Bull. Aust. Math. Soc. 85 (2012), 509–517 doi:10.1017/S0004972711002917

WEAK FORMS OF AMENABILITY FOR BANACH ALGEBRAS

H. SAMEA

(Received 8 September 2011)

Abstract

In this paper, the amenability and approximate amenability of weighted ℓ^p -direct sums of Banach algebras with unit, where $1 \le p < \infty$, are completely characterized. Applications to compact groups and hypergroups are given.

2010 *Mathematics subject classification*: primary 46H20; secondary 43A20. *Keywords and phrases*: amenable Banach algebra, approximately amenable Banach algebra, compact group, compact hypergroup.

1. Introduction

The notion of approximate amenability of a Banach algebra was introduced by Ghahramani and Loy in [7]. Dales et al. [6] found a necessary and sufficient condition for approximate amenability of Banach algebras, and also proved that the Banach sequence algebras $\ell^p(\omega), 1 \le p < \infty, \omega \in [1, +\infty)^I$, are not approximately amenable. The present paper is a continuation of the paper by Dales et al. By a direct method, it is proved that for a family of nonzero Banach algebras $\{\mathfrak{A}_i\}_{i \in I}$, $\ell^p((\mathfrak{A}_i), \omega)$ is amenable (respectively, approximately amenable) if and only if *I* is finite, and for each $i \in I$, \mathfrak{A}_i is amenable (respectively, approximately amenable). For another proof, see [5]. The organization of the paper is as follows. Section 2 is devoted to preliminaries and notations which are needed throughout the rest of the paper. Section 3 gives a complete characterization of amenability and approximate amenability for weighted ℓ^p -direct sums of Banach algebras with unit, where $1 \le p < \infty$. In Section 4 it is proved that for the matrix Banach algebra $\mathfrak{E}_p(I)$, the two notions of amenability and approximate amenability are equivalent. Moreover, applications to compact groups and hypergroups are given. As a corollary, it is proved that if G is an infinite compact group, then the convolution Banach algebra $L^2(G)$ is not approximately amenable. This is a generalization of Proposition 2.30 of [1] (see also [2]).

^{© 2011} Australian Mathematical Publishing Association Inc. 0004-9727/2011 \$16.00

H. Samea

2. Preliminaries

Let *A* be a Banach algebra, and let *X* be a Banach *A*-bimodule. A *derivation* is a bounded linear map $D: A \rightarrow X$ such that

$$D(ab) = D(a) \cdot b + a \cdot D(b) \quad (a, b \in A).$$

For $x \in X$, set $ad_x : a \mapsto a \cdot x - x \cdot a, A \to X$. Then ad_x is a derivation; these are the *inner* derivations. A derivation $D : A \to X$ is *approximately inner* if there is a net $(x_\alpha) \subseteq X$ such that

$$D(a) = \lim_{\alpha} a \cdot x_{\alpha} - x_{\alpha} \cdot a \quad (a \in A).$$

A Banach algebra A is *amenable* (respectively, *approximately amenable*) if every derivation from A into X^* is inner (respectively, approximately inner) for all Banach A-bimodules X. For more details see [7, 10, 12].

The following result is taken from [6, Theorem 4.2]. For the definition of $\ell^p(\omega)$, see [6] or Definition 3.1 of the present paper.

THEOREM 2.1. The Banach sequence algebras $\ell^p(\omega)$, $1 \le p < \infty$, $\omega \in [1, +\infty)^I$, are not approximately amenable.

Let *A* be a Banach algebra. The projective tensor product $A \otimes A$ is a Banach *A*-bimodule, under the operations defined by $c \cdot (a \otimes b) = ca \otimes b$ and $(a \otimes b) \cdot c = a \otimes bc$ for *a*, *b*, $c \in A$. The corresponding *diagonal operator* $\pi_A : A \otimes A \to A$ is defined through $\pi_A(a \otimes b) = ab$ (*a*, *b* $\in A$). For more details, see [4].

The following result is a characterization of amenable Banach algebras, and is taken from [10]. See also the comment after Corollary 2.2 of [6].

