
J. Austral. Math. Soc. Ser. B 30(1988), 1-23

A METHOD OF ACCELERATING STATIONARY
ITERATIVE METHODS FOR SOLVING LINEAR

SYSTEMS

G. K. ROBINSON1

(Received 5 May 1987; revised 3 August 1987)

Abstract

The speed of convergence of stationary iterative techniques for solving simulta-
neous linear equations may be increased by using a method similar to conjugate
gradients but which does not require the stationary iterative technique to be sym-
metrisable. The method of refinement is to find linear combinations of iterates
from a stationary technique which minimise a quadratic form. This basic method
may be used in several ways to construct refined versions of the simple technique.
In particular, quadratic forms of much less than full rank may be used. It is sug-
gested that the method is likely to be competitive with other techniques when the
number of linear equations is very large and little is known about the properties
of the system of equations. A refined version of the Gauss-Seidel technique was
found to converge satisfactorily for two large systems of equations arising in the
estimation of genetic merit of dairy cattle.

1. Introduction

Consider solving the linear system

Au = b (1)

where A is a given real N x N matrix. It is intended to accelerate a linear
stationary method of first degree

w(n+i) _ Gw(n) + k n = o , l ,2 , . . . (2)

where G is a real N x N matrix and w^ and k are real N x 1 vectors. Assume
that the stationary method is completely consistent in the sense that

u = Gu + k
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has a unique solution which is the same as the solution of (1). It follows that
/ — G is non-singular.

The stationary method is said to be symmetrisable if there is a symmetric
positive definite matrix H such that H(I — G) is symmetric positive definite.
Note that the Gauss-Seidel method is not generally symmetrisable even when A
is symmetric positive definite.

Define the error in equation (1) at a; to be

e(x) = x-u,

where u is the solution of (1), and define the pseudoresidual associated with (2)
at x to be

6{x) = Gx + k-x.
Note that 6(x) is the step taken by the basic stationary method when started at
x. Also

6{x) = (G-I)e(x),

so minimising a quadratic form in 6(x) minimises some other quadratic form in
e{x).

The most general polynomial acceleration of u/n) , also referred to as a semi-
iterative technique, is to take linear combinations

n,iWW (3)
t=0

for n = 0 , 1 , . . . , where

t=0

One choice of coefficients Qtn,<i z = 0 , 1 , . . . , n, is to ask that for some symmet-
ric positive definite matrix B the quadratic form

6{u(n))T B6{u{n)) (5)

be minimised.
The conjugate gradient method and its generalisations provide computational

procedures for doing this, generally requiring that B has a particular relation-
ship to A and G. Ordinary conjugate gradient acceleration can only be ap-
plied to symmetrisable procedures. The acceleration methods ORTHOMIN(oo),
ORTHORES(oo) and ORTHODIR(oo) can be applied to non-symmetrisable pro-
cedures (see [9] or [4]). The generalised conjugate residual method (see [2]) pro-
vides a computational algorithm for minimising the quadratic form (5), when B
is the identity matrix, which can be used when A is not symmetric.

The alternative suggested in this paper is to use a matrix B which is diagonal
and of less than full rank and to minimise the quadratic form (5) explicitly, as
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[3] Accelerating methods for linear systems 3

outlined in the next section. The reduction in the rank of B will reduce the cost
of computing the an,j and numerical experiments suggest that it may have little
effect on the speed of convergence under some circumstances.

The novel feature of the technique proposed is that it uses calculations based
on a subset of the components of the pseudoresiduals as the basis for accelera-
tion. Chatelin and Miranker [1] provided some support for this approach. They
advocate a low-dimensional aggregated version of an equation to help accelerate
convergence for an original high dimensional problem.

Sections 2 to 6 of this paper discuss the technique of acceleration by explicit
minimisation of the quadratic form (5) when B is of full rank. The difficulties and
good features of the technique when B is of full rank need to be investigated as a
step towards investigating the properties of the acceleration technique when B is
of less than full rank. We shall discuss two problems related to rounding errors,
the difficulties of predicting speed of convergence and of testing for convergence,
and storage requirements.

The last sections of this paper will discuss some numerical experimentation
and practical applications when B is of small rank.

2. Minimisation of the quadratic form

An algorithm for minimising the quadratic form (5) explicitly may be under-
stood by noting that (5) is equal to a quadratic form in aHti for i = 0 ,1 , . . . , n.
Since 6(x) = (G - I)x + k,

£(«(»>) = (G - I)u<"> + *

= £ ( G - I)aBl<u>«+ £>„,<*
t=0 i=0

t=0

Hence

W). (7)
t=0 j=0

This quantity may be minimised subject to restriction (4) by the method of La-
grange multipliers. The best values for an,j for i = 0, . . . , n satisfy the following
equations for some real A:

W>)-A = 0 fori = 0 , l , . . . , n (8)
j=o
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and

(9)
i = 0

These equations may be solved by any convenient method to find the an>j for
i = 0 , 1 , . . . , n. An algorithm which is reasonably efficient in both time and stor-
age is Choleski decomposition of the symmetric positive semidefinite submatrix
of coefficients of the form 6(w^)T B6(w^) and adding the row and column of
extra elements required to form an LU decomposition. Most of the computa-
tional effort of decomposition will not need to be repeated for subsequent n.

