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Summary

Correlation statistics can be used to measure the amount of linkage disequilibrium (LD) between
two loci in subdivided populations. Within populations, the square of the correlation of gene
frequencies, r2, is a convenient measure of LD. Between populations, the statistic rirj, for
populations i and j, measures the relatedness of LD. Recurrence relationships for these two
parameters are derived for the island model of population subdivision, under the assumptions of the
linked identity-by-descent (LIBD) model in which correlation measures are equated to probability
measures. The recurrence relationships closely predict the build-up of r2 and rirj following
population subdivision in computer simulations. The LIBD model predicts that a steady state will
be reached with r2 equal to 1/[1+4Nec(1+(kx1)r)], where k is the number of island populations,
Ne is the effective local population (island) size, and r measures the ratio of migration (m) to
recombination (c) and is equal to m/[c(kx1)+m]. For low values of m/c, r=0, and E(r2) is equal to
1/(1+4Nec). For high values of m/c, r=1, and E(r2) is equal to 1/(1+4kNec). The value of rirj
following separation eventually settles down to a steady state whose expectation, E(rirj), is equal to
E(r2) multiplied by r. Equations predicting the change in rirj values are applied to the separation of
African (Yoruba – YRI) and non-African (European – CEU) populations, using data from
Hapmap. The primary data lead to an estimate of separation time of less than 1000 generations if
there has been no migration, which is around one-third of minimum current estimates. Ancient
rather than recent migration can explain the form of the data.

1. Introduction

It has been known since Robbins (1918) that linked
genes, even closely linked ones, are expected to be as-
sociated at random (linkage equilibrium) in an infinite
population. Selection for particular gene combi-
nations may lead to linkage disequilibrium (LD) (see
Lewontin & Kojima, 1960; Franklin & Lewontin,
1970), but such LD is only important if selective in-
teractions are widespread.

Hill & Robertson (1968), Sved (1968) and Ohta
& Kimura (1969) first drew attention to the import-
ance of the infinite population size assumption and
showed that closely linked genes necessarily become
strongly associated because of genetic drift in a small
population. Prior to this, Haldane (1949) had pointed

out the conceptually similar result that inbreeding
leads to the association of genotypes at linked loci,
a result extended by Bennett & Binet (1956) and
other authors for the inbreeding system of mixed self-
fertilization and random mating.

Arguments that LD is not to be expected are now of
historical interest only. Following the cloning and
sequencing of many gene regions, it has become clear
that LD of closely linked nucleotide sites is the norm
(see e.g. Conrad et al., 2006). This is evidently ex-
pected in cases of disease-causing genes in humans
where all mutations in a population trace back to a
single source and provides the basis for LD mapping
(see e.g. de la Chapelle & Wright, 1998).

The widespread occurrence of LD has made it of
interest to consider the general problem of the expec-
tation for the amount of LD as determined by the
balance between genetic drift and recombination
in a population. A number of authors have given
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expectations, e.g. Hill & Robertson, 1968; Sved, 1968,
1971; Ohta & Kimura, 1969; Serant & Villard, 1972;
Littler, 1973; Weir & Cockerham, 1974; Hill, 1977;
Vitalis & Couvet, 2001a, b. These expectations are
considered further in the following section.

The purpose of the present paper is to extend the
LD analysis to the case of population subdivision.
The analysis uses as a measure of LD the correlation
of gene frequencies, r (Hill &Robertson, 1968).Within
populations, LD is measured as normally using the
parameter r2. As a convenient measure of the associ-
ation of LD between populations, e.g. for populations
i and j, the parameter rirj is introduced. Note that
r2 and rirj are, respectively, the variance and covari-
ance of r values over replicate populations, given that
E(r)=0. It is shown that the combination of the
within- and between-population measures allows a
straightforward analysis in terms of migration, re-
combination and population size.

The formulae derived in the present paper are ap-
plied to the case of current human populations. The
model of interest is one in which population subdiv-
ision occurs at a particular point in time, and the
subdivision persists for periods of time that are small
compared with evolutionary time units. Mutation
comes into the model only to the extent that initial
gene frequencies and LD levels at the time of popu-
lation subdivision may be a product of past mutation
rates and population size. Following population sub-
division, it is assumed that the effects of mutation
can be ignored compared with the effects of genetic
drift, recombination and migration. Hapmap data
examining the divergence between African and
non-African populations are used to illustrate the
methods.

