COUNTEREXAMPLES TO A CONJECTURE FOR NEUTRAL EQUATIONS

T. KRISZTIN, R. M. MATHSEN AND XU YUANTONG

Abstract

A collection of examples of first order linear neutral differential delay equations having a nonoscillatory solution with $\lim \sup =\infty$ and $\lim \inf =0$ at ∞ is given. This disproves a recent conjecture about the asymptotic behavior of solutions to such equations.

In a paper in 1986, Grammatikopoulos, Grove and Ladas [3] proved some asymptotic properties of nonoscillatory solutions of the first order linear differential delay equation

$$
\begin{equation*}
\frac{d}{d t}[y(t)+p y(t-\tau)]+q y(t-\sigma)=0 \tag{1}
\end{equation*}
$$

where $q \neq 0, p, \tau$ and σ are real constants. The asymptotic behavior of solutions of (1) in several cases involving various sign conditions on q, τ, p and $p-1$ was left unresolved in [3], but two conjectures covering these unresolved cases were given in that paper. Before stating these conjectures, we observe that y satisfies (1) if and only if $-y$ satisfies (1). Thus we can without loss of generality assume that a nonoscillatory solution of (1) is eventually positive, i.e., is positive on $\left[t_{0}, \infty\right)$ for some real number t_{0}.

Conjecture 1. Suppose $p<0$ and $q \tau<0$. Then $\lim _{t \rightarrow \infty} y(t)=\infty$ or $\lim _{t \rightarrow \infty} y(t)$ $=0$ for every eventually positive solution of (1).

CONJECTURE 2. Suppose $q<0 . \operatorname{If}(i) p=1$ or (ii)p>1 and $\tau>0$, then $\lim _{t \rightarrow \infty} y(t)=$ ∞ for every eventually positive solution of (1).

Recently in [4], Conjecture 1 was proved as was Conjecture 2(i). In addition, Conjecture 2(ii) was shown to hold in case any one of the following three conditions is satisfied:

$$
\begin{gathered}
-q \tau<\ln p \text { and } \sigma \geq 0, \text { or } \\
-q \tau<p \ln p \text { and } \sigma \geq \tau \text {, or } \\
\sigma \geq 0,1+q \tau \geq 0, p \geq 2 \text { and } 1+q \tau+p-2>0 .
\end{gathered}
$$

The purpose of this note is to show that in general Conjecture 2(ii) is false. Let α be a positive real number. Put $p=e^{\alpha}, q=-2 \alpha e^{\alpha}$ and $\tau=\sigma=1$. With these choices the characteristic equation for (1) becomes

$$
\begin{equation*}
\lambda\left(1+e^{\alpha-\lambda}\right)=2 \alpha e^{\alpha-\lambda} \tag{2}
\end{equation*}
$$

[^0]$\lambda=\alpha$ is clearly a positive root of this equation. To find nonreal roots with real part α, let $\lambda=\alpha+i \beta$. Putting this expression for λ in (2) and equating real and imaginary parts gives the two equations
\[

$$
\begin{equation*}
\alpha=-\frac{\beta(1+\cos \beta)}{\sin \beta} \text { and } \alpha=-\frac{\beta \sin \beta}{1-\cos \beta} \tag{3}
\end{equation*}
$$

\]

which are equivalent. Note that $\frac{d \alpha}{d \beta}=\frac{(1+\cos \beta)(\beta-\sin \beta)}{\sin ^{2} \beta} \geq 0$, so α is an increasing function of β on each of the intervals $(2(k-1) \pi, 2 k \pi)$ for each positive integer k and has vertical asymptotes at $\beta=2 k \pi$. Also, $\lim _{\beta \rightarrow 2 k \pi^{-}} \alpha(\beta)=\infty, \lim _{\beta \rightarrow 2 k \pi^{+}} \alpha(\beta)=-\infty$, $\alpha((2 k+1) \pi)=0$ and $\lim _{\beta \rightarrow 0^{+}} \alpha(\beta)=-2$. Thus for any $\alpha>0$ there are unique numbers $\beta_{0}=\beta_{0}(\alpha) \in(\pi, 2 \pi)$ and $\beta_{1}=\beta_{1}(\alpha) \in(3 \pi, 4 \pi)$ so that $\alpha=g\left(\beta_{1}\right)=g\left(\beta_{0}\right)$ where $g(\beta)=-\beta(\sin \beta) /(1-\cos \beta)$. This means that $\alpha, \alpha \pm i \beta_{0}$ and $\alpha \pm i \beta_{1}$ are roots of the characteristic equation (2). Consequently

$$
\begin{equation*}
y(t)=e^{\alpha t}\left(2-\cos \beta_{0} t-\cos \beta_{1} t\right) \tag{4}
\end{equation*}
$$

is a solution of (1). Clearly $y(t) \geq 0$ and $\lim _{\sup }^{t \rightarrow \infty}$ $y(t)=\infty$ for any choice of β_{0} and $\beta_{1} . y(t)>0$ for all $t \geq 0$ if and only if β_{1} / β_{0} is irrational. We now claim there is a dense set of α 's with the property that $y(t)>0$ for $t \geq 0, \limsup _{t \rightarrow \infty} y(t)=\infty$ and $\liminf _{t \rightarrow \infty} y(t)=0$.