An example should help to explain some of these ideas. Consider solving the
equation

2
- 1

0
0

- 1
2

- 1
0

0
- 1

2
- 1

0 '
0

- 1
2

x =

0
0
0
0

-0.5 - 1 "
0.375 - 1

1 0 .

"1,0

ai , i
A

=

r 0 '
0
1

by an accelerated form of the Jacobi method starting from u/°) = (1,0,0,0)r

and using the identity matrix for B. It is easy to calculate w^ = (0, —0.5,0,0)r,
wW = (0.25,0,0.25,0)T, 6{u>W)= ( -1 , -0.5,0,0)T, 6(vM>) = (0.25,0.5,0.25,0)T,
6(v>W)TB6(wW) = 1.25, 6(wW)TB6(wM) = -0.5 and 6(v>M)TB6(wW) =
0.375.

Now (8) and (9) become
1.25
-0.5

1

and the intended LU decomposition of the matrix of coefficients in this system
is " — o

/O175
VTT2

Using this decomposition, it is easy to calculate that ai i 0 = 1/3, ai,i = 2/3
and A = —1/12. Therefore the linear combination u^ of u/°) and w^ such
that SiuW^BSiuW) is minimised is (l/3)w(0) + (2/3)w(1) = (1/3, -1/3,0,0)T.
Note also that

6(u^) = (l/3)<5(w(0)) + (2/3)6(wW) = (-1/6,1/6,1/6,0)r

and that the result of applying the Jacobi method starting from u^ is

UW +£(u(i)) = (1/6,-1/6,1/6,0)T = (lfflw^ + (2/3)«/2).

This is a particular case of the general result

v/T25
0
0

- V ^ 0 L 2

VUJfE
0

-\/0!8 ]
-•/TT2
- v ^ 2 j

t = 0 • = 0
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When solving systems of equations with the same matrix A but different right-
hand sides, use can be made of pseudoresiduals calculated for right-hand sides
other than the one currently being considered, provided that G does not depend
on the right-hand side. If 6(x) and 6(y) are for the same right hand side then

6(x)-6(y) = (G-I)(x-y)

and so is independent of right hand side. Within the space of vectors of the form

»=o

subject to

where Sj is the set of i such that 6(a^) has been calculated for the jth right
hand side other than the current one, and

t=0

we know that

i=0

as in (6), and could minimise a quadratic form in 6(a^) by the method of
Lagrange multipliers. This extension of the method was used for the first of
the applications discussed in Section 9 but was not considered for the second
application due to limitation of disk space on the computer being used.

3. Rounding errors and truncations of the procedure

There are two problems with the procedure as outlined in the previous section,
which are related to rounding errors.

The first problem is that the symmetric matrix containing quadratic forms
<5(wW)TB6(w^) may fail to be positive definite because of rounding errors.

Even if rounding errors are not expected to cause any problems, it is rec-
ommended that the maximum likely rounding error in 6(w^)TB6(w^) be es-
timated and that Eian>i be added to (8) for i = 0 ,1 , . . . ,n, where £7, denotes
an estimate of the rounding error in 6(w(^)TB6(w^). The modified set of
equations will then find an<i which minimise

t = 0
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This is a reasonable approximation to minimisation of 6(u^)TB6(u^) with
likely rounding error in u^ being considered. The modified set of equations
only differs substantially from the unmodified set when the unmodified set is
ill-conditioned. The modified set of equations are generally well-behaved.

Computationally, B has always been taken to be diagonal, with ones and zeros
on the diagonal. In such cases, c$(u;W)T.B<5(wW) is of the form J2j(Zj ~ Vj)2

where j/y and Zj are the components of w^ and Gw^ + k, respectively, which
correspond to the jth one on the diagonal of B. Taking j/y as given and assum-
ing that the rounding error in Zj is e\Zj\ for some small positive constant e,
the rounding error in (Zj — yj)2 is approximately 2e\Zj(Zj — j/y)|. Making the
conservative (and sometimes realistic) assumption that rounding errors add, the
rounding error in J2j(Zj ~ Vj)2 wm< generally be less than 2eJ2j \Zj{Zj ~ Vj%
which was used for £* in the numerical experiments and applications reported
later in the paper.

The second problem is that the numbers an,i in the linear combinations often
become large as n increases. Since YA=oan,i = 1> large an,j implies that use of
equation (3) would involve subtracting numbers which are much larger than the
differences of interest. A major improvement can be sought by noting that all
linear combinations of the w^ are equivalent to linear combinations of the u ^
provided that an<n is non-zero for all n. For the moment, this assumption will
be made. Consequences of its possible failure will be discussed later.