2. Analysis

(i) The model for a single population

Loci A and B are assumed to be linked with recom-
bination frequency c in a population of size Ne re-
producing according to the Wright–Fisher model.
The initial calculation is in terms of identity-
by-descent probabilities. This is then related to fre-
quencies, specifically to the LD measure r.

The concept of linked identity-by-descent (LIBD)
was introduced in Sved (1971). LIBD refers to the
event in which genes at linked loci of two haplotypes
in a population are identical-by-descent through the
same pathways, i.e. without recombination, from
an ancestral haplotype (see Fig. 1). The probability
of LIBD will be denoted as L, replacing Q used in
Sved (1971), which was defined using a conditional
probability of LIBD in a bi-allelic population. Note
that L differs from two locus identity parameters
such as X11 (Weir & Cockerham, 1974), h (Tachida &

Cockerham, 1986), F11, (Goodnight, 1987; Whitlock
et al., 1993) and w (Vitalis & Couvet, 2001a), all of
which denote IBD at two loci irrespective of the
pathways by which this is attained. LIBD implies a
much-restricted subset of such pathways.

The recurrence relationship for L between gener-
ations can readily be written down. The model is
formally analogous to the case of a single locus, with
recombination in the two-locus model replacing
mutation in the single locus model. The LIBD prob-
ability in the offspring generation in terms of L in the
parent generation is (Sved & Feldman, 1973).

Lk=1=2Ne+(1xc)2(1x1=2Ne)L: (1)

The equation is readily generalized to any number
of generations. The value of L at equilibrium comes
to 1/[1+(2Nex1)(2cxc2)], which is approximately
1/[1+4Nec].

L is a parameter in terms of probabilities. The usual
measures of LD such as D or r are frequency par-
ameters. Sved (1971) used a roundabout argument
to show that the expected value of r2 is equal to L.
A related but simpler argument was given by Sved &
Feldman (1973), using an analogy with single locus
inbreeding arguments as shown here.

The single locus argument can be seen using the
pathways of Fig. 1, focusing on the A locus (I). The
coefficient of inbreeding was initially defined by Sewall
Wright (see e.g. Wright, 1931) in terms of the corre-
lation between uniting gametes. Somewhat later, the
identity-by-descent probability definition of inbreed-
ing was adopted by Malécot (1948). The relationship
between the correlation and probability definitions
may be seen in the following simpleway, closely related
to the argument of Crow & Kimura (1970, p. 66). If
the genes are identical by descent, then the correlation
is 1. If they are not identical by descent, then the
correlation is 0. In terms of the probability of IBD,
fA, the overall correlation rA then becomes fA1+
(1xfA)0=fA. This implies that correlations are addi-
tive, an assumption that can be checked by writing
out the full set of matings (Crow & Kimura, 1970,
Table 3.2.1).

A

(I) (II)

B

A B A B

Fig. 1. Pathways for identity-by-descent for one and
two loci.
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The equivalent two-locus argument can be seen by
following the pathways labelled (II) in Fig. 1. The
probability that the A and B alleles are transmitted
intact (without recombination) on either pathway
from the common ancestral gamete can be defined
as fAB. In such an event, the correlation is equal to 1.
Any recombination event is assumed to connect the A
allele to a random B allele in the population, assuming
random mating, so that the correlation will be 0. The
overall correlation is equal to

rAB=fAB 1+(1xfAB) 0=fAB:

The LIBD probability L defined previously is equal to
f 2
AB, since events in the two pathways leading to the
present gametes are independent. So the relationship
between r and L can be given as

E [r2AB]=f 2
AB=L,

where the expectation is over replicate populations
with the same probability structure.

This allows us to write the expectation for r2 in
the offspring generation in terms of r2 in the parent
generation. Using eqn (1).

E [r2k]=1=2Ne+(1xc)2(1x1=2Ne)r
2 (2)

The exact validity of eqn (2) is in some doubt follow-
ing arguments by Littler (1973) and McVean (2002)
questioning whether LIBD arguments involving just
the current population can account for the historical
complexity. However, computer simulation shows
that the equation holds with reasonable accuracy
provided Ne is not too small. Further support for
eqn (2) comes from an alternative derivation by
Tenesa et al. (2007), based on properties of the cor-
relation coefficient rather than LIBD arguments. Hill
& Robertson (1968) also derived the expected equi-
librium value of r2 as 1/4Nec, based on a balance be-
tween gain of LD by drift and loss by recombination.
Hill (personal communication) has pointed out that a
simple modification of this derivation yields the same
equilibrium result as for eqn (2), E [r2 ]=1/(1+4Nec).

