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Summary

I investigate models of the spread of transposable elements, such as the Drosophila melanogaster P
elements, that can exist in autonomous and non-autonomous forms. Elements which have their
major impact on host fitness in the process of transposition can, under certain conditions, come to
a stable balance between transposition and selection. This stable balance for autonomous elements
can be disrupted by the invasion of further elements, which do not produce a transposase enzyme,
and may produce a repressor of transposition. I examine this secondary invasion process, and
show that a stable equilibrium copy number for intact elements is neither a necessary nor a
sufficient condition for non-autonomous elements to invade. Nevertheless, invasion occurs under a
broad range of models and conditions. This requires neither that the non-autonomous elements
produce a Zra«.s-acting repressor of transposition, nor that they titrate transposase. The elimination
of autonomous elements follows the increase in non-autonomous elements unless the latter encode
powerful repressors of transposition. Approximate solutions for the equilibrium copy number of
autonomous elements and rate of invasion of non-autonomous elements can be found under some
models for transposition and selection. The predictions of the model are compared with recent
empirical studies of the D. melanogaster P system.

1. Introduction

Many families of transposable genetic elements are
found in two forms: as intact, or autonomous
elements, which include all sequences required for
transposition, and as deleted forms, in which
sequences required in trans have been lost, and only
sequences required in cis remain. These deleted forms
are still capable of transposition if they are found in
the same cell as active transposable elements encoding
a trans-acting transposase protein. Such pairs of
elements include numerous transposable element
families from Zea mays, such as Activator
(autonomous) and Dissociation (non-autonomous)
and autonomous and defective Suppressor-mutator
elements (for reviews see Federoff, 1989; Gierl et al,
1989). Perhaps the best studied example is the
Drosophila melanogaster P element family (Engels,
1989). This element has spread rapidly through D.
melanogaster populations in this century. This has
occurred as a result of a transposition mechanism
which, while conservative at the molecular level, is
made effectively replicative by subsequent gap repair,
in which the double-strand break generated by

excision is repaired using a donor P element from the
homologue or sister chromatic! (Gloor et al., 1991;
Nassif et al., 1994). In this family, it appears that the
intact form is being replaced in many parts of the
world by deleted forms (Anxolabehere et al., 1985,
1987, 1988). Some of these deleted forms apparently
act as repressors of transposition (Kidwell, 1985;
Black et al., 1987; Raymond et al., 1991; Heath &
Simmons, 1991). One in particular, called KP, is very
common in Eurasian populations and may repress
transposition (Black et al, 1987; Jackson et al, 1988).
It rapidly increases its copy number in some laboratory
populations in the presence of intact P elements
(Jackson et al, 1988).

There is also a maternally inherited system of
regulation called P-cytotype, such that transposition
occurs at high frequency only in the germ cells of
animals lacking P-cytotype (described as being of M-
cytotype). This is in addition to the zygotically acting
repression that can be provided by repressor elements.
The intact P element can, by alternative splicing
pathways, produce an 87 kDa transposase protein,
and a 66 kDa protein now shown directly to be a
repressor of transposition (Misra & Rio, 1990). This
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protein, produced from some modified P elements, is
strongly implicated in P-cytotype (Nitasaka et al.,
1987; Robertson & Engels, 1989), but the precise
mechanism for the maternal inheritance remains
obscure (Rio, 1990). A pair of P elements on the distal
end of the X chromosome have been identified in
some European populations of D. melanogaster which
are able, by themselves, to produce a maternally
inherited repression of P movements (Ronsseray et
al., 1991).

Unrepressed transposition is associated with hybrid
dysgenesis, a syndrome of traits including low fertility,
particularly at elevated temperatures. This occurs in
the Fx if males from a P strain (bearing intact P
elements) are crossed to females which lack P elements
(M strains). (M' strains have also been observed, and
act genetically as M strains, despite possessing some P
elements.) The restriction of the harmful effects of
transposition to the germline results from transposase
expression being germline-specific, produced through
the cell-type-specific splicing of the P transcript (Laski
et al., 1986). When high levels of transposition are
induced somatically a lethal phenotype can result
(Engels et al., 1987). Hybrid dysgenesis implies that
the selection coefficients associated with transposition
may be very much higher for P elements than for other
transposable element families.

