^ e fl}. Let

( ( 0 ) () n //o'(fi) n D(j8(f)), t > 0

and

= AM - /J(O« f o r « G D(A(t)).

Clearly, each A(t) is m-dissipative in H, D(A(t)) = ^ is independent of f and
0 e A~'(/)(0) for all t > 0. Hence (//2) is satisfied. Further we can prove that A(t)
satisfies the condition (//i) and the conditions in Corollary 2.7 are valid. By Corollary
2.7, if uo(x) e L2(fi) and «(/) is an integral solution of the problem (3.2), then a(t)
is weakly convergent as t ->• oo in L2(S2).
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