(ii) Population subdivision

For a single closed population, the parameter L
denotes the probability that two gametes sampled,
with replacement, from the population are identical
through the same pathways, i.e. without recombi-
nation. For an island model of population subdiv-
ision, LW becomes the LIBD probability for two
gametes sampled from the same island population,
while LB is the LIBD probability for two gametes
sampled from different islands.

Sampling with replacement within a population is
assumed in the models. This may seem a somewhat
artificial construct compared with themanner in which

identity-by-descent is traditionally defined in terms of
sampling of two different uniting gametes (Wright,
1931). However, sampling with replacement is for-
mally consistent with the equation of probability and
frequency parameters when quantities such as p2, r2,
etc., are considered (Sved & Latter, 1977). In practice,
the differences between sampling with and without
replacement are small.

The usual parameters for the island model of
population subdivision are assumed. The overall
population is divided into k islands, each of which
exchanges genes at an equal rate with each other
island. The overall rate of immigrant genes into any
island population is m per generation, randomly
sampled from other islands. The parameters Ne and c
describe the effective population size per island and
the recombination frequency, respectively.

Recurrence relationships can be given for the
quantities LW and LB in terms of the equivalent
parameters of the previous generation. The exact re-
lationship depends on the gene exchange and census
model adopted. For example, it is possible to assume
deterministic gene exchange, exchange of a fixed num-
ber of genes or individuals or exchange of variable
numbers of genes or individuals (Latter & Sved, 1981).
Furthermore, the population may be censused before
or after gene exchange.

This treatment assumes a model in which stochastic
sampling according to the Wright–Fisher model oc-
curs within each island population, followed by the
exchange of a variable number, but with fixed prob-
ability, of migrant genes between islands. This is the
same as assuming a deterministic exchange of genes
between islands, followed by stochastic sampling
(Sved & Latter, 1977). Census of the population is
assumed to take place following sampling and gene
exchange.

(iii) LIBD probabilities for a subdivided population

The recurrence relations for the island model may be
written as follows (cf. Maruyama (1970), Latter
(1973) and Latter & Sved (1981) for the case of a
single locus) :

L kW=
1

2Ne

+(1xc)2 1x
1

2Ne

� �

r (1xm)2+
m2

kx1

� �
LW+ 2m(1xm)+

m2(kx2)

kx1

� �
LB

�
,

�

(3)

LkB=(1xc)2
2m(1xm)

kx1
+

m2

kx1

� �
LW

�

+ (1xm)2+
2m(1xm)(kx2)

kx1
+

m2(kx2)

kx1

�
LB

� �
:

(4)
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The justification of (3) is as follows. The constant
term in (3), 1/2Ne, represents the probability that the
same gamete is sampled twice. Recombination does
not enter into the probability of LIBD for this term.
The term LW in (3) involves a contribution from cases
in which both gametes sampled are non-immigrant,
(1xm)2, added to the probability of both gametes
being immigrant but independently from the same is-
land, m2/(kx1). Both of these terms must be multi-
plied by the term (1xc)2, representing the probability
of non-recombination in both gametes. The contri-
bution from the LB term in (3) consists of the comp-
lementary cases in which the two gametes come from
different islands, multiplied by the same recombi-
nation term. The justification of (4) is similar. In this
case, the same gamete cannot be sampled twice, and
the only distinction is between gametes that were in
different islands before migration, for which the ap-
propriate multiplier is LB, or in the same island, in
which case the multiplier is LW.