In an effort to understand this spread of deleted
forms, I (Brookfield, 1991) investigated, using com-
puter simulation, the interaction between transpo-
sition and selection which occurs when a population
of parasitic transposable elements contains both intact
and deleted elements (some of which may encode
proteins which are repressors of transposition). Cru-
cial to the situation was the nature of the fitness
reduction imposed by the transposable element on the
host. For many elements, in which the harmful effects
of transposable elements arise through their inter-
spersed pattern making them targets for ectopic
recombination, deleted elements, transposing less
quickly, cannot spread (Charlesworth & Langley,
1986, 1989). When, however, it is transposition itself
that harms the host, deleted elements may spread. My
models included one specifically designed to
approximately duplicate the situation of the P family
of transposable elements (model B). One result was
general to all the simulations that I performed, which
differed greatly in their parameters and initial con-
ditions. This was that, given that a stable copy
number of intact elements can be generated as a result
of the balance between transposition and selection,
the population can be invaded by deleted elements
which can spread to replace the intact ones. As a result
of the elimination of the /raws-acting proteins required
for transposition, the elements now become stable,
and host fitness is restored to 100%. Deleted elements
were defined as being of two types: inert elements,
which could be mobilized by the transposase generated
by intact elements, but which encoded no proteins of

their own, and repressor elements, which were also
transposable and which generated a protein which
acted as a repressor of transposition. Both element
types spread, but repressor elements do so more
quickly.

Here I investigate model B in more detail.
Specifically, I ask three questions:

(i) Elements with a ^raws-acting repressor function
spread more rapidly than inert elements. How
does increasing the power of such repressors
affect their spread?

(ii) Inert elements still titrate transposase, thereby
reducing the transposition rate of any intact
element which shares their cell, although their
presence still increases the total amount of
transposition. Does transposase titration explain
the spread of inert elements?

(iii) Is the invasion of deleted elements conditional
upon the presence of a stable equilibrium between
transposition and selection for the intact forms,
or can deleted forms replace intact copies even
when these would otherwise spread without limit
and drive the population extinct?

Furthermore, using a simplified model for the
relationship between copy number and transposition
(model C (P2) of Brookfield, 1991), I produce
approximate analytical solutions for the equilibrium
number of intact elements and for the rate of increase
of deleted elements introduced at low frequency.
These are compared with the exact solutions. I
investigate the effect of relaxing the assumption of a
Poisson distribution of elements across individuals. I
further show that a stable equilibrium of intact copies
is not a sufficient condition for the invasion of deleted
elements, and, in an approximate treatment, show
why the intact elements are eliminated.

2. Simulations: overview of model B (Brookfield,
1991)

An infinite population of hosts can contain trans-
posable elements of three types: intact elements,
encoding a transposase; repressor elements, which
encode a repressor protein; and inert elements, which
encode no proteins. The numbers of transposable
elements of the three types in a given individual are
represented by X, Y and Z respectively. The pro-
portion of the population with values of X, Y and Z
elements of the three types is given by the product of
three Poisson terms derived from distributions with
means of X, Y and Z respectively. Thus the proportion
of individuals with exactly X, Y and Z elements is

•.XX.YY.ZZ

X\.Y\.Z\
(1)

The Poisson distribution will arise if there is linkage
equilibrium and site frequencies are all very low. I
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discuss the possibility of linkage disequilibria between
sites below.

The concentrations of transposase and repressor
polypeptides are assumed to vary linearly with the
numbers of transposable elements encoding them. For
simplicity, I treat the constant of proportionality as 1.
The cellular concentrations of the two protein types
are represented by x and y molecules per cell. I
hypothesize that the rate of transposition is determined
by a second-order chemical reaction in which single
transposase proteins bind to single DNA targets.
Thus, for a given number of intact elements, and
hence a given level of transposase in the cell, the inert
elements will decrease the rate of transposition of
intact elements by a titration of the transposase. The
repressing elements will, in addition to this effect,
lower the rate of transposition of intact elements
through their protein products binding to intact
element DNAs and thereby making them unavailable
to bind transposase. I hypothesize that the rate of
binding of each of the two species of protein to all of
the three forms of DNA is the same. This means that
we can usefully use A (= X+ Y+Z) and B (= x+y)
to represent the total concentrations of P elements
and P proteins in the cell. I hypothesize that the rate-
limiting step determining the rate of transposition in a
cell is the binding of a P protein to a P element. This
rate of binding will depend on the concentrations of
unbound DNAs and unbound proteins. If we use b to
represent the proportion of protein molecules that are
bound to DNA, then the concentrations of unbound
proteins and unbound DNA will be B{\—b) and
{A — Bb) respectively. The rate of binding in term of
molecules of protein bound per second per cell will
thus be

kB(l-b)(A-Bb)

where A: is a constant of proportionality of dimension
molecules"1 seconds"1. I supposed that the proteins
and DNAs remain bound together for h seconds,
during which time transposition occurs if the protein
is a transposase but nothing occurs if the protein is a
repressor. The rate of transposition is thus equal to
the rate of unbinding, multiplied by the probability
that the bound protein is a transposase. The total rate
of unbinding is Bb/h, and the rate of transposition is
xb/h. The rate of unbinding will, at equilibrium, be
equal to the rate of binding. This allows the solution
of a quadratic equation to yield b:

b 2hkB

(equation (1) of Brookfield, 1991).
Neither the precise form of this equation, nor any

1CS1 vsiiics lOr i.r3.nspGSiiion pr*
will be quantitatively accurate. It is merely designed as
an example of an interaction between elements which
allows a rate of transposition of an element that is

dependent on transposase concentration, coupled with
repressive effects of some elements and only trans-
posase titration by others. I use xb/h to represent not
the number of transposition events per second, but the
total amount of transposition that occurs in a germ
cell over the period when transposition is occurring.