The most general form of modification suggested is to define tA°) = K/°) and,
for n > 0, to define

if acceleration is performed, at the nth step, but

v(n) _ v(n-l) + $(w(n-l)) = Gv(n-1) + k

if acceleration is not performed at the nth step. Provided that an<n is non zero for
all n, all linear combinations of the w^ may be expressed as linear combinations
of the t/*) and the minimisation carried out by calculating quantities of the form

When acceleration is performed, u(n - 1) + 6(u^n~^) may be computed as a
linear combination of known vectors of the form uW + S(v^). This is gener-
ally cheaper but less precise than computing i/n) directly by applying the basic
method starting at u^n~^. For the acceleration strategies below the loss of preci-
sion is seldom important, but it is advisable to check the size of the coefficients in
such linear combinations and to use the more precise method if these coefficients
are large.

This general description requires a prescription as to when acceleration will
be performed in order to specify it completely.
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In the absence of rounding errors, there would be no point in performing
the acceleration until convergence had been achieved to the desired accuracy.
Components of 6(u^) required for a convergence test could be found using (6).
Alternatively, (7) could be used to compute 8(u^)TB6(u^) and a convergence
test based on this.

It will generally be desirable to perform the acceleration many times in an
attempt to reduce rounding errors by reducing the sizes of coefficients f3n,i in
the relationships

»=o
Performing acceleration has been found in practice to reduce the average absolute
value of /?„,* for subsequent iterations. This seems intuitively reasonable because
acceleration makes the t;W better approximations to u(n\ but counterexamples
could probably be constructed.

Ideally, the rule as to when to perform the acceleration ought to depend on the
sizes of the coefficients /3nii which have been calculated during recent iterations.
Such rules have not been investigated because it seemed more important to
consider possible ways of truncating the acceleration procedure, and this will
influence the choice of when to perform acceleration.

Four modes of acceleration have been considered.
1. Perform the acceleration only once when 6(u^)TB6(u^) will be suffi-

ciently small. This means that the an>j must be calculated and (8) used after
each iteration of the basic method, but that a linear combination of the tu'1' is
only computed once. This mode was used in one dairying application.

2. The "cheap method of order s" is to perform the acceleration once every
3 + 1 iterations of the basic method. This mode was used in another dairying
application.

3. The "expensive method of order s" is to perform the acceleration after
every iteration of the basic method but to include only the most recent s + 1
of the «W in any linear combination. This type of truncation is similar to
that of the generalised conjugate gradient acceleration procedures ORTHOMIN,
ORTHODIR and ORTHORES.

4. The "intermediate method of order a" is to perform the acceleration af-
ter every iteration of the basic method until u(s+1) has been obtained. The
procedure is then restarted from this point.

It is expected that the expensive method of order s will converge more rapidly
than the intermediate method of order s, which will converge more rapidly than
the cheap method of order s for any order. The effect of order and the compar-
isons between accelerating only once and other methods are likely to be influ-
enced by rounding error.
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It is generally true that early iterations from the basic stationary method are
given little weight when accelerated approximations are calculated. A modifica-
tion of the acceleration technique in which, say, 5 or 10 iterations of the basic
stationary method were used to find an initial approximation for the acceler-
ated technique would often slightly reduce computing cost. This has not been
investigated thoroughly.

4. Speed of convergence

The work of Jennings [6] on the convergence of the conjugate-gradient method
cannot be extended to the non-symmetrisable case in any obvious way, since
the eigenvalues of G are not all real. However, a crude result on the speed
of convergence can be found. Like other theoretical results for the proposed
acceleration technique, this result is only strictly applicable when B is symmetric
positive definite.

It is easy to show that

0(w<n)) = Gn6(ww). (10)

Suppose that Ai, As,.. . , Am+i are the (possibly complex) eigenvalues of G which
are largest in absolute value, and that for i = 1,2,..., m +1, Pi is the maximum
grade of principal vectors with eigenvalue A*. Suppose also that the basic sta-
tionary method is convergent so that all eigenvalues of G are smaller than unity
in absolute value. Then for k > 0,

is of the form

t=0

where

t=0

and

Now, using H to denote transpose conjugate,

since the optimality of «(") does extend to the case of complex polynomial ac-
celeration. The asymptotic behaviour of (x^)HBx^ is not affected by the m
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largest eigenvalues of G since z(n) is orthogonal to all of their principal vectors.
Hence the next largest eigenvalue dominates asymptotic behaviour, so there is a
constant C such that

6{u{-n))TB6{u^) < C\m+innp'"+i-1

for n>Z?=i Pi-
Note that this bound applies also to any truncated version of the acceleration

procedure, provided that the best linear combination of at least 1 + YA^=I P*
iterates from the stationary procedure is found.