THEOREM 2.2. Let A be a Banach algebra. Then A is amenable if and only if there is a constant C > 0 such that, for each $\epsilon > 0$ and each finite subset S of A, there exists $F \in A \otimes A$ with $||F||_{\pi} \leq C$ such that, for each $a \in S$:

- (i) $||a \cdot F F \cdot a||_{\pi} < \epsilon;$
- (ii) $||a a\pi_A(F)|| < \epsilon$.

The following characterization of approximate amenability is taken from [6, Proposition 2.1].

THEOREM 2.3. Let A be a Banach algebra. Then A is approximately amenable if and only if, for each $\epsilon > 0$ and each finite subset S of A, there exist $F \in A \otimes A$ and $u, v \in A$ such that $\pi_A(F) = u + v$, and for each $a \in S$:

- (i) $||a \cdot F F \cdot a + u \otimes a a \otimes v||_{\pi} < \epsilon$;
- (ii) $||a au|| < \epsilon$ and $||a va|| < \epsilon$.

3. Amenability and approximate amenability of $\ell^p((\mathfrak{A}_i), \omega)$ $(1 \le p < \infty)$

Our starting point in this section is the following definition.

DEFINITION 3.1. Given a set *I*, a family $\{\mathfrak{A}_i\}_{i \in I}$ of Banach algebras, and $\omega = (\omega_i) \in [1, +\infty)^I$, define, for $1 \le p < \infty$,

$$\ell^{p}((\mathfrak{A}_{i}), \omega) = \left\{ (\mathfrak{a}_{i}) : \mathfrak{a}_{i} \in \mathfrak{A}_{i}, \sum_{i \in I} \omega_{i} ||\mathfrak{a}_{i}||_{\mathfrak{A}_{i}}^{p} < \infty \right\}.$$

It is easy to check that $\ell^p((\mathfrak{A}_i), \omega)$ is a Banach algebra with pointwise multiplication and the norm

$$\|(\mathfrak{a}_i)\|_{p,\omega} = \left(\sum_{i\in I} \omega_i \|\mathfrak{a}_i\|_{\mathfrak{A}_i}^p\right)^{1/p} \quad ((\mathfrak{a}_i) \in \ell^p((\mathfrak{A}_i), \omega)).$$

The Banach algebra $\ell^p((\mathfrak{A}_i), \omega)$ is called *the weighted* l^p -*direct sum* of the family (\mathfrak{A}_i) with *weight* ω . If for each $i \in I$, $\mathfrak{A}_i = \mathfrak{A}$, denote $\ell^p((\mathfrak{A}_i), \omega)$ by $\ell^p(I, \mathfrak{A}, \omega)$. If for each $i \in I$, $\omega_i = 1$, denote $\ell^p(I, \mathfrak{A}, \omega)$ by $\ell^p(I, \mathfrak{A})$. Also define $\ell^p(I, \omega) = \ell^p(I, \mathbb{C}, \omega)$, $\ell^p(I) = \ell^p(I, \mathbb{C})$, and $\ell^p(\omega) = \ell^p(\mathbb{N}, \omega)$.

LEMMA 3.2. Given a set I, $1 \le p < \infty$, and $\omega \in [1, +\infty)^I$, the following assertions are equivalent:

- (i) $\ell^p(I, \omega)$ is approximately amenable;
- (ii) $\ell^p(I, \omega)$ is amenable;
- (iii) I is finite.

PROOF. Let *I* be infinite. Then there exists an infinite countable subset $I_0 = \{i_n\}_{n \in \mathbb{N}}$ of *I*. The mapping

$$\ell^p(I,\omega) \to \ell^p(\omega); \quad (\lambda_i) \mapsto (\lambda_{i_n})_n,$$

is a continuous epimorphism. But, by Theorem 2.1, $\ell^p(\mathbb{N}, \omega)$ is not approximately amenable. Therefore, by [7, Proposition 2.2], $\ell^p(I, \omega)$ is not approximately amenable.

Obviously, if *I* is finite, then $\ell^p(I, \omega)$ is amenable.