I assume here that there is no phenomenon of
cytotype, partly because the model for cytotype in
Brookfield (1991) is inconsistent with some subsequent
data (Gloor et al., 1993, Ronsseray et al., 1991). I
also assume that there is no mutation to non-
autonomous elements, but rather introduce these into
the population at very low frequency at the start of the
simulation. Thus, when a total of xb/h transposition
events occur, they will generate new intact repressor
and inert elements in proportions X/(X+ Y+Z),
Y/(X+ Y+Z) and Z/(X+ Y+Z) respectively. These
values for new elements are added to X, Y and Z
respectively, to give the expected numbers of elements
of the three types in two random gametes from this
individual.

The model specifies that the fitness of an individual
decreases with increasing transposition rate, and
specifically that the fitness of an individual with a level
xb/h of total transposition is

exp(-s(xb/h)2)

where s is a dimensionless selection constant. The
squaring of total transposition in the formula for
fitness is somewhat arbitrary and has, as its main
advantage, the fact that this will stabilize copy number.
The fitness drop from transposition arises from the
loss of germ cells, which probably depends in a non-
linear way on total transposition, since high trans-
position may cross a threshold at which double-strand
breaks are generated more rapidly than the cell can
repair them, and the chromosomes fragment. The
relationship between fitness and the proportion of
germ cells surviving may also be non-linear, par-
ticularly in males.

This model can be used to examine three questions.

(i) What is the effect of increasing the power of
repressing elements?

In previous simulations, the repressing effect of a
repressor element was weak, in that the protein
produced merely bound to P elements in the same way
as transposase, but without producing transposition.
It thereby reduced transposition by making DNA
substrates less available for transposase binding. More
powerful repressors can be envisaged, which interfere
directly with transposase. One simple way to model
this, as with the negative complementation model of
Brookfield (1991), is to imagine the polypeptides
forming dimers, but with only the transposase
homodimer being active. This suggests an obvious
extension to more powerful repressors, in which the
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numbers of polypeptides involved is larger. Thus, if x
and y are the cellular concentrations of transposase
and repressor polypeptides, the concentration of active
transposase protein is given by xn/(x+y)n~1, where
increases in n increase repression. The model supposes
that transposase and repressor polypeptides combine
randomly, and thus the proportion of multimer
molecules with i transposase polypeptides out of a
possible n is given by a binomial distribution. The
proportion with only transposase polypeptides is thus
xn/(x+y)n. The total concentration of the multimers
is {x+y)/n. The product of these gives the con-
centration of active transposase. This predicts, how-
ever, as in the earlier model, that the amount of
protein should be divided by 2 in the dimeric case, and
correspondingly divided by n in other cases. I do not
adopt this policy here, since I do not imagine that the
n > 2 cases correspond specifically to the formation of
multimeric proteins, and I wish the behaviour of the
intact elements in the absence of repression to be
independent of n. The details of this model, in which
the effect of repressor polypeptides is through their
capacity to form inactive multimers, and thereby
sequester transposase polypeptides, are inconsistent
with some recent data showing that repression acts at
the level of transcription (Kaufman & Rio 1991;
Lemaitre & Coen 1991). However, the net effect of
strong repressors, which is to reduce the concentration
of active transposase in the cell, is duplicated in this
model. Thus any consistent effects of strong repression
seen here will also hold for models of a
transcriptionally based repression system.

The simulations were performed using h = k = 1
(where these are the constants describing the second-
order reaction between P proteins and DNA), 5 (the
constant quantifying the strength of selection) = 0-2,
X (the initial mean number of intact elements) =
001, Z = 0, and ? (the initial mean of number of
repressors) = 000001. The value of n was varied
from 1 to 4.

(ii) Is the replacement of intact elements by inert
elements the result of transposase titration?

Transposase titration arises through the binding of
transposase to inert elements, lowering the availability
of transposase for the intact elements. Thus inert
elements lower the transposition rate for the intact
elements. To investigate the role that transposase
titration plays in the replacement of intact elements by
inert ones, one can vary the product hk in the
simulations. The value k represents a quantity
analogous to the constant of binding of protein to
DNA, and h represents the time that the two molecules
are bound. Thus a high hk product will result in most
of the protein being bound to DNA, and thus a high
level of transposase titration, whereas a low hk implies
a high cellular concentration of unbound protein, and

very little transposase titration. I repeated the
simulations with s = 0-2, X = 001, Z(the initial mean
number of inert elements) = 000001, and the product
hk set at 10 and 01. Differences in hk potentially have
strong effects on the transposition rate, and thus on
the position of equilibrium between transposition and
selection. I therefore adjusted h and k until the
equilibrium copy number of intact elements was the
same in both cases. The resulting values for h and k
were, respectively, 11967 and 8-3465 and 0-5340 and
0-1873.

