COUNTEREXAMPLES TO A CONJECTURE FOR NEUTRAL EQUATIONS

T. KRISZTIN, R. M. MATHSEN AND XU YUANTONG

ABSTRACT. A collection of examples of first order linear neutral differential delay equations having a nonoscillatory solution with $\limsup = \infty$ and $\liminf = 0$ at ∞ is given. This disproves a recent conjecture about the asymptotic behavior of solutions to such equations.

In a paper in 1986, Grammatikopoulos, Grove and Ladas [3] proved some asymptotic properties of nonoscillatory solutions of the first order linear differential delay equation

(1)
$$\frac{d}{dt}[y(t) + py(t-\tau)] + qy(t-\sigma) = 0$$

where $q \neq 0, p, \tau$ and σ are real constants. The asymptotic behavior of solutions of (1) in several cases involving various sign conditions on q, τ, p and p-1 was left unresolved in [3], but two conjectures covering these unresolved cases were given in that paper. Before stating these conjectures, we observe that y satisfies (1) if and only if -y satisfies (1). Thus we can without loss of generality assume that a nonoscillatory solution of (1) is eventually positive, *i.e.*, is positive on $[t_0, \infty)$ for some real number t_0 .

CONJECTURE 1. Suppose p < 0 and $q\tau < 0$. Then $\lim_{t\to\infty} y(t) = \infty$ or $\lim_{t\to\infty} y(t) = 0$ for every eventually positive solution of (1).

CONJECTURE 2. Suppose q < 0. If (i) p = 1 or (ii) p > 1 and $\tau > 0$, then $\lim_{t \to \infty} y(t) = \infty$ for every eventually positive solution of (1).

Recently in [4], Conjecture 1 was proved as was Conjecture 2(i). In addition, Conjecture 2(ii) was shown to hold in case any one of the following three conditions is satisfied:

$$-q\tau < \ln p \text{ and } \sigma \ge 0, \text{ or}$$

 $-q\tau $\sigma \ge 0, 1 + q\tau \ge 0, p \ge 2 \text{ and } 1 + q\tau + p - 2 > 0.$$

The purpose of this note is to show that in general Conjecture 2(ii) is false. Let α be a positive real number. Put $p = e^{\alpha}$, $q = -2\alpha e^{\alpha}$ and $\tau = \sigma = 1$. With these choices the characteristic equation for (1) becomes

(2)
$$\lambda(1+e^{\alpha-\lambda})=2\alpha e^{\alpha-\lambda}.$$

This paper was written while the authors were visiting the Applied Mathematics Institute, Department of Mathematics, University of Alberta.

Received by the editors April 25, 1991.

AMS subject classification: 34K15.

[©] Canadian Mathematical Society 1993.

 $\lambda = \alpha$ is clearly a positive root of this equation. To find nonreal roots with real part α , let $\lambda = \alpha + i\beta$. Putting this expression for λ in (2) and equating real and imaginary parts gives the two equations

(3)
$$\alpha = -\frac{\beta(1+\cos\beta)}{\sin\beta} \text{ and } \alpha = -\frac{\beta\sin\beta}{1-\cos\beta}$$

which are equivalent. Note that $\frac{d\alpha}{d\beta} = \frac{(1+\cos\beta)(\beta-\sin\beta)}{\sin^2\beta} \ge 0$, so α is an increasing function of β on each of the intervals $(2(k-1)\pi, 2k\pi)$ for each positive integer k and has vertical asymptotes at $\beta = 2k\pi$. Also, $\lim_{\beta\to 2k\pi^-} \alpha(\beta) = \infty$, $\lim_{\beta\to 2k\pi^+} \alpha(\beta) = -\infty$, $\alpha((2k+1)\pi) = 0$ and $\lim_{\beta\to 0^+} \alpha(\beta) = -2$. Thus for any $\alpha > 0$ there are unique numbers $\beta_0 = \beta_0(\alpha) \in (\pi, 2\pi)$ and $\beta_1 = \beta_1(\alpha) \in (3\pi, 4\pi)$ so that $\alpha = g(\beta_1) = g(\beta_0)$ where $g(\beta) = -\beta(\sin\beta)/(1-\cos\beta)$. This means that $\alpha, \alpha \pm i\beta_0$ and $\alpha \pm i\beta_1$ are roots of the characteristic equation (2). Consequently