In our construction we use the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ defined by $a_{1}=N$ and $a_{k+1}=N^{a_{k}}$ for $k \geq 1$ where $N>1$ is an integer to be selected. We will also use the number τ_{N} where $\tau_{N, n}:=\sum_{k=1}^{n} a_{k}^{-1} \rightarrow \tau_{N}$ as $n \rightarrow \infty$. Observe that

$$
\begin{equation*}
0<\tau_{N}-\tau_{N, n}=\sum_{k=n+1}^{\infty} a_{k}^{-1} \leq \frac{1}{a_{n+1}} \cdot \frac{N}{N-1} \tag{5}
\end{equation*}
$$

First we show that τ_{N} is irrational. Clearly $\tau_{N, n}=m_{n} / a_{n}$ for some positive integer m_{n}. If $\tau_{N}=k / \ell$ for positive integers k and ℓ, then

$$
0<\tau_{N}-\tau_{N, n}=\left|\frac{k}{\ell}-\frac{m_{n}}{a_{n}}\right|=\left|\frac{k a_{n}-\ell m_{n}}{\ell a_{n}}\right| \geq \frac{1}{\ell a_{n}}
$$

But this contradicts (5) for large n.
Now let $\alpha_{0}>0$ and $\varepsilon>0$ be given with $\varepsilon<\alpha_{0}$ and $\varepsilon<1$. Let $h(\alpha)=\beta_{1}(\alpha) / \beta_{0}(\alpha)$. Then h is a continuous function of α and maps the interval ($\alpha_{0}-\varepsilon, \alpha_{0}+\varepsilon$) to an interval of length $\delta>0$ containing $h\left(\alpha_{0}\right)$. Now pick $N>2 / \delta$ and $N>e^{2\left(\alpha_{0}+1\right)}$ and an integer M so that $\tau_{N}+M / N=h\left(\alpha_{N}\right)$ for some $\alpha_{N} \in\left(\alpha_{0}-\varepsilon, \alpha_{0}+\varepsilon\right)$. Then $\beta_{1} / \beta_{0}=\beta_{1}\left(\alpha_{N}\right) / \beta_{0}\left(\alpha_{N}\right)=$ $M / N+\tau_{N}$ is an irrational number. Let $t_{n}=2 \pi a_{n} / \beta_{0}$. Then from (4),

$$
\begin{aligned}
y\left(t_{n}\right) & =e^{\alpha_{N} t_{n}}\left(2-\cos \beta_{0} t_{n}-\cos \beta_{1} t_{n}\right)=e^{2 \pi a_{n} \alpha_{N} / \beta_{0}}\left(1-\cos \left(2 \pi a_{n} \beta_{1} / \beta_{0}\right)\right) \\
& \leq\left(e^{2 \alpha_{N}}\right)^{a_{n}}\left(1-\cos \left(2 \pi a_{n}\left(M / N+\tau_{N, n}\right)\right)\right) \\
& \leq\left(e^{2\left(\alpha_{0}+1\right)}\right)^{a_{n}}\left(1-\cos \left(2 \pi a_{n}\left(\tau_{N}-\tau_{N, n}\right)\right)\right)
\end{aligned}
$$

since $a_{n} \tau_{N, n}$ and a_{N} / N are integers. Now $\cos u \geq 1-u$ for $0<u<1$, so

$$
\begin{aligned}
y\left(t_{n}\right) & \leq\left(e^{2\left(\alpha_{0}+1\right)}\right)^{a_{n}} 2 \pi a_{n}\left(\tau_{N}-\tau_{N, n}\right) \\
& \leq 2 \pi \frac{N}{N-1} a_{n}\left(\frac{e^{2\left(\alpha_{0}+1\right)}}{N}\right)^{a_{n}}
\end{aligned}
$$

by (5). But now by choice of $N, e^{2\left(\alpha_{0}+1\right)} / N<1$, so $\lim _{n \rightarrow \infty} y\left(t_{n}\right)=0$. Thus y has the desired property as we claimed.