Equations (3) and (4) may be rewritten as

LkW=
1

2Ne

+(1xc)2 1x
1

2Ne

� �
r{[1xa]LW+aLB},

(5)

LkB=(1xc)2{bLW+[1xb]LB}, (6)

where

a=2mx
m2k

kx1

and

b=
2mxm2

kx1
:

Equilibrium solutions may be obtained by setting
L kW=LW=L̂W and LkB=LB=L̂B. On the assumption
that the quantities m and c are small compared with 1,
we may make the approximations:

a ’ 2m, b ’ 2m

kx1
, (1xc)2 ’ 1x2c: (7)

All equations that follow are therefore approxima-
tions from this point of view. Equations (5) and (6)
lead to the equilibrium solutions

L̂W=
1

1+4Nec 1+[(kx1)m=[m+(kx1)c]½ � (8)

and

L̂B=L̂W

m

m+(kx1)c

� �
: (9)

Equations (8) and (9) can be expressed in the
alternative form:

L̂W=
1

1+4Nec[1+(kx1)r]
(10)

and

L̂B=rL̂W, (11)

where r=m/m+(kx1)c is a convenient measure of
the ratio of gene flow to recombination.

Equations (10) and (11) have the expected proper-
ties at the extremes of gene flow. When there is no
gene flow, m=0 and r=0, the island model should
reduce to the single population model. As expected,
eqn (10) reduces to

L̂W=
1

1+4Nec
: (12)

Similarly there should be no identity between islands,
and L̂B is equal to zero, as expected.

When gene flow is large compared with recombi-
nation, r=1, and eqn (10) reduces to

L̂W=
1

1+4kNec
: (13)

This is as expected in an overall random mating
population of the same effective size as the combined
islands (kNe). Also, the identity of gametes from dif-
ferent islands is similar to the identity within islands in
this case.

(iv) Predictions of LD

The key argument of Fig. 1 is that correlations equate
directly to probabilities of descent without recombi-
nation. The expected value of r2 within populations is
equal to the product of probabilities of descent with-
out recombination of two gametes chosen from the
same population, or LW. Similarly the expected
product of correlations between populations is equal
to the product of probabilities of descent without
recombination of two gametes chosen from different
populations, or LB, Thus

E(r2)=LW

and

E(rirj)=LB,

where i and j are different islands.
Substituting from eqns (10) and (11) gives the

equilibrium solutions as

E( r̂2)=
1

1+4Nec[1+(kx1)r]
(14)

and

E(ri r̂j)=rE( r̂2): (15)

These are more accurately described as ‘steady state’
rather than equilibrium solutions, since fixation at
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either or both loci will eventually occur in the absence
of mutation, in which case correlation values are in-
determinate.

The values of E(r2) and E(rirj) at any time during
the process may be found by substitution into eqns (5)
and (6), giving the recurrence relationships:

E(r2k)=
1

2Ne

+(1xc)2 1x
1

2Ne

� �

r{[1xa]E(r2)xaE(rirj)},

(16)

E(rirkj)=(1xc)2{bE(r2)+[1xb]E(rirj)}, (17)

where a and b are as defined in terms of m and k in
conjunction with eqns (5) and (6).

3. Computer simulation

(i) Assumptions

The variety of possible parameters in the island
model, N, k, m, c, in addition to allele frequencies and
LD levels, makes it difficult to completely test the
predictions of the above formulae. An initial decision
was made to restrict the simulations to the case where
all island populations started with the same fre-
quencies. Such an assumption would, for example,
appear to be appropriate for studying the divergence
of current human populations. An alternative model
is one in which allele frequencies in individual island
populations are determined by the production of new
alleles by mutation and the loss by drift. Such a
model, however, requires the existence of stable island
populations over evolutionary time periods. In the
analysis of currently subdivided populations it seems
more realistic to postulate a model in which the island
populations are formed by subdivision of an ancestral
population in which all alleles already exist at the start
of the simulation.

The simulations reported below considered only
two island populations. The addition of more popu-
lations, up to 16, did not change any conclusions.

Forward computer simulation to test recurrence
formulae requires that initial allele frequencies and
levels of LD be specified. A range of possibilities was
studied by using initial allele frequencies as either 0.5
or 0.05 at each locus. For each combination of allele
frequencies, populations were set up with extremes
of LD, either in linkage equilibrium (r2=0) or with
the highest value of r2 consistent with the allele fre-
quencies. In reality, expectations over many locus
pairs are expected to involve summation over a range
of allele frequencies and levels of LD. This situation
was modelled using starting populations from a steady
state infinite site mutation model with the same
values of N and c as assumed in the subdivision
simulation.

A range of m values was used, from Nm=1/4 to
Nm=64. Generations were simulated using a Wright–
Fisher model. Runs were carried out until either fix-
ation occurred at either locus or a steady state was
reached. Replication over a large number of simu-
lations showed that a steady state of r2 and r1r2 values
was reached after 3–4000 generations.