(iii) Is a stable equilibrium for intact elements
necessary for the spread of insert elements?

It is possible to consider cases in which intact elements
increase without limit. One such case is where wx =
exp(—stx), where tx is total transposition in and wx

the fitness of an individual with X copies of the intact
element. I introduce into a population of intact
elements, which will normally increase without limit,
various initial numbers of inert elements. I assume
that X is initially 0-01, 5 = 0-5, and h = k = 10. The
initial value of Z, the mean number of inert elements,
was varied across simulations.

Simulations were performed through programs
written in BBC BASIC, initially, and later C +. The
frequencies of all genotypes (differing in copy numbers
of the three element types) in the population are
calculated on the basis of eqn (1). Then transposition
is allowed, and the resulting expected numbers of
elements of each type in the gametes of each genotype
are calculated. The contribution of this genotype to
the gamete pool is the product of its initial frequency
and its fitness (which itself depends on transposition).
The sum across all genotypes of this product is the
mean population fitness. The mean numbers of
elements per genome of the three types in the next
generation are the sums across all possible genotypes
of the products of the expected number of that
element type per gamete produced by the genotype,
the genotype frequency, and the genotype fitness, all
divided by the mean population fitness. From the
mean element numbers, eqn (1) is again used to
calculate the genotypic frequencies in the next
generation.

3. Results of simulations

(i) The effect of stronger repression

Figs. 1 and 2 show the results of the simulations with
weak and powerful repressors, with n set at 1 and 4
respectively. Increasing the power of repressors
increases the rate at which they spread. When the
mean number of repressors, Y, exceeds the mean
number of intact elements, transposition rate is low in
most individuals in the population. Since it is selection
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0 50 100

Time in generations

Fig. 1. Spread of weak repressors. Intact elements rise
from an initial abundance (X), of 001 copies per
individual, to stabilize at X = 3-64. Repressors, initially at
10~5 copies per individual, rapidly invade and replace
them, h = k = 1, s = 0-2. Intact elements, —•—;
repressor elements, —•—.

0 50 100

Time in generations

Fig. 3. Spread of inert elements when there is a high
degree of transposase titration. Initially, X = 0-01 and
Z = 10"5. 5 = 0-2, k = 8-3465, h = 11967. The inerts
replace the intact elements. Intact elements, — • — ;
repressor elements, —•—•

50 100

Time in generations

150

Fig. 2. Spread of strong repressors: n = 4. The rise in
repressor elements is now quicker than in Fig. 1, but the
intact elements, after an initial drop, start to increase in
numbers very slowly. Intact elements, —•—; repressor
elements, —•—.

that spreads the repressors, the resulting increase in
mean fitness lowers the rate at which the repressors
spread. Furthermore, since, with very powerful
repressors, the population has high fitness when Y
greatly exceeds X, the selective pressure reducing X is
low. Thus for n = 2, the rate of loss of intact elements
is much slower than for n = 1. When n is 3 or 4, intact
elements start to increase again in number once F
becomes high. This is because intact elements are now
always found in situations in which total transposition
is very low, which means that selection has little effect,
and the lower rate of transposition allows a very slow
increase in the numbers of intacts. The repressors are
still increasing considerably more quickly. For n = 3
and n = 4, this steady slow increase in both element
types appears to persist indefinitely. At this point the
increase in copy number in these simulations may
have been artificially restricted by the maximum size
of the arrays.

0 100
Time in generations

Fig. 4. Spread of inerts with a very low degree of
transposase titration. The conditions are as in Fig. 3
except that k = 01873 and h = 0-5340. The process is
slowed but is otherwise very similar. Intact elements,
—-•—; repressor elements, —•—.

(ii) The effect of transposase titration

Figs. 3 and 4 show the results when inert elements
invade a population of intact elements with differing
values (10 and 01 respectively) of the product hk.
When X is low, transposition is more frequent when
hk is high, and both the spread of intact copies and
their subsequent replacement by inerts occur more
quickly when hk = 10 than when hk = 0 1 . Otherwise,
however, there is very little difference between the
figures, despite the large change in the degree of
transposase titration expected. It seems that the spread
of inert copies is not the result of transposase titration.