This result does not tell us much, because the constant C is unknown and the
eigenvalues are seldom known precisely. However, it suggests that the proposed
acceleration method will converge more rapidly than Chebyshev acceleration
because the rate of convergence depends on the actual values of extreme eigen-
values, not merely on the specifications for a region containing them.

5. Testing for convergence

In this section, the basic stationary procedure will be assumed to be conver-
gent; so all eigenvalues of G are assumed to be smaller than unity in absolute
value. It will also be assumed that the eigenvectors of G include a basis.

Denote the Euclidean norm of a vector a; by |x|. Since

an estimated bound on |e(i)| can be found from \S(x)\ provided that an estimate
of the largest eigenvalue of (/ — G)"1 can be found. Now the eigenvalues of
(/ — G)"1 are of the form 1/(1 — A) where A is an eigenvalue of G. Since

Therefore the largest eigenvalue of (/ — G)~l is not larger than 1/(1 — |M(G)|)
where M(G) is the eigenvalue of G which is largest in absolute value.

Using (10), a crude estimate of |M(G)| is \6{w^)\/\6(w^n-^)\ and this can
be improved by trying to estimate

lim -r1-. 7Y7
n—»oo l iyt"— 1JI

by Aitken extrapolation or other techniques. This will be unreliable when 6(w^)
has a very small component in the direction of the eigenvector of G having largest
eigenvalue. If several similar systems of equations are being solved and it is
reasonable to assume that the M(G) will be similar, then such estimates should
be adequate provided that small estimates of |M(G)| are discarded.
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6. Estimation of eigenvectors

When solving several similar sets of equations, it may be desirable to estimate
the eigenvectors of the matrix G which have largest eigenvalues. Knowing these
eigenvectors, minor modifications to the basic iterative procedure might be made
in order to improve the speed of convergence for future work.

Two methods of estimating the eigenvectors of G will be outlined. The
reason for using them rather than other methods is that terms of the form
6(u^)TB6(u^) need to be computed for other reasons. Both methods provide
good estimates of the largest eigenvalues of G as well as estimates of eigenvectors.

The first method was suggested by A. N. Stokes. Let y denote 6(w^) for
some k, and suppose that the vectors in the matrix

Y = [y,Gy,...,Gmy]

and YT BY have been computed. If y were in the space, L, spanned by eigen-
vectors corresponding to the m largest eigenvalues of G then the columns of Y
would be linearly dependent. So there would be a vector a such that Ya = 0,
the eigenvalues would be roots of

and the eigenvectors could be found as linear combinations of the vectors in
Y where the coefficients in the linear combinations are those of powers of A in
polynomials of the form

(A-Ai)(A-A 3 )-- - (A-A m ) .

Note that a would be an eigenvector of the matrix YTBY and would have
eigenvalue zero. Provided that y was not in any subspace of L spanned by
fewer than all of the eigenvectors, YTBY would have no other eigenvectors with
eigenvalue zero.

If y is close to L then the eigenvector corresponding to the smallest eigen-
value of YTBY will be close to a, since eigenvectors of isolated eigenvalues are
continuous functions of a matrix. This method was used for estimating the
eigenvalues quoted in the final section of this paper. It can only be applied if the
mode of acceleration has provided a sequence of approximations during which
no acceleration was performed.

A second method is applicable even if acceleration has been performed several
times. However it is slightly less accurate than the first method when both are
applicable.

In outline, the method consists of using Gram-Schmidt's orthogonalisation
to find a basis for <5(«(m)), <5(u(m+1)),..., 6(v^m+n~^); making the approxima-
tion that G6(v^m+n~1^) is equal to its projection onto the space spanned by
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6(v^),... ,<5(v(m+nm~1)); using this approximation and the knowledge that
G6(vM) = <5(?/'+1)) for i = m, m + 1,...,m + n - 1 to find an explicit form
for G relative to the basis; and finding the eigenvalues of this approximation
to G. This is computationally practical for large systems of equations only if
attention is restricted to a subset of the components of the vectors. This will
often be adequate for the proposal of considering possible modifications to the
basic iterative procedure.

7. Use of a matrix B of small rank

The method of acceleration being discussed in this paper is computationally
attractive only when the matrix B is taken to be diagonal and of small rank, so
that the inner products of the form 6(v^)TBS(v^) are relatively inexpensive
to compute.

The matrix B is somewhat arbitrary with this acceleration method, but some
guidelines are as follows. Its rank should be substantially larger than the ex-
pected number of iterations so that the quantity being minimised is unlikely
to vanish before convergence is achieved. It should be diagonal in order to re-
duce computing cost. It should have non-zeros (usually ones) on the diagonal
for components which are expected to converge slowly, differentially from other
components or in an unknown fashion. When background knowledge does not
help in choosing B, a reasonable strategy might be to have lOt randomly placed
ones on the diagonal where t is the expected total number of iterations.