The computer simulation was implemented in two
different ways. In the first, haplotype frequencies for
each island population were calculated deterministi-
cally using haplotype frequencies of the previous
generation and the relevant recombination and gene
flow parameters. Gametes were then sampled at
random up to the requisite population number using
the calculated frequencies. The second simulation
was entirely stochastic, with gamete choice, recombi-
nation and migration each occurring stochastically.
As expected (Sved & Latter, 1977), the two im-
plementations generated very similar results.

(ii) Results

Simulations starting from different allele frequencies
and either zero or maximum levels of LD generated a
range of outcomes. In general, simulations starting
from central allele frequencies (0.5) showed good
agreement between observed and expected values,
while non-central frequencies (0.05) gave worse
agreement (results not shown). Because of the variety
of outcomes, it seemed more informative to use the
simulations starting from a range of frequencies and
LD values given by the infinite site mutation model.

The simulations presented below were carried out
using a value for N of 8192 and c of 1/1024 (Nc=8).
The value of N was chosen as consistent with ances-
tral human population sizes (Tenesa et al., 2007). The
value of c, approximately 0.1 cM, consistent with
around 100 kb, is low but sufficiently high to minimize
complications of ‘fixation bias ’ (Sved et al., 2008).

As mentioned above, the simulations use a mixed
population of starting allele frequencies. As expected,
the results are dependent on the choice of allele fre-
quencies, specifically on the choice of minor allele fre-
quency (MAF). Two levels were chosen for the initial
frequencies, 0.01 and 0.3. The latter, based on much
older mutations, gave considerably higher starting
values of r2, as well as much lower levels of fixation.

Figure 2 shows the value of r2 from the simulations
together with the expected value from eqns (16) and
(17). Values are presented for two levels of migration,
low (Nm=1/4) and high (Nm=64), together with the
low- and high-MAF values.

Figure 2 shows that the starting point for the
simulations is determined by the MAF value. On the
other hand, the steady state values of r2, both ob-
served and expected, are determined essentially by the
migration rates. The absolute difference between the
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steady state values for the two migration rates is not
high. The simulation involved only two populations,
so that the island population size and the overall
population size differed by only a factor of two. When
more populations were simulated, the differences be-
tween high- and low-migration values were corre-
spondingly larger (results not shown). Note also that
the observed and expected values for the two MAF
starting points coalesce at much the same time for
very different migration rates.

The agreement between observed and expected
values is very good for both migration rates for the
MAF=0.3 case, and less so for the MAF=0.01 case.
It is probably significant that very little fixation occurs
in the former case, whereas in the latter around 50%
of populations are fixed by the end of the simulation.
However, even in the latter case it appears that minor
disagreements between the LIBD-derived formulae
and simulation results precede any fixation, showing
that fixation is not the only reason why the formulae
are approximate.

Figure 3 shows the equivalent results for r1r2 for the
same simulations as in Fig. 2. Note the reversal of the
high and low migration outcomes. High migration
rates lead to a lower value of r2, since the overall ra-
ther than the local population size becomes the de-
terminer of LD – eqn (12) versus eqn (13). On the
other hand, high migration leads to more similarity in
r values of different populations, in other words a
higher value of r1r2. The agreement of simulated values

with the expectation given by eqns (16) and (17) is
slightly better than for the r2 values of Fig. 2.

4. Application to human populations

In the absence of migration, eqn (17) reduces to

E(rirkj)=(1xc)2E(rirj) (18)

This equation is readily generalized to any number of
generations (see also de Roos et al., 2008). If a popu-
lation is subdivided into populations 1 and 2, with
initial LD given by r0, then after T generations, the
expected product of r values is

E(r1r2)=(1xc)2Tr20,

from which the estimate of separation time is ob-
tained as

T=[ ln (r20)x ln (r1r2)]=2c (19)

Sved et al. (2008) used this equation, derived inde-
pendently using infinite-size population theory, to
estimate the age of separation of African and non-
African populations. Data came from the Hapmap
study (http://www.hapmap.org), and assumed that
current African values could be used to estimate r20.
Locus pairs were pooled in classes based on their
estimated recombination frequency. Pooled classes
of rirj and r2 values were used to estimate values of