(iii) The invasion of a non-equilibrium population

Fig. 5 shows the increase in inert elements in a
population of intact elements which would otherwise
increase without limit. When these are introduced at a
twentieth of the initial number of the intacts, X
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Fig. 5. The rise of inert elements initially at 00005 copies
per individual when wx = exp( — stx), such that intact
elements increase without limit. Here Xis initially 001,
s = 0-5 and h = k = 1-0. The inert elements catch and
replace the intact copies, raising fitness to 100%. Intact
elements, —•—; repressor elements, —•—-

reaches a maximum at 35-9, but then the intacts are
replaced. In this model, the inert elements, whatever
their initial abundance, always ultimately catch and
finally eliminate the intacts. How high the value of X
rises prior to this depends on the initial abundances of
the two types of element. However, since the re-
placement of intacts with inerts sometimes occurs
only after fitness has grown vanishingly small, this
process may have no biological relevance. For
example, in Fig. 5 the mean fitness, w, drops to a
minimum of 1-6 x 10~6. It subsequently rises to 100%
through the elimination of the intact sequences, and
thus the ending of all transposition.

Other models allow intact elements to increase
without limit but do not allow the invasion of
inert elements. An example is when fitness, wx, is
0-2 + 0-8exp( — stx). Now, for high X values, inert
elements spread proportionately more slowly than
intact ones and will not catch them.

204

Let the total amount of duplicative transposition of
an individual with X intact elements be tx.

Let the fitness of an individual with ^elements be wx.

Let the proportion of the population with X elements

From the definition of a mean, 2"_0 Xpx = X

and the mean population fitness is defined as w =
^ wx

Let the expected number of elements contributed to
the next generation by an intact element in an
individual with X copies be cx. Thus

This is the expected total number in two gametes from
such an individual. This follows from the assumption
that the expected number of daughter elements,
following transposition, from a given element is tx/X,
and the representation in the next generation of
gametes from an individual with A'copies is determined
by wx/w.

The mean number of copies in the next generation
i s :

(3)

Thus the change in X, AX, is X — X. At equilibrium,
AX = 0, and if dAX/dXis negative, this equilibrium is
stable.

If we define the mean contribution of an element to
the next generation, c, as

4. Analysis

(i) An analysis of the equilibrium number of intact
elements and the capacity of inert elements to invade

While the results given above and in Brookfield (1991)
are qualitatively similar in many simulations under
different conditions, it is unsatisfactory to draw
conclusions merely from inferences from simulations.
It is better to seek an analytical understanding of why
the addition of inert elements (even if they do not
titrate transposase) to a population of intact elements
at a stable transposition-selection equilibrium can
result in invasion and elimination of the intact
elements.

Consider a population with only intact elements,
with a mean number X per individual. A general
model, but one in which mutation between the element
types is excluded, follows.

then when X = X, c = 1-00.
Suppose that there is such a population at stable

equilibrium, and we introduce into it inert elements at
a very low abundance, so low that w is not affected.
Will the inert elements invade? I define t'x as the total
transposition rate in an individual with X elements,
one of which is inert, and w'x as the fitness of such an
individual. (Since the abundance of the inert elements
is very low, I assume that an inert element will always
be found in an individual in which it is the only inert
element.) I further assume, as in all the models
discussed, that the difference between an inert and an
intact element is entirely fra«j-acting. Thus the
expected transposition rate of an intact element and of
an inert element in the same genome will always be the
same. For an individual inert element, the probability
that it finds itself in a genome with X—\ intact
elements will be the same as the corresponding
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probability for an intact element, or Xpx/X. The
expected number of daughter elements that such an
element will leave in the next generation, ciX, will be
(1 + t'x/X) w'x/w. (Here i represents inert.) The
expected contribution, cls of daughter elements in the
next generation left by an inert element, is given by

(4)
X-0

If this is greater than 1 when the population of intacts
is at equilibrium, then the inert elements can invade.
Thus, by the calculation of c, when AX = 0, the
conditions for invasion can be rapidly established.

(ii) An approximate solution to a special case

The above analysis will generally be true, but its
interpretation depends upon a particular model, such
as model B, for tx, wx, t'x, w'x and px. A simpler
model, which I here investigate more analytically, is
model C (P2) of Brookfield (1991). I make the
adjustment that the mutation process is here removed.
In this model

tx = TX\ t'x = TX(X-1), wx = exp ( - s(tx)\

wv = and = t'xXx/X\

T and s are constants of transposition and selection.
This model allows invasion of an equilibrium intact
population by inert elements under a wide range of
conditions, except when T and s are very high and the
resulting equilibrium X is much less than 1.

Charlesworth & Charlesworth (1983, equation 19b)
showed that the increase in mean copy number
resulting from selection, AX, is given by (using my
symbolism, and assuming Poisson variation in copy
number)

-_Xd\n(wx)
AX

Here wx is the mean population fitness conditional on
the mean copy number X. Mean fitness is hard to
calculate and it can be estimated by wx, the fitness of
an individual with X copies. The increase in copy
number resulting from transposition in their model
is a linear function of X, and is X{u—v), where u is the
per copy transportation rate and v the per copy
deletion rate. In my model there is no deletion, and
transposition is a quadratic function of copy number,
so I estimate Tix,opx TX2 by TX2 in a similar way to
the above.