When B is of small rank, it is generally recommended that an iteration of the
basic iterative method be done using a proposed solution as starting point in
order to check that the pseudoresidual is indeed small as suggested by the small
value of the quadratic form. It is also recommended that computer programs for
solving large systems have the facility to be restarted using a diflFerent choice for
B and not need to repeat calculations concerning the basic stationary method.

As the impact of using a matrix B of small rank seems difficult to investigate
theoretically, it has been investigated using numerical experimentation. Some
practical applications will then be discussed.

8. Numerical experimentation

The equation used as the basis for most numerical experiments was the finite-
diflference analogue of Laplace's equation on a rectangular grid of 29 x 34 = 986
points. Denoting the value for the grid point in the ith row and jth column by
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Xij, the scalar equations were of the form

4i»,i - Zi-1,.7 - Xij-i - Xi+i,j - Xij+i — 0

with terms not belonging to the grid being taken as zero. The solution to these
equations is that all variables are zero. The initial approximation used was
generated by a pseudo-random number generator with x^j being independently
selected from a uniform distribution over the range (-0.5,0.5).

It should be remembered that the methods being discussed here are not com-
putationally competitive for solving Laplace's equation. Rather, Laplace's equa-
tion is being used as a test problem because it has been thoroughly investigated
by other methods. A square grid was not used because the matrices (denoted
G) of stationary iterative methods, particularly the Jacobi method, might have
repeated eigenvalues and the result of Section 4 suggests that the acceleration
technique might perform atypically well when there are repeated eigenvalues. A
nearly square grid was used so that the convergence of the methods of Jacobi
and Gauss-Seidel is slow.

When the expensive acceleration method was used (with linear combinations
being taken whenever possible) and B being the identity matrix, the performance
of the acceleration method when Gauss-Seidel was used as the stationary method
is indicated in Table 1.

TABLE 1. This table indicates the performance of the expensive acceleration method as
a function of the order of the method when accelerating Gauss-Seidel's method for Laplace's
equation on a 29 x 34 grid. Figures in parentheses are estimates based on runs which were
terminated before the specified precision was reached.

Numbers of iterations until norm of pseudoresidual reached

Order of
acceleration 10~5 10"1 0 10~15

0 319 (1490) (2695)
1
2
3
5

10
20
30
40
60
80

100

Information which might aid the interpretation of this and later tables is as
follows.

78
64
64
64
63
63
63
63
62
62
62

448
413
134
131
130
127
130
123
104
90
90

(968)
(716)
211
199
192
185
190
178
138
126
117

i
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[13] Accelerating methods for linear systems 13

1. The norm (meaning Euclidean norm) of the pseudoresidual for the first
iteration was 8.8.

2. Spectral radii given in Table 2 of [7] indicate that for a 31 x 31 grid the
spectral radius of Young's SOR is .797 and that of Chebyshev accelerated Gauss-
Seidel is .857. This suggests that these techniques would take about 102 and 149
iterations, respectively, to reduce the norm of the pseudoresidual by a factor of
1010.

3. The optimum value for the parameter w of SOR is near 1.82. The norm of
the pseudoresidual was found to reach 10~5, 1O~10 and 10~15 after 85, 145 and
211 iterations for w = 1.82.

4. Computations were done to a precision of about 16 decimal significant
figures.

TABLE 2. This table indicates the performance of the cheap acceleration method as a
function of the order of the method when accelerating Gauss-Seidel's method for Laplace's
equation on a 29 x 34 grid. Figures in parentheses are estimates based on runs which were
terminated before the specified precision was reached.

Numbers of iterations until norm of pseudoresidual reached

Order of
acceleration

0
1
2
3
5

10
20
30
40
60
80

100

10~5

319
86
90
84
78
67
80
93
82

122
157
106

10-10

(1490)
229
222
220
174
165
170
193
205
244
243
303

10-is

(2695)
(636)

411
347
271
253
290
310
311
366
369
404

Table 2 shows the performance of the cheap acceleration method as a func-
tion of the order of the method. The reason why performance drops off with
increasing order after about order 10 seems to be that rounding errors restrict
the improvement made by taking linear combinations once the weights in the
linear combination reach about 105 or 106, and linear combinations are taken
less often as order increases. The pattern of change of performance with order
is somewhat erratic because the linear combinations are taken after numbers of
iterations which vary with the order.

For the intermediate acceleration method, the norm of the pseudoresidual
was found to reach 10~5, 10~10 and 10~15 after 75, 164 and 270 iterations for
order 5 and after 65, 155 and 243 iterations for order 20. The improvement in
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convergence with increasing order supports the explanation given in the previous
paragraph.

Tables 3, 4 and 5 show the results of some numerical experiments investigating
the effect of the rank of B on rate of convergence.

TABLE 3. This table indicates the performance of the expensive acceleration method of
order 10 as a function of the rank of the matrix B when B was taken to be diagonal with
ones and zeros on the diagonal. The location of non-zero elements on the diagonal of B was
determined using a pseudorandom number generator. For the rank of B being 100 and 300,
three different choices for B were tried.