LEMMA 3.3. *Given a set I, a family* $\{\mathfrak{A}_i\}_{i\in I}$ *of Banach algebras with unit, and* $\omega = (\omega_i) \in [1, +\infty)^I$, let $\varpi(i) = \omega_i ||_{\mathfrak{A}_i}||_{\mathfrak{A}_i}^p$ ($i \in I$). Then for $1 \leq p < \infty$, $\ell^p(I, \varpi)$ is a Banach algebra, the mapping

$$\iota: \ell^1(I, \varpi) \to \ell^p((\mathfrak{A}_i), \omega); \iota(a) = (a_i e_{\mathfrak{A}_i}) \quad (a = (a_i) \in \ell^p(I, \varpi)),$$

is well defined, and there exists a linear map Θ from $\ell^p((\mathfrak{A}_i), \omega)$ into $\ell^p(I, \varpi)$ such that:

(i)
$$\|\Theta\| = 1$$
;

- (ii) $\Theta(\iota(a)) = a \ (a \in \ell^p(I, \varpi));$
- (iii) $a\Theta(A) = \Theta(\iota(a)A), \ \Theta(A)a = \Theta(A\iota(a)) \quad (a \in \ell^p(I, \varpi), A \in \ell^p((\mathfrak{A}_i), \omega));$
- (iv) for $a \in \ell^p(I, \varpi)$ and $\mathcal{F} \in \ell^p((\mathfrak{A}_i), \omega) \widehat{\otimes} \ell^p((\mathfrak{A}_i), \omega)$,

$$a \cdot (\Theta \otimes \Theta)(\mathcal{F}) = (\Theta \otimes \Theta)(\iota(a) \cdot \mathcal{F}), (\Theta \otimes \Theta)(\mathcal{F}) \cdot a = (\Theta \otimes \Theta)(\mathcal{F} \cdot \iota(a)).$$

H. Samea

PROOF. Since for each $i \in I$, $||e_{\mathfrak{A}_i}||_{\mathfrak{A}_i} \ge 1$, we have $\varpi \in [1, +\infty)^I$. Thus, $\ell^p(I, \varpi)$ is a Banach algebra. It is easy to see that ι is well defined. Let $i \in I$. By the Hahn–Banach theorem, there exists $\theta_i \in \mathfrak{A}_i^*$ with $||\theta_i|| = 1$ and $\theta_i(e_{\mathfrak{A}_i}) = ||e_{\mathfrak{A}_i}||_{\mathfrak{A}_i}$. Define

$$\Theta: \ell^p((\mathfrak{A}_i), \omega) \to \ell^p(I, \varpi); \Theta(A) = \left(\frac{1}{\|e_{\mathfrak{A}_i}\|_{\mathfrak{A}_i}} \theta_i(\mathfrak{a}_i)\right) \quad (A = (\mathfrak{a}_i) \in \ell^p((\mathfrak{A}_i), \omega)).$$

Since $||\theta_i|| = 1$ $(i \in I)$, Θ is well defined. The equations in (i) and (ii) are direct consequences of $||\theta_i|| = 1$ and $\theta_i(e_{\mathfrak{A}_i}) = ||e_{\mathfrak{A}_i}||_{\mathfrak{A}_i}$ $(i \in I)$. The equations in (iii) and (iv) are proved by an easy calculation. For example, if $a = (a_i) \in \ell^p(I, \varpi)$ and $A = (\mathfrak{a}_i) \in \ell^p((\mathfrak{A}_i), \omega)$, then

$$a\Theta(A) = (a_i) \left(\frac{1}{\|e_{\mathfrak{A}_i}\|_{\mathfrak{A}_i}} \theta_i(\mathfrak{a}_i) \right) = \left(\frac{a_i}{\|e_{\mathfrak{A}_i}\|_{\mathfrak{A}_i}} \theta_i(\mathfrak{a}_i) \right)$$
$$= \left(\frac{1}{\|e_{\mathfrak{A}_i}\|_{\mathfrak{A}_i}} \theta_i(a_i\mathfrak{a}_i) \right) = \Theta((a_i\mathfrak{a}_i))$$
$$= \Theta((a_ie_{\mathfrak{A}_i})(\mathfrak{a}_i)) = \Theta(\iota(a)A).$$