If selection and transposition are both included,

A i ? Ar31n(exp(-5r2A'4)
AX = r-= TX2

/I.T2V4 i VV
— r J X yl T i n

Thus, when AX = 0, and T 4= 0,

X=\/(2VsT)

Now consider the expected change in copy number in
individuals with one inert element and X—\ intact
elements, AXV This again is the sum of two terms
corresponding to the effects of selection and trans-
position, respectively :

Ar31n(-jr2A'2(A'-l)2)
TX(X-\) (6)

= TX(X-\)-sT2X\4X2-6X+2)

WhenX = \/(2VsT),

Since the difference between intact and inert copies is
entirely trans-acting, the proportional increase of all
elements in individuals that possess inert elements will
be the same as the proportional increase in inert
elements, and thus this proportional increase, which I
shall call AZ, is given by

AZ = AXJX = T(X-1)/2 (7)

(5)

(this will be approximately equal to c, —1). Thus,
in this approximation, the inerts will increase for all
X> 1.

The accuracy of these approximations can be tested.
For various Tand ^ values, I calculate .? accurately by
iterating eqn (3) until AX = 0, and then, using eqn (4),
calculate AZ conditional on X. I estimate corre-
sponding values using eqns (5) and (7). The results can
be seen in the first four columns of Table 1. The
approximations seem to work fairly well for these
parameter values.

(iii) What happens when a Poisson distribution of
copy number is not assumed?

The model assumes that the distribution of element
numbers across individuals is Poisson, as expected
when site frequencies are low and there is linkage
equilibrium. However, John Maynard Smith (personal
communication) has pointed out to me that the high
rates of transposition in some individuals may generate
strong positive linkage disequilibrium between
elements, and thus increase the variance in element
number and with it the efficacy of selection. There are
models for the variation in px, the proportions of the
population with different numbers of elements, which
do not produce the behaviour seen here. An asexual
model, for example, in which individuals lacking
transposable elements always produce offspring which
also lack them, always results in the elimination of a
parasitic transposable element, however high the
transposition rate. This occurs because the subset of
the population with no elements will have a higher
fitness than those individuals with elements, and will
selectively replace them (Hickey, 1982). However,
John Maynard Smith (personal communication) has
shown by simulation that the replacement of intact
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Table 1. Exact and approximate values for the equilibrium number of
intact elements, X, and the proportional increase in inert elements, AZ,
when intacts are at equilibrium, in model C (P2)

Conditions

s

01
01
01
0 1
0 1
01
01
005
005
005
005
005
005
005

T

001
002
005
010
015
0-20
0-25
001
0-02
005
010
015
0-20
0-25

Poisson

X
eqn (3)

1615
11-55
7-45
5-36
4-42
3-85
3-47

24-43
17-84
11-91
8-85
7-46
6-61
602

variation

AZ
eqn (4)

0067
0089
0126
0158
0176
0188
0196
0095
0128
0182
0-233
0-264
0-287
0-304

X
eqn (5)

15-81
1118
7-07
500
408
3-54
3-16

22-36
15-81
1000
7-07
5-77
5-00
4-47

AZ
eqn (7)

0074
0102
0-152
0-200
0-231
0-254
0-270
0107
0148
0-225
0-304
0-358
0-400
0-434

Non-Poisson variation

X

24-83
1711
1003

5-69
3-59
2-54
1 91

31-98
22-44
13-68
8-60
5-92
4-38
3-34

Variance
inA-

13-34
10-49
7-60
5-66
4-45
3-58
2-98

21-69
17-17
12-67
9-81
8-07
6-79
5-80

AZ
eqn (4)

0-198
0-228
0-237
0167
0103
0-065
0037
0187
0-220
0-243
0-208
0-153
0112
0081

The table shows the equilibrium mean and variance in the number of intact
elements under a non-Poisson model for copy number, along with the
corresponding AZ.

elements by inerts still occurs in some sexual models
with more accurate copy number distributions.