Number of iterations until norm of pseudoresidual reached

Rank of B lO"5 lO"1 0 lO"1 5

986
300

100

50
30
20
15
10

For the expensive acceleration method of order 10, Table 3 gives results which
suggest that the rate of convergence decreases substantially once the rank of B
becomes less than the number of iterations taken. Such behaviour is to be
expected because the minimising procedure becomes more capable of reducing
the quadratic form 6(u^)TB6(u^) in ways which do not reduce the norm of
<$(«(")) in these circumstances.

The remarkably good performance of the expensive acceleration procedure
of order 10 when B was of rank 10 deserves special attention. Similarly good
performance was found when different matrices of rank 10 were used for B,
when the constant e used in rounding error computations was changed slightly,
when the numerical experiment was repeated on a different computer, and when
a matrix of rank 5 was used for expensive acceleration of order 5. However,
in some of these cases convergence was only satisfactory until the norm of the
pseudoresidual reached about 10~13, and when a matrix of rank 3 was used for
expensive acceleration of order 3, convergence was unsatisfactory.

During early iteration, the procedure finds a linear combination u^ which
reduces 6(u^)TB6(u^) to as small a value as could be expected given the
magnitudes of rounding errors. This can be seen as the dashed line in Figure 1. It
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70
68
71
89
112
148
78

130
129
125
128
131
129
136
141
191
251
317
103

192
196
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182
203
204
193
209
342
347
414
134
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takes until about iteration 80 before there is any further substantial reduction in
6(v.(n))TB6(un) yet over this period the acceleration technique has been effective
as judged by reductions by a factor of about 10~5 in the usual three measures of
convergence, the norms of the pseudoresidual, of the residual and of the error.
The rate of convergence seems to increase from that point, unlike the convergence
of most other techniques which falls off as the number of iterations increases. The
convergence seems erratic but the phenomenon might be worth investigating
further.

y

40 60 80
Iteration number (n)

100 120

FIGURE 1. Graphs showing the performance of the expensive acceleration procedure of
order 10 when B was of rank 10. The curves from top to bottom are

n>-&|} + 2, and

V = Iog10{|«('l) - fi|} + I-
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Note that the trends of the graphs in Figures 1 and 2 may be interpreted
as indicating how the number of significant figures of precision, as judged by
various criteria, increases with iteration number.

For the expensive acceleration method of order 100, Table 4 shows that reduc-
ing the rank of B has more influence than for order 10. The procedure is more
capable of reducing 6(u^)TB6(u^) in ways which do not reduce the norm of
£(«(")) than is order 10 acceleration for B of a given rank. The performance of
expensive acceleration of order 100 when B is of rank 100 seemed unremarkable.
It is possible that larger numbers of iterations and possibly reduced rounding
errors would be required before rapid convergence would occur like that for order
10 when B was of rank 10, even if it were generally true that making the rank
of B equal to the order always gave particularly rapid convergence.

TABLE 4. This table indicates the performance of the expensive acceleration technique of
order 100 as a function of the rank of the matrix B, when B was taken to be diagonal with
ones and zeros on the diagonal. The location of non-zero elements on the diagonal of B was
determined using a pseudorandom number generator.

Number of iterations until norm of pseudoresidual reached

Rank of B

986
300
150
100

io-a

62
96
108
103

10-iu

90
113
126
119

10-'

117
129
143
182

For the cheap acceleration method, Table 5 indicates that there is not a sub-
stantial decrease in rate of convergence until the rank of B becomes nearly as
small as the order of acceleration. Presumably, this is because the cheap accel-
eration method is much less capable of reducing the ratio of 6(u^)TB(u^)
to the square of the norm of S(u^) than the expensive acceleration method
because the vectors involved in successive linear combination phases of the com-
putation are distinct, and so reductions in this ratio which often occur at linear
combination steps do not accumulate to as great an extent.
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67
68
77
78
78
78
82

165
179
173
181
173
171
185

253
265
257
280
271
260
262
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TABLE 5. This table indicates the performance of the cheap acceleration method of order
10 as a function of the rank of the matrix B, when B was taken to be diagonal with ones and
zeros on the diagonal. The location of non-zero elements on the diagonal of B was determined
using a pseudorandom number generator.

Number of iterations until norm of pseudoresidual reached

Rank of B 10~5 10~10 10"1 5

986
300
100
50
30
20
15
10 163 361 472

Figure 2 shows the convergence of cheap acceleration of order 10 for B of
rank 100 in detail. The taking of linear combinations often actually increases
the norms of the pseudoresidual and of the residual but they are then rapidly
decreased by the Gauss-Seidel steps. The convergence of expensive acceleration
is generally smoother than the convergence of cheap acceleration, and so a fig-
ure illustrating the convergence of expensive acceleration methods has not been
included here.