It follows that, for each $B, C \in \ell^p((\mathfrak{A}_i), \omega)$,

$$a \cdot (\Theta \otimes \Theta)(B \otimes C) = (a\Theta(B)) \otimes \Theta(C) = \Theta(\iota(a)B) \otimes \Theta(C)$$
$$= (\Theta \otimes \Theta)(\iota(a)B \otimes C) = (\Theta \otimes \Theta)(\iota(a) \cdot (B \otimes C)),$$

and so for each $\mathcal{F} \in \ell^p((\mathfrak{A}_i), \omega) \widehat{\otimes} \ell^p((\mathfrak{A}_i), \omega), a \cdot (\Theta \otimes \Theta)(\mathcal{F}) = (\Theta \otimes \Theta)(\iota(a) \cdot \mathcal{F}).$

Given a set *I* and a family $\{\mathfrak{A}_i\}_{i \in I}$ of Banach algebras with unit, for the subset I_0 of *I* let

$$c_{00}^{I_0}((\mathfrak{A}_i)) = \{(\mathfrak{a}_i) : \mathfrak{a}_i \in \mathfrak{A}_i, \mathfrak{a}_i = 0 \text{ for } i \notin I_0\},\$$

and define $E_{I_0} \in c_{00}^{I_0}((\mathfrak{A}_i))$ through $(E_{I_0})_i = e_{\mathfrak{A}_i}$ $(i \in I_0)$. These notations are used in the following lemma.

LEMMA 3.4. Given a set I, $1 \le p < \infty$, a family $\{\mathfrak{A}_i\}_{i \in I}$ of Banach algebras with unit, and $\omega \in [1, +\infty)^I$, let $\ell^p((\mathfrak{A}_i), \omega)$ be approximately amenable, $\epsilon > 0$, and S be a finite subset of $\ell^p((\mathfrak{A}_i), \omega)$. Then there exist a finite subset I_{ϵ} of I, and $B^1, \ldots, B^m, C^1, \ldots, C^m, U, V \in c_{00}^{I_{\epsilon}}((\mathfrak{A}_i))$ such that, if $\mathcal{F} = \sum_{n=1}^m B^n \otimes C^n$, then $\pi_{\ell^p((\mathfrak{A}_i), \omega)}(\mathcal{F}) = U + V$, and moreover, for each $A \in S$:

- (i) $||A \cdot \mathcal{F} \mathcal{F} \cdot A + U \otimes A A \otimes V||_{\pi} < \epsilon;$
- (ii) $||A AU||_{p,\omega} < \epsilon$ and $||A VA||_{p,\omega} < \epsilon$.

PROOF. By Theorem 2.3, there exists $\overline{\mathcal{F}} = \sum_{n=1}^{m} \overline{B}_n \otimes \overline{C}_n \in \ell^p((\mathfrak{A}_i), \omega) \otimes \ell^p((\mathfrak{A}_i), \omega)$, such that $\pi_{\ell^p((\mathfrak{A}_i), \omega)}(\overline{\mathcal{F}}) = \overline{U} + \overline{V}$, and for each $A \in S$:

- (i') $||A \cdot \overline{\mathcal{F}} \overline{\mathcal{F}} \cdot A + \overline{U} \otimes A A \otimes \overline{V}||_{\pi} < \epsilon/2;$
- (ii') $||A A\overline{U}||_{p,\omega} < \epsilon/2$ and $||A \overline{V}A||_{p,\omega} < \epsilon/2$.

Let $\epsilon_1 = \epsilon/(8 \max_{A \in S} (||A||_{p,\omega} + 1))$. By continuity of the tensor product and the definition of $|| \cdot ||_{p,\omega}$, there exists a finite subset I_{ϵ} of I such that

$$\left\|\sum_{n=1}^{m} (\overline{B}_{n} E_{I_{\epsilon}}) \otimes (\overline{C}_{n} E_{I_{\epsilon}}) - \sum_{n=1}^{m} \overline{B}_{n} \otimes \overline{C}_{n}\right\|_{\pi} < \epsilon_{1}$$

and

$$\|\overline{U}E_{I_{\epsilon}}-\overline{U}\|_{p,\omega}, \|\overline{V}E_{I_{\epsilon}}-\overline{V}\|_{p,\omega}<\epsilon_{1}.$$

Let $B_n = \overline{B}_n E_{I_{\epsilon}}$, $C_n = \overline{C}_n E_{I_{\epsilon}}$ $(1 \le n \le m)$, $\mathcal{F} = \sum_{n=1}^m B_n \otimes C_n$, $U = \overline{U} E_{I_{\epsilon}}$, and $V = \overline{V} E_{I_{\epsilon}}$. Then (i') and (ii') give (i) and (ii).