I have performed simulations in which the dis-
tribution of frequencies px of genomes with copy
numbers X is not Poisson. Specifically, I represent the
population by the frequencies qi of haploid genomes
with / intact elements. Diploids are formed by bringing
together such haploids in random pairs. Such a
diploid has a total number of elements which
determines both its fitness and the expected number of
new elements created by transposition and introduced
into the gametes. The diploid produces gametes
bearing numbers of copies which are continuously
distributed between the values of the two haploid
genomes that make up the diploid. Thus, if there are
i and 7 copies in the two haploid genomes, and / ̂ -j,
the proportion of gametes that havey"+x elements (x
ranges from 0 to i—j) is l/(/+l—j). Into these
gametes are inserted a further number of new elements
generated by transposition, with this number being
Poisson distributed with a mean equal to half the total
transposition in this diploid individual. This is, of
course, only one of many models for the distribution
of copy number that can be imagined. When tx, t'x,
wx and w'x are as shown for model C (P2) above, this
model can be iterated on the computer for various
values of s and T until an equilibrium X is obtained.
Such values are shown in the fifth column of Table 1.
The variance in copy number at equilibrium is also
shown, as is AZ for this equilibrium (calculated using
eqn (4)). When s and Tare small, and the equilibrium
X therefore large, the variance is less than the mean
(and thus also less than the variance in the Poisson
model). The reduced variance lowers the effect of

selection, and thus allows the equilibrium X to be
higher. When s and T are larger, the equilibrium
variance is higher than for the Poisson model, and the
equilibrium Xis less. When the variance is higher than
Poisson the inert elements invade less quickly, and
when the variance is lower than Poisson the inert
elements invade more quickly.

(iv) Why do inert elements invade ?

An intuitive way of viewing the situation is to note
that, in the region of X, a condition for the stability of
the equilibrium is that the slope of c against X is
negative. For most models it will also be true that the
slope of cx against X is negative near X. If so,
increases in X increase the rate of transposition and,
by doing so, reduce cx. The replacement of an intact
element with an inert element will reduce the total
transposition, and thus, usually, ciX > cx, at least
near X. However, it will not necessarily be true that

when intact elements are at equilibrium.
A specific example illustrates this. Imagine that in

an individual with X intact elements and Z inert ones,
the total rate of transposition, t, is

T(X+Z)(\-e-mX)

where T is a transposition constant and m is a
constant and is greater than one. Thus when X is
large, total transposition will be virtually unaffected
by the substitution of an inert for an intact element.
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Table 2. For tx = T(X+Z)(\ ~e-mX) and wx --
exp( — stx), values for X and AZ when X is at
equilibrium; m = 1-5

Conditions

0-2
0-2
0-6
0-6

T

0-2
0-6
0-2
0-6

X<x

6-51
203
3-34
0-84

eqn (3) AZ eqn (4)

-00005
-0-0277
-00053
-00797

When X is small, total transposition will be greatly
reduced by such a substitution, but, when X is small,
transposition produces little selective harm, and a
reduction in transposition may decrease cx. Table 2
shows simulation results for equilibrium X and AZ
(derived from eqns (3) and (4) respectively) with this
model when m = l-5,wx = exp( — st2), variation in X
is Poisson, and a range of T and 5 values are used. The
negative values for AZ show that the inert elements
cannot invade when rare.

Table 3. Values of X, from eqns (8) and (9), that
make AX and AZ equal to zero for various values of
sT and Z

Conditions

sT

0025
0025
0025
0-025
0025
0025
0-025
0025
0025
00005
00005
00005
00005
00005
00005
00005
00005
00005
00005

z
00
0-5
10
1-5
20
2-5
30
40
50
00
10
20
50

100
150
200
250
300
350

X for AX = 0

316
2-79
2-42
206
1-70
1-35
100
0-32

No positive solution
22-36
21-61
20-87
18-65
1500
11-42
7-91
4-47
109

No positive solution

X for AZ = 0

4-47
4-23
400
3-78
3-58
3-39
3-22
2-90
2-62

31-62
3113
30-64
29-22
2702
2500
2317
21-51
2000
18-64

(v) Why are the intact elements replaced?

Simulations reveal that the invasion of inert elements
is accompanied by the elimination of intact elements.
Using the tractable model C (P2) above, some insight
can be gained into the mechanism for the replacement.
Suppose that an individual has, in addition to X intact
elements, a further Z inert elements. Total trans-
position in such an individual, t, is TX{X+Z) and
fitness is exp (—st2). Using an argument similar to that
leading to eqn (6) above, the change in X, i.e. AX, is
approximately given by

AX
_

Solving,

AX= TX\\-2sT(2X2-

Thus, if AX = 0, and X, T * 0

„ 35rz±v[45r+(5rz)2]
(8)

Similarly, the change in Z, i.e. AZ, can be found
approximately as a function of Z and X, assuming X
to be constant. (Note that there is a subtle change in
the meaning of AZ here relative to AZ above, since
there AZ represented the proportional change in Z
when Z was vanishingly small, while here AZ
represents the absolute change in Z when Z may be
large.) As with eqn (6) above,

AZ
= Zd\n(exp(sT2X2(X+Z)2))

Solving,

AZ = XZT{\ - 2sTX(X+ Z))

Thus, if AZ = 0 , r , I ,Z + 0,

v . * A v sTZ±V[2sT+(sTZ)2]
X, here treated as X = „ _ —

— 2sT (9)

dZ
+ TXZ

Thus, for any value of Z we can find, from eqns (8)
and (9) respectively, the positive values of X such that
AX = 0 and AZ = 0. Table 3 gives illustrations for
when $7/= 0-025 and s r = 0-0005. (These represent
the extreme values in Table 1.) For all Z, the value of
X required for AX = 0 is less than the value of X
required for AZ = 0. Thus, if X and Z were such that
AX = 0 then AZ > 0, if X,Z,T> 0. Thus X will be
reduced to zero.