One objection which has been raised to this acceleration technique is that
the choice of B is arbitrary. Table 3 indicates the performance of the technique
for three different choices of B for each of the ranks 100 and 300. The same
pseudorandom number generator was used for generating the positions of the
ones on the diagonal of B in all cases, but different seeds were used. The average
coefficient of variation of the number of iterations required to reach a given
precision is about 3 percent based on these results. This suggests that the
arbitrariness of B is not a major problem.

Acceleration of SOR showed some promise despite the result of Varga [8]
suggesting that acceleration of SOR would not do better than SOR itself. See
Table 6. This indicates that the best value for u> when SOR is accelerated is less
than when it is not accelerated. However, like all the results of this section, this
should only be regarded as an indicative result since it is for only one equation.
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50 100 150 200

Iteration number (n)

300

FIGURE 2. Graphs showing the performance of the cheap acceleration procedure of order
10 when B was of rank 100. The curves from top to bottom are

V = logl0{*(u<">)TB5(u(">)} + 7,

y = Iog10{|>tu<n) - b\} + 2.5, and

V = Iog10{l«(n) - «!}•
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TABLE 6. This table compares the performance of SOR with accelerated forms of SOR.

Number of iterations until norm of pseudoresidual reached

Method

Unaccelerated SOR with
w = 1.81

Best unaccelerated SOR
(OJ = 1.82)

Unaccelerated SOR with
w = 1.83

Cheap acceleration of order 10
applied to SOR with w = 1.60
Cheap acceleration of order 10
applied to SOR with w = 1.76
Cheap acceleration of order 10
applied to SOR with u = 1.82

10- 5 10- 1 0 1015

82

85

90

78

75

123

164

145

145

147

134

227

251

211

211

201

194

302

Two additional numerical experiments were done using the Jacobi method
as the stationary iterative technique to solve Laplace's equation on a grid of
9 x 9 = 81 points. This example was chosen because it is sufficiently simple for
examples of undesirable behaviour to be readily constructed yet not so small as
to be unrealistic.

The expensive acceleration technique of order 5 was used with three different
sets of components being used in the inner products. When the components
used were the middle row of the grid, 91 iterations were required to reach a
preassigned precision. When the first row of the grid was used 76 iterations were
required. For a randomly chosen set of components, 68 iterations were required.
The poor performance obtained by using the middle row of the grid is due to
the fact that some eigenvectors of the iteration matrix for this process vanish at
all of these points, so no acceleration of these eigenvectors can be expected.

Possible breakdown of the technique was investigated by using an initial ap-
proximation such that

Hj = 1 for 1 < i < 9 and 1 < j < 9

and using components Xij for 2 < i < 8, 2 < j < 8 for the inner products.
Since w^ and w^ do not differ on components used for the inner products,
6(iy(°))TB5(M>(°)) = 0. Hence any minimisation which may take w^ as the best
linear combination will do so (neglecting the rounding error modifications). Both
cheap and expensive acceleration methods of order 5 converged satisfactorily,
although no real progress towards convergence was made until the smallness of
the order stopped w^ from being included in linear combinations.
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The algorithm could be said to have broken down, but the iterative process
was continued because convergence checks based on all components of pseu-
doresiduals showed that convergence had not been achieved despite the small
values of 6(u^)TB6(«(")). Real convergence was eventually achieved.

Similar break-down with a satisfactory result occurred for the acceleration of
order 10 when B was of rank 10 reported in Table 3.

In Section 3 it was assumed that an<n was non-zero for all n. These break-
downs of the procedure are associated with the failure of this assumption. It
appears that the possible failure of the assumption is not a problem provided
that the process is not terminated before real convergence is achieved.

9. Applications

The acceleration method was developed in 1980-81 while the author was em-
ployed by the Australian Dairy Herd Improvement Scheme supported by the
Australian Dairy Research Committee. The method was peripheral to the ob-
jectives of the scheme, and so the properties of the method were only investigated
sufficiently for the method to be applied to two particular classes of simultaneous
equations. -For both classes, the coefficient matrix A was symmetric positive def-
inite and Gauss-Seidel was used as the basic stationary method since preliminary
testing suggested that the best accelerated successive over-relaxation technique
had parameter ui near unity. The statistics collected on the performance of the
acceleration method were less extensive than now seems desirable but should be
of some interest.

The first class of simultaneous equations involved one equation for each bull
of a breed. The method of forming the equations followed [3] very closely. The
largest such set of equations involved 14161 bulls of Friesian breed. There were
409743 non-zero elements in the coefficient matrix A with non-zeros occurring
almost whenever two bulls had daughters or daughters of daughters which had
first lactations influenced by the same environmental effect. It is estimated that
the largest eigenvalues of G were 0.74 and 0.66.

Rounding error was not a problem, and so a linear combination of vectors with
14161 components was only calculated once. The matrix B had rank 447 and
was chosen to include many of the most widely-used bulls plus a few lesser-used
bulls from each Australian state.