PROPOSITION 3.5. *Given a set I, a family* $\{\mathfrak{A}_i\}_{i \in I}$ *of Banach algebras with unit, and* $\omega = (a_i) \in [1, +\infty)^I$, if the Banach algebra $\ell^p((\mathfrak{A}_i), \omega)$ is approximately amenable, then *I is finite.*

PROOF. The notations of Lemmas 3.3 and 3.4 are used. Let $\epsilon > 0$ and *S* be a finite subset of $\ell^p(I, \varpi)$. Since $\iota(S)$ is a finite subset of $\ell^p((\mathfrak{A}_i), \omega)$, there exist by Lemma 3.4 a finite subset I_{ϵ} of *I*, and $B_1, \ldots, B^m, C^1, \ldots, C^m, U, V \in c_{00}^{I_{\epsilon}}((\mathfrak{A}_i))$ such that, if $\mathcal{F} = \sum_{n=1}^{m} B^n \otimes C^n$, then $\pi_{\ell^p((\mathfrak{A}_i), \omega)}(\mathcal{F}) = U + V$, and for each $a \in S$:

(i) $\|\iota(a) \cdot \mathcal{F} - \mathcal{F} \cdot \iota(a) + U \otimes \iota(a) - \iota(a) \otimes V\|_{\pi} < \epsilon;$

(ii) $\|\iota(a) - \iota(a)U\|_{p,\omega} < \epsilon$ and $\|\iota(a) - V\iota(a)\|_{p,\omega} < \epsilon$.

For $i \in I$, let Θ_i be the *i*th component of Θ (that is, in the notation of the proof of Lemma 3.3, $\Theta_i = (1/||e_{\mathfrak{N}_i}||_{\mathfrak{N}_i})\theta_i$). Let

$$\lambda_{n,i} = \Theta_i(B^n_i C^n_i) - \Theta_i(B^n_i)\Theta_i(C^n_i) \quad (1 \le n \le m, i \in I_\epsilon)$$

and

$$F = (\Theta \otimes \Theta)(\mathcal{F}) + \sum_{n=1}^{m} \sum_{i \in I_{\epsilon}} \lambda_{n,i} \delta_i \otimes \delta_i,$$

where $\delta_i \in \ell^p(I, \varpi)$ is defined by $\delta_i(i) = 1$ and $\delta_i(j) = 0$ $(j \neq i)$. Obviously, $F \in \ell^p(I, \varpi) \otimes \ell^p(I, \varpi)$. Let $u = \Theta(U)$ and $v = \Theta(V)$. It is clear that

$$a \cdot (\delta_i \otimes \delta_i) = (\delta_i \otimes \delta_i) \cdot a \quad (a \in \ell^p(I, \varpi), i \in I),$$

and so by Lemma 3.3(iv), for each $a \in \ell^p(I, \varpi)$,

$$a \cdot F - F \cdot a = a \cdot (\Theta \otimes \Theta)(\mathcal{F}) - (\Theta \otimes \Theta)(\mathcal{F}) \cdot a$$
$$= (\Theta \otimes \Theta)(\iota(a) \cdot \mathcal{F} - \mathcal{F} \cdot \iota(a)).$$

Thus, by (i) in this proof and Lemma 3.3(ii) and (i), for each $a \in S$,

$$\begin{aligned} \|a \cdot F - F \cdot a + u \otimes a - a \otimes v\|_{\pi} &= \|(\Theta \otimes \Theta)(\iota(a) \cdot \mathcal{F} - \mathcal{F} \cdot \iota(a) - U \otimes \iota(a) - \iota(a) \otimes V)\|_{\pi} \\ &\leq \|\iota(a) \cdot \mathcal{F} - \mathcal{F} \cdot \iota(a) - U \otimes \iota(a) - \iota(a) \otimes V\|_{\pi} < \epsilon. \end{aligned}$$