(4)
$$y(t) = e^{\alpha t} (2 - \cos \beta_0 t - \cos \beta_1 t)$$

is a solution of (1). Clearly $y(t) \ge 0$ and $\limsup_{t\to\infty} y(t) = \infty$ for any choice of β_0 and β_1 . y(t) > 0 for all $t \ge 0$ if and only if β_1/β_0 is irrational. We now claim there is a dense set of α 's with the property that y(t) > 0 for $t \ge 0$, $\limsup_{t\to\infty} y(t) = \infty$ and $\liminf_{t\to\infty} y(t) = 0$.

In our construction we use the sequence $\{a_n\}_{n=1}^{\infty}$ defined by $a_1 = N$ and $a_{k+1} = N^{a_k}$ for $k \ge 1$ where N > 1 is an integer to be selected. We will also use the number τ_N where $\tau_{N,n} := \sum_{k=1}^{n} a_k^{-1} \to \tau_N$ as $n \to \infty$. Observe that

(5)
$$0 < \tau_N - \tau_{N,n} = \sum_{k=n+1}^{\infty} a_k^{-1} \le \frac{1}{a_{n+1}} \cdot \frac{N}{N-1}.$$

First we show that τ_N is irrational. Clearly $\tau_{N,n} = m_n/a_n$ for some positive integer m_n . If $\tau_N = k/\ell$ for positive integers k and ℓ , then

$$0 < \tau_N - \tau_{N,n} = \left|\frac{k}{\ell} - \frac{m_n}{a_n}\right| = \left|\frac{ka_n - \ell m_n}{\ell a_n}\right| \geq \frac{1}{\ell a_n}.$$

But this contradicts (5) for large n.

Now let $\alpha_0 > 0$ and $\varepsilon > 0$ be given with $\varepsilon < \alpha_0$ and $\varepsilon < 1$. Let $h(\alpha) = \beta_1(\alpha)/\beta_0(\alpha)$. Then *h* is a continuous function of α and maps the interval $(\alpha_0 - \varepsilon, \alpha_0 + \varepsilon)$ to an interval of length $\delta > 0$ containing $h(\alpha_0)$. Now pick $N > 2/\delta$ and $N > e^{2(\alpha_0+1)}$ and an integer *M* so that $\tau_N + M/N = h(\alpha_N)$ for some $\alpha_N \in (\alpha_0 - \varepsilon, \alpha_0 + \varepsilon)$. Then $\beta_1/\beta_0 = \beta_1(\alpha_N)/\beta_0(\alpha_N) = M/N + \tau_N$ is an irrational number. Let $t_n = 2\pi a_n/\beta_0$. Then from (4),

$$y(t_n) = e^{\alpha_N t_n} (2 - \cos \beta_0 t_n - \cos \beta_1 t_n) = e^{2\pi a_n \alpha_N / \beta_0} (1 - \cos(2\pi a_n \beta_1 / \beta_0))$$

$$\leq (e^{2\alpha_N})^{a_n} (1 - \cos(2\pi a_n (M/N + \tau_{N,n})))$$

$$\leq (e^{2(\alpha_0 + 1)})^{a_n} (1 - \cos(2\pi a_n (\tau_N - \tau_{N,n})))$$

since $a_n \tau_{N,n}$ and a_N/N are integers. Now $\cos u \ge 1 - u$ for 0 < u < 1, so

$$y(t_n) \le (e^{2(\alpha_0+1)})^{a_n} 2\pi a_n(\tau_N - \tau_{N,n}) \\ \le 2\pi \frac{N}{N-1} a_n \left(\frac{e^{2(\alpha_0+1)}}{N}\right)^{a_n}$$

by (5). But now by choice of N, $e^{2(\alpha_0+1)}/N < 1$, so $\lim_{n\to\infty} y(t_n) = 0$. Thus y has the desired property as we claimed.