Convergence was satisfactory, 11 iterations being required to reduce the pseu-
doresidual by a factor of about 104. However the work required to implement
the acceleration procedure would not have been justifiable except that experi-
ence in the use of the method had been obtained. Many other procedures would
have been satisfactory, including unaccelerated Gauss-Seidel which would have
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required only about 20 iterations for satisfactory precision to be obtained. Points
to note are the following.

1. The choice of rank of B caused little problem. It was desirable that it
be much less than the number of equations (14161) in order to reduce comput-
ing costs and that it be larger than the number of iterations. The number of
iterations was expected to be less than 30 given other people's experience.

2. The properties of the basic iterative method depend upon the pattern of
farmers' choices of mates for their cows and on the decisions of bull-breeding
organisations. Slight variations of genetic model were also tried. For these
reasons, non-adaptive Chebyshev acceleration and SOR seemed unlikely to be
reliable.

3. Equations were solved for four right-hand-side vectors, corresponding to
two different standardisations of each of milk yield and fat yield. Using all
available pseudoresiduals from previous right-hand sides, as discussed near the
end of Section 2, the second, third and fourth right-hand sides required 9, 7 and
6 iterations, respectively, for the required precision to be achieved.

The second class of simultaneous equations was set up essentially as described
in [5] with one equation per bull and two per cow, plus some other equations. The
largest such set of equations was also for the Friesian breed and involved slightly
more bulls than for the earlier technique because more data had been obtained.
The total number of simultaneous equations to be solved was about 970,000.
This was computationally practicable on a computer with about 500,000 words
of memory, only because most of the calculations could be handled one herd at
a time for each iteration.

It is estimated that the two largest eigenvalues of G were 0.94 and 0.84.
Typically, about 30 iterations have been required for reducing the pseudoresidual
by a factor of 104 with sets of equations like this, and more than 80 percent of
the computing time for solving the simultaneous equations has been expended
on the basic Gauss-Seidel computations.

Rounding error appeared to be important. The cheap acceleration method of
order 10 was used. The matrix B had rank 6007 which was probably larger than
necessary but not so large that computation of terms of the form 8(v^)TB8(v^)
became a major component of computing cost.

The two points made about the first class of simultaneous equations are appli-
cable here also, except that there was no information available on the convergence
of similar sets of equations.

For a very large system of equations like this, the previous approximations are
necessarily held on disk or some other form of backing store. In this application,
storage limitations had little influence on the choice of acceleration algorithm.
However, computational cost of doing operations on vectors was substantial, and
this was the reason for choosing the cheap form of acceleration.
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As with the first class of simultaneous equations, the acceleration technique
was probably not optimal. However it performed satisfactorily and did not
require any advance knowledge except an inkling of an idea about the order
of the number of iterations which would be required.

10. Discussion

The acceleration technique discussed in this paper is not well-defined. More
research and experimentation are required in order to provide further guidelines
as to when and how it should be used.

The generalised conjugate-gradient procedures ORTHOMIN, ORTHODIR
and ORTHORES are the most obvious alternatives to the proposed technique.
When the matrix B is of full rank, the proposed technique is of similar compu-
tational cost to the alternatives, whether or not all procedures are truncated.
The speed of convergence should also be similar, at least for nontruncated proce-
dures, since all of the techniques are Krylov subspace methods which are optimal
relative to some norm.

Tables 3, 4 and 5 indicate that the speed of convergence does not decrease
very greatly as the rank of B is decreased. One component of the computational
expense of applying the acceleration is that of computing inner products. This is
approximately proportional to the rank of B times the number of iterations for
truncated acceleration techniques. This component of computational expense is
generally much greater when B is of full rank than when the rank of B is reduced.
The computational expenses of the basic iterative technique and taking linear
combinations of approximations need also be considered, but these tables do
suggest that overall computing costs would often be reduced by choosing B to
be of substantially less than full rank. Since the proposed technique with B
of full rank is thought to have similar performance and cost to ORTHOMIN,
ORTHODIR and ORTHORES, this suggests that the proposed technique will
often be better than those alternatives.

The numerical experimentation conducted suggests that the expensive accel-
eration method of low order, with the rank of B being equal to the order, is
particularly effective. This may not be generally true, but it seems worthy of
some investigation. Apart from this, the expensive acceleration of order 3 to 5
and the cheap acceleration of order about 10 seem to be most likely to be worth-
while. More complex rules as to when to take linear combinations of previous
iterations might also be investigated.

The feature of the proposed method, that it enables eigenvectors of the basic
iterative technique to be estimated, is most likely to be advantageous in situa-
tions where little is known about the equations being solved. Knowledge about
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such eigenvalues might help by suggesting modifications to the basic iterative
technique.

The technique is most likely to be competitive with other techniques when the
number of linear equations is very large, so that B may be chosen to be of very
much less than full rank, and when little is known about the properties of the
system of equations, so that specialised methods are less likely to be applicable.
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