Also, by (ii) and Lemma 3.3(i),

$$||a - au||_{p,\varpi} = ||\Theta(\iota(a) - \iota(a)U)||_{p,\varpi} \le ||\iota(a) - \iota(a)U||_{p,\omega} < \epsilon_{p,\omega}$$

and similarly $||a - va||_{p,\varpi} < \epsilon$. Moreover,

$$\pi_{\ell^{p}(I,\varpi)}(F) = \sum_{n=1}^{m} \Theta(B^{n})\Theta(C^{n}) + \sum_{n=1}^{m} \sum_{i \in I_{\epsilon}} \lambda_{n,i}\delta_{i}\delta_{i}$$
$$= \sum_{n=1}^{m} \sum_{i \in I_{\epsilon}} \Theta_{i}(B^{n}_{i})\Theta_{i}(C^{n}_{i})\delta_{i} + \sum_{n=1}^{m} \sum_{i \in I_{\epsilon}} \lambda_{n,i}\delta_{i}$$
$$= \sum_{n=1}^{m} \sum_{i \in I_{\epsilon}} \Theta_{i}(B^{n}_{i}C^{n}_{i})\delta_{i} = \sum_{n=1}^{m} \Theta(B^{n}C^{n})$$
$$= \Theta(\pi_{\ell^{p}((\mathfrak{A}_{i}),\omega)}(\mathcal{F})) = \Theta(U+V) = u + v.$$

Therefore, by Theorem 2.3, $\ell^p(I, \varpi)$ is approximately amenable. Hence, by Lemma 3.2, *I* is finite.

Remark 3.6. If, for each $i \in I$, \mathfrak{A}_i has a nonzero character ϕ_i , then there is a simple proof for the above proposition. To see this, suppose that $\ell^p((\mathfrak{A}_i), \omega)$ is approximately amenable. Define

$$\Theta: \ell^p((\mathfrak{A}_i), \omega) \to \ell^p(I, \varpi); \ (\mathfrak{a}_i) \mapsto (\phi_i(\mathfrak{a}_i)),$$

where $\varpi_i = \omega_i/||\phi_i||^p$ $(i \in I)$. Note that for each $i \in I$, $||\phi_i|| \le 1$ (see [4, Section 16]), and so $\varpi_i \ge 1$. Clearly Θ is a bounded linear map. For each $i \in I$, there is $\mathfrak{a}_i^0 \in \mathfrak{A}_i$ with $||\mathfrak{a}_i^0||_{\mathfrak{A}_i} = 1$, such that $|\phi_i(\mathfrak{a}_i^0)| \ge \frac{1}{2} ||\phi_i||$. Let $a := (\lambda_i) \in \ell^p(I, \varpi)$. Then it is easy to show that if $A = ((\lambda_i/\phi_i(\mathfrak{a}_i^0))\mathfrak{a}_i^0)$, then $A \in \ell^p((\mathfrak{A}_i), \omega)$, and $\Phi(A) = a$. It follows that Φ is a continuous epimorphism. Hence, by [7, Proposition 2.2], $\ell^p(I, \varpi)$ is approximately amenable, and so by Lemma 3.2, I is finite.

LEMMA 3.7. Given a set I, a family $\{\mathfrak{A}_i\}_{i\in I}$ of Banach algebras, and $\omega \in [1, +\infty)^I$, if $1 \leq p < \infty$, and $\ell^p((\mathfrak{A}_i), \omega)$ is amenable (respectively, approximately amenable), then, for each $i \in I$, \mathfrak{A}_i is amenable (respectively, approximately amenable).

PROOF. For each $i \in I$, the mapping $\pi_i : \ell^p((\mathfrak{A}_i), \omega) \to \mathfrak{A}_i; (\mathfrak{a}_i) \mapsto \mathfrak{a}_i$ is a bounded algebra homomorphism. By [12, Proposition 2.3.1] (respectively, [7, Proposition 2.2]), \mathfrak{A}_i is amenable (respectively, approximately amenable).

The following result is the main theorem of the present paper.