5. Discussion

I have sought to explain the result that, if transposition
and host fitness are coupled, deleted transposable
elements can invade a population in which intact
elements are in a transposition-selection equilibrium.
While such an invasion usually occurs in the models,
the presence of a stable equilibrium between selection
determined by transposition and transposition itself is
neither a necessary nor a sufficient condition for the
invasion of deleted elements. The spread of deleted
elements is accompanied by the elimination from the
population of intact elements, unless the deleted
elements are strong repressors, in which case the intact
elements may persist, and, indeed, increase.
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It is possible for this process of replacement of
intact elements with deleted ones to occur even in
situations in which the intact elements would otherwise
drive the population to extinction. For the deleted
elements to catch the intact ones while the host
population is still extant the inert elements have to be
introduced at a sufficiently high initial frequency
(which could arise through a high mutation rate to
deleted elements). Thus, if a transposition-selection
equilibrium can exist, models predict that there will
usually be a subsequent spread of deleted elements
(provided these can be produced by mutation). If a
transposition-selection equilibrium cannot exist, then
the spread of deleted elements is a necessary condition
for the persistence of the host population. In either
situation a population at equilibrium would be
expected to lack intact elements.

When transposition rates are low, or population
sizes are low, individual site frequencies, assumed to
be negligible in the Poisson assumption, may become
appreciable, and the copy number variance will drop
considerably below the mean. This would reduce the
power of natural selection, and with it the rate of
elimination of complete elements.

While the modelling here is quite general it is for the
P elements that the model is open to the most direct
tests. A number of experiments have monitored
changes in the distributions of elements, and conse-
quent changes in the patterns of P activity and
repression, in laboratory populations (Jackson et al.,
1988; Preston &Engels, 1989; Ronsseray etal, 1989).
Some populations were started bearing only intact
elements, following germ-line transformation of pure
M strains, whereas others were founded with small
numbers of both intact and deleted elements. Some of
the former populations became extinct as a result of P
element effects. For the others, the fewer deleted
elements there were initially present, the more likely
the populations were to evolve P-cytotype. If this did
not happen, there was an increase in non-autonomous
elements, a process often accompanied by the build-
up of chromosomally inherited repression, and the
elimination of intact elements. These data agree
broadly with the models described here. The models
also predict that the stable persistence of intact
elements should occur only in Q strains. (Q strains
possess some P elements but show few if any P
element movements in their Fx progeny when crossed
in either direction to either P or M strains.) Stable
persistence of intact elements should be impossible in
M' strains. Some M' strains with such elements do
appear to be stable, but this may be the result of the
small population size effect mentioned above.

Some wild populations appear stable in their P
element constitutions, notwithstanding their
possession of full-length P elements. These seem to be
populations possessing either powerful zygotic
repressors or P-cytotype. Once some such a system of
repression is established, the population dynamics of

P elements may come to resemble those of the less
rapidly moving, and longer established,
retrotransposons. The frequency spectrum of sites of
the P element can be very similar (Biemont et al.,
1994) to that of retrotransposons in the same
population. Also, P elements have been found to be
over-represented in minority inversions, suggesting
that ectopic recombination, thought to control
retrotransposon numbers, and attenuated in regions
of reduced recombination, may play a role in
regulating P abundance also (Eanes et al., 1992).
However, the short time during which the P element
has existed in D. melanogaster suggests that the
frequency spectra of sites in wild populations are
unlikely to have reached equilibrium. Furthermore,
high-frequency sites, such as that at 1A, seen in 11 of
12 sampled X chromosomes from one population
(Biemont et al., 1994), are thought to have reached
high frequencies through selection for the repressor
capacity of the P elements that they possess (Ronsseray
et al., 1991).

Kaplan et al., (1985) have produced a model for a
heterogeneous transposable element family, which
predicts that such a family will evolve towards a
distribution that is strongly biased towards deleted
copies, in the absence of any selection at the level of
the host. This arises from a one-way mutation process
coupled with the ability of intact elements to comp-
lement the /raws-acting functions of deleted elements
in the same genome. For P, however, the observations
of very great fitness losses arising from the element's
activities makes it improbable that an accurate
description of element dynamics can be based on a
neutral model of this kind.

There are some analogies, although not formal
ones, between the dynamics of the interaction between
intact and defective transposable elements and the
interaction between complete and defective viruses
(Bangham & Kirkwood, 1990; Szathmary, 1992).
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