This class of counterexamples shows that Conjecture 2 is false in general. In the notation of $\operatorname{NDDE}(1), \sigma=1=\tau, p=e^{\alpha}$ and $-q=2 \alpha e^{\alpha}=2 p \ln p$. Hence we have found a dense collection of points along the curve $-q=2 p \ln p$ for which Conjecture 2(ii) fails. A similar construction for the equation

$$
\frac{d}{d t}\left[y(t)+e^{\alpha} y(t-1)\right]=2 \alpha y(t)
$$

furnishes a dense collection of examples along the curve $-q=2 \ln p$ for which Conjecture 2(ii) also fails. Here $\tau=1>\sigma=0$.

Recently there have been several papers written on linear generalizations of (1) obtained by replacing

$$
\begin{aligned}
& p y(t-\tau) \text { by } \sum_{i=1}^{k} p_{i} y\left(t-\tau_{i}\right) \text { or } \\
& q y(t-\sigma) \text { by } \sum_{i=1}^{m} q_{i} y\left(t-\sigma_{i}\right) .
\end{aligned}
$$

See references [1], [2], [5], [6] and [7]. We offer here two examples to show that these more general equations may also have positive solutions with $\lim \sup =\infty$ and $\lim \inf =$ 0 at ∞.

The examples are:

$$
\begin{equation*}
\frac{d}{d t}\left[y(t)+2 e^{\alpha \tau} y(t-\tau)-e^{\alpha \sigma} y(t-\sigma)\right]=2 \alpha e^{-\alpha \rho} y(t+\rho) \tag{6}
\end{equation*}
$$

where $\alpha>0, \tau>0, \sigma=\left(1+\frac{2 \ell}{2 k+1}\right) \tau$ for some positive integers ℓ and $k, \rho \in\left(\rho_{0}-\varepsilon, \rho_{0}+\varepsilon\right)$ where $\rho_{0} \in[-\sigma, \infty)$ and $\varepsilon>0$, and

$$
\begin{equation*}
\frac{d}{d t}\left[y(t)+e^{\alpha t} y(t-\tau)\right]=(2+\varepsilon) \alpha e^{\alpha \sigma} y(t-\sigma)-\varepsilon \alpha e^{\alpha \rho} y(t-\rho) \tag{7}
\end{equation*}
$$

where $\alpha>0, \tau>0, \beta>0$ and $(\beta \sin \beta \tau) /(1-\cos \beta \tau)=\alpha, \sigma=2 k \pi / \beta_{0}, \rho=2 n \pi / \beta_{0}$ where n and k are integers with $n>k$ and $n>\beta \tau /(2 \pi)$, and $\varepsilon \in\left(0,2 /\left(-1+e^{2(n-k) \pi \alpha / \beta}\right)\right)$. For both (6) and (7) the assumptions on the parameters guarantee that the characteristic equations have roots $\alpha, \alpha \pm i \beta$ and $\gamma<0$. Thus

$$
y(t)=e^{\gamma t}+e^{\alpha t}(1+\cos \beta t)
$$

is a solution having the desired properties.

References

1. O. Arino and I. Győri, Necessary and sufficient conditions for oscillation of a neutral differential system with several delays, J. Diff. Eqns. 81(1989), 98-105.
2. K. Farrell, E. A. Grove and G. Ladas, Neutral delay differential equations with positive and negative coefficients, Appl. Anal. 27(1988), 181-197.
3. M. K. Grammatikopoulos, E. A. Grove and G. Ladas, Oscillation and asymptotic behavior of neutral differential equations with deviating arguments, Appl. Anal. 22(1986), 1-19.
4. R. M. Mathsen, Xu Yuantong and Wang Qiru, Asymptotics and oscillation for first order neutral functional differential equations, preprint.
5. Ch. G. Philos and Y. G. Sficas, On the nature of the nonoscillatory solutions of a class of neutral delay differential equations, J. Math. Anal. Appl. 154(1991), 417-434.
6. Shigui Ruan, Oscillations for first order neutral differential equations with variable coefficients, Bull. Austral. Math. Soc. 43(1991), 147-152.
7. S. W. Schultz, Necessary and sufficient conditions for oscillation of neutral equations with mixed arguments. In: Differential Equations and Applications, Proceedings of the Int. Conf. on the Theory and Appl. of Diff. Eqns., Columbus, Ohio, 1988, Ohio University Press, Athens, 1989.

Bolyai Institute
Aradi Vértanúk tere 1
H-6720 Szeged
Hungary

Mathematics Department
North Dakota State University
Fargo, North Dakota 58105-5075
U.S.A.

Mathematics Department
Zhongshan University
Guangzhou
People's Republic of China 510275

[^0]: This paper was written while the authors were visiting the Applied Mathematics Institute, Department of Mathematics, University of Alberta.

 Received by the editors April 25, 1991.
 AMS subject classification: 34 K 15 .
 (c) Canadian Mathematical Society 1993.