THEOREM 3.8. Given a set I, a family $\{\mathfrak{A}_i\}_{i\in I}$ of Banach algebras with unit, and $\omega = (a_i) \in [1, +\infty)^I$, if $1 \le p < \infty$, then the following statements are equivalent.

- (i) $\ell^p((\mathfrak{A}_i), \omega)$ is amenable (respectively, approximately amenable).
- (ii) The set I is finite, and, for each $i \in I$, \mathfrak{A}_i is amenable (respectively, approximately amenable).

514

PROOF. (i) \Rightarrow (ii) is a consequence of Proposition 3.5 and Lemma 3.7.

(ii) \Rightarrow (i) follows from [12, Corollary 2.3.19] (where, for each $i \in I$, \mathfrak{A}_i is amenable), and [7, Proposition 2.7] (where, for each $i \in I$, \mathfrak{A}_i is approximately amenable).

4. Applications to compact groups and hypergroups

Let *H* be an *n*-dimensional Hilbert space and suppose that B(H) is the space of all linear operators on *H*. For $E \in B(H)$, let $(\lambda_1, \ldots, \lambda_n)$ be the sequence of eigenvalues of the operator |E|, written in any order. Define $||E||_{\varphi_p} = (\sum_{i=1}^n |\lambda_i|^p)^{1/p}$ $(1 \le p < \infty)$. For more details, see [8, Definition D.37 and Theorem D.40].

Let *I* be an arbitrary index set. For each $i \in I$, let H_i be a finite-dimensional Hilbert space of dimension d_i , and let $a_i \ge 1$ be a real number. Define

$$\mathfrak{E}_p(I) = \ell^p(((B(H_i), \|\cdot\|_{\varphi_p})), (a_i)) \quad (1 \le p < \infty).$$

This definition is taken from [8, Section 28], using the notation of Definition 3.1.

By [12, Example 2.3.16], for each $i \in I$, the Banach algebra $B(H_i)$ is amenable. Hence Theorem 3.8 yields the following result.

PROPOSITION 4.1. Let $1 \le p < \infty$. The following statements are equivalent.

- (i) $\mathfrak{E}_p(I)$ is approximately amenable.
- (ii) $\mathfrak{E}_p(I)$ is amenable.
- (iii) *I is finite*.

Let *K* be a compact hypergroup (as defined by Jewett [9]), and \widehat{K} be the set of equivalence classes of continuous irreducible representations of *K* (see [3], [9, Section 11.3], and [13]). For each $\pi \in \widehat{K}$, let H_{π} be the representation space of π and $d_{\pi} = \dim H_{\pi}$. By [13, Theorem 2.2], $d_{\pi} < \infty$. Furthermore, by the proof of [13, Theorem 2.2], there exists a constant c_{π} such that for each $\xi \in H_{\pi}$ with $||\xi|| = 1$,

$$\int_{K} |\langle \pi(x)\xi,\xi\rangle|^2 \, d\omega_K(x) = c_{\pi}.$$

Let $k_{\pi} = c_{\pi}^{-1}$. By [13, Theorem 2.6], $k_{\pi} \ge d_{\pi}$. Moreover, if *K* is a group, then $k_{\pi} = d_{\pi}$. The Banach algebras $\mathfrak{E}_{p}(\widehat{K})$, for $p \in [1, \infty)$, are defined with each $a_{\pi} = k_{\pi}$.

PROPOSITION 4.2. Let K be a compact hypergroup, and $1 \le p < \infty$. The following statements are equivalent.

- (i) $\mathfrak{E}_p(\widehat{K})$ is approximately amenable.
- (ii) $\mathfrak{E}_p(\widehat{K})$ is amenable.

(iii) K is finite.

PROOF. If \widehat{K} is finite, then $\mathfrak{E}_2(\widehat{K})$ is finite-dimensional. So by [13, Theorem 3.4], $L^2(K)$ is finite-dimensional, and so is C(K). From the comment on [11, p. 57] it follows that *K* is finite. By Proposition 4.1, the proof is complete.