This class of counterexamples shows that Conjecture 2 is false in general. In the notation of NDDE (1), $\sigma = 1 = \tau$, $p = e^{\alpha}$ and $-q = 2\alpha e^{\alpha} = 2p \ln p$. Hence we have found a dense collection of points along the curve $-q = 2p \ln p$ for which Conjecture 2(ii) fails. A similar construction for the equation

$$\frac{d}{dt}[y(t) + e^{\alpha}y(t-1)] = 2\alpha y(t)$$

furnishes a dense collection of examples along the curve $-q = 2 \ln p$ for which Conjecture 2(ii) also fails. Here $\tau = 1 > \sigma = 0$.

Recently there have been several papers written on linear generalizations of (1) obtained by replacing

$$py(t-\tau)$$
 by $\sum_{i=1}^{k} p_i y(t-\tau_i)$ or $qy(t-\sigma)$ by $\sum_{i=1}^{m} q_i y(t-\sigma_i)$.

See references [1], [2], [5], [6] and [7]. We offer here two examples to show that these more general equations may also have positive solutions with $\limsup = \infty$ and $\liminf = 0$ at ∞ .

The examples are:

,

(6)
$$\frac{d}{dt}[y(t) + 2e^{\alpha\tau}y(t-\tau) - e^{\alpha\sigma}y(t-\sigma)] = 2\alpha e^{-\alpha\rho}y(t+\rho)$$

where $\alpha > 0, \tau > 0, \sigma = (1 + \frac{2\ell}{2k+1})\tau$ for some positive integers ℓ and $k, \rho \in (\rho_0 - \varepsilon, \rho_0 + \varepsilon)$ where $\rho_0 \in [-\sigma, \infty)$ and $\varepsilon > 0$, and

(7)
$$\frac{d}{dt}[y(t) + e^{\alpha t}y(t-\tau)] = (2+\varepsilon)\alpha e^{\alpha \sigma}y(t-\sigma) - \varepsilon \alpha e^{\alpha \rho}y(t-\rho)$$

where $\alpha > 0, \tau > 0, \beta > 0$ and $(\beta \sin \beta \tau)/(1 - \cos \beta \tau) = \alpha, \sigma = 2k\pi/\beta_0, \rho = 2n\pi/\beta_0$ where *n* and *k* are integers with n > k and $n > \beta \tau/(2\pi)$, and $\varepsilon \in (0, 2/(-1+e^{2(n-k)\pi\alpha/\beta}))$. For both (6) and (7) the assumptions on the parameters guarantee that the characteristic equations have roots $\alpha, \alpha \pm i\beta$ and $\gamma < 0$. Thus

$$y(t) = e^{\gamma t} + e^{\alpha t} (1 + \cos \beta t)$$

is a solution having the desired properties.

REFERENCES

- 1. O. Arino and I. Győri, Necessary and sufficient conditions for oscillation of a neutral differential system with several delays, J. Diff. Eqns. 81(1989), 98-105.
- 2. K. Farrell, E. A. Grove and G. Ladas, Neutral delay differential equations with positive and negative coefficients, Appl. Anal. 27(1988), 181–197.
- 3. M. K. Grammatikopoulos, E. A. Grove and G. Ladas, Oscillation and asymptotic behavior of neutral differential equations with deviating arguments, Appl. Anal. 22(1986), 1–19.
- **4.** R. M. Mathsen, Xu Yuantong and Wang Qiru, *Asymptotics and oscillation for first order neutral functional differential equations*, preprint.
- 5. Ch. G. Philos and Y. G. Sficas, On the nature of the nonoscillatory solutions of a class of neutral delay differential equations, J. Math. Anal. Appl. 154(1991), 417–434.
- 6. Shigui Ruan, Oscillations for first order neutral differential equations with variable coefficients, Bull. Austral. Math. Soc. 43(1991), 147–152.
- 7. S. W. Schultz, Necessary and sufficient conditions for oscillation of neutral equations with mixed arguments. In: Differential Equations and Applications, Proceedings of the Int. Conf. on the Theory and Appl. of Diff. Eqns., Columbus, Ohio, 1988, Ohio University Press, Athens, 1989.

Bolyai Institute Aradi Vértanúk tere 1 H-6720 Szeged Hungary

Mathematics Department North Dakota State University Fargo, North Dakota 58105-5075 U.S.A.

Mathematics Department Zhongshan University Guangzhou People's Republic of China 510275