H. Samea

If *K* is a compact hypergroup, then by [3, Theorem 1.3.28], *K* admits a left Haar measure. Throughout the present paper we use the normalized Haar measure ω_K on the compact hypergroup *K* (that is, $\omega_K(K) = 1$). Note that by [13, Theorem 3.4], the convolution Banach algebra $L^2(K)$ is isometrically algebra isomorphic with $\mathfrak{E}_2(\widehat{K})$. Thus the following result is a corollary of the above proposition.

COROLLARY 4.3. Let K be a compact hypergroup. The following statements are equivalent.

- (i) The convolution Banach algebra $L^2(K)$ is approximately amenable.
- (ii) The convolution Banach algebra $L^2(K)$ is amenable.
- (iii) K is finite.

As a further corollary, the following generalization of [1, Proposition 2.30] (see also [2]) is obtained.

COROLLARY 4.4. Let G be an infinite compact group. Then the convolution Banach algebra $L^2(G)$ is not approximately amenable.

If $f \in L^1(K)$ and $\sum_{\pi \in \widehat{K}} k_{\pi} \|\widehat{f}(\pi)\|_{\varphi_1} < \infty$ (where $\widehat{f} \in \mathfrak{E}(\widehat{K})$ is the *Fourier transform* of f, defined by $\widehat{f_{\pi}} = \int_{K} f(x)\pi(\overline{x}) d\omega_{K}(x)$ ($\pi \in \widehat{K}$)), we say that f has an *absolutely convergent Fourier series*. The set of all functions with absolutely convergent Fourier series is denoted by A(K) and called *the Fourier space* of K. For $f \in A(K)$ we define $\|f\|_{A(K)} = \|\widehat{f}\|_{1}$. By [13, Proposition 4.2], A(K) with the convolution product is a Banach algebra and isometrically isomorphic with $\mathfrak{E}_1(\widehat{K})$. See also [8] for further results about compact groups. Proposition 4.1 yields the following result.

COROLLARY 4.5. Let K be a compact hypergroup. The following statements are equivalent.

- (i) *The convolution Banach algebra* A(K) *is approximately amenable.*
- (ii) The convolution Banach algebra A(K) is amenable.
- (iii) *K* is finite.

Acknowledgements

The author would like to thank the referee for invaluable comments. The author would also like to thank the University of Bu-Ali Sina (Hamedan) for its support.

References

- [1] P. Bharucha, *Amenability properties and their consequences in Banach algebras*, PhD Thesis, Australian National University, Australia, 2008.
- [2] P. Bharucha and R. J. Loy, 'Approximate and weak amenability of certain Banach algebras', *Studia. Math.* 197(2) (2010), 195–204.
- [3] W. R. Bloom and H. Heyer, *Harmonic Analysis of Probability Measures on Hypergroups* (Walter de Gruyter, Berlin, 1995).
- [4] F. Bonsall and J. Duncan, Complete Normed Algebras (Springer, New York, 1973).

516

- [5] Y. Choi and F. Ghahramani, 'Approximate amenability of Schatten classes, Lipschitz algebras and second duals of Fourier algebras', *Q. J. Math.* **62**(1) (2011), 39–58.
 - [6] H. G. Dales, R. J. Loy and Y. Zhang, 'Approximate amenability for Banach sequence algebras', *Studia Math.* 177 (2006), 81–96.
 - [7] F. Ghahramani and R. J. Loy, 'Generalized notions of amenability', J. Funct. Anal. 208(1) (2004), 229–260.
 - [8] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, Vol. II (Springer, Berlin, 1970).
 - [9] R. I. Jewett, 'Spaces with an abstract convolution of measures', Adv. Math. 18 (1975), 1–110.
- [10] B. E. Johnson, 'Cohomology in Banach algebras', Mem. Amer. Math. Soc. 127 (1972).
- [11] G. J. Murphy, C*-Algebras and Operator Theory (Academic Press, San Diego, CA, 1990).
- [12] V. Runde, Lectures on Amenability, Lecture Notes in Mathematics, 1774 (Springer, Berlin, 2002).
- [13] R. C. Vrem, 'Harmonic analysis on compact hypergroups', Pacific J. Math. 85(1) (1979), 239–251.

H. SAMEA, Department of Mathematics, Bu-Ali Sina University, Hamedan, Iran e-mail: h.samea@basu.ac.ir

[9]