0

0·02

0·04

0·06

0·08

0 1000 2000

Generation

r 2 

Nm = 1/4 MAF = 0·3 – Exp 
Nm = 1/4 MAF = 0·3
Nm = 1/4 MAF = 0·01 – Exp 
Nm = 1/4 MAF = 0·01
Nm = 64 MAF = 0·3 – Exp 
Nm = 64 MAF = 0·3
Nm = 64 MAF = 0·01 – Exp
Nm = 64 MAF = 0·01

 

} 

Nm =  64 } 

Nm = 1/4 

MAF =  0·3

MAF = 0·01

N  = 8192     c  = 1 / 1024

 

Fig. 2. Test for predicted levels of LD within populations for low and high levels of migration and low- and high-MAF
values. The predicted (expected) values are shown as either unbroken or broken lines, while the results from the
simulations are shown as square or round symbols. Low migration values are shown with broken lines (expected) and
unfilled symbols (observed), while high-migration values are shown with unbroken lines and filled symbols. High-MAF
values are shown with thicker lines and larger symbols than low-MAF values. Allele frequencies and initial LD levels are
from simulations of a single population infinite site mutation model with the same values of N (8192) and Nc (8) assumed
in the subpopulation simulation.
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T for the separation of African (YRI) and European
(CEU) populations. A separate estimate was obtained
for each recombination class ranging from 0.1 to
0.3 cM (filled squares, Fig. 4). Recombination classes
below c=0.1 cM are omitted from Fig. 4 because
of discrepancies due to ‘fixation bias ’ (Sved et al.,
2008).

The striking feature of Fig. 4 is the low estimate
of T for all recombination classes, estimates ranging
between 600 and 800 generations. Assuming a gener-
ation length of 25 years, the separation time translates
to between 15 000 and 20 000 years. Current estimates
of the time of the most recent migration out of Africa
are around 60 000 years (e.g. Cavalli & Feldman,
2003).

To explain the discrepancy between the estimates of
20 000 and 60 000 years, Sved et al. (2008) suggested
that a reasonably small amount of migration (gene
exchange) between populations could severely reduce
the estimated divergence time based on LD under the
model of no migration. This explanation is now exam-
ined in some detail. It is convenient to summarize
the results using T estimates obtained from eqn (19).
The parameter T is not a true time estimate if mi-
gration is included in the model, although it might be
thought of as an estimate of ‘effective divergence
time’.

Equations (16) and (17) are needed to calculate the
expected value of r1r2. Equation (16), however, pre-
dicts only the expected value of r2. As mentioned
above, in estimating the time of divergence of non-
African and African populations (Sved et al., 2008),
it was assumed that the current value of r2 in Africa

could be used as a predictor of the value of r2 at the
time of population divergence, i.e. that there had
been no change over the time of divergence. The
validity of this assumption was justified by calcu-
lating the expected value of r2 for various possible

0

0·02

0·04

0·06

0·08

0 1000 2000

Generation

r1r2

Nm = 1/4 MAF = 0·3 – Exp
Nm = 1/4 MAF = 0·3
Nm = 1/4 MAF = 0·01 – Exp
Nm = 1/4 MAF = 0·01
Nm = 64 MAF = 0·3 – Exp 
Nm = 64 MAF = 0·3
Nm = 64 MAF = 0·01 – Exp 
Nm = 64 MAF = 0·01

} 

Nm =  64 } 

Nm = 1/4  

MAF =  0·3

MAF =  0·01

 N  = 8192     c = 1 / 1024

Fig. 3. Values of r1r2 measuring the relationship of LD between populations. Symbols and conditions of the simulation are
as in Fig. 2.
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Fig. 4. Estimated separation time for Europe (CEU) from
Africa (YRI). Filled squares show the calculated
separation time in generations from applying eqn (19),
derived under the assumption of no migration, to the
Hapmap data. The straight line shows the values of T
obtained from the same equation if actual separation
occurred 3000 generations ago and migration occurred
throughout at rate m=0.0016. The dashed line shows the
values of T obtained from the same equation if actual
separation time was again 3000 generations but migration
occurred at rate m=0.0128 just for the first 2500
generations.
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values of Ne for the African population, showing
that they had a minor impact on the estimates of T.

An equivalent assumption has been used in the
present calculation. For two populations, with a
fixed value of r0

2 in population 1 (Africa), eqn (17)
becomes

E(r1rk2)=(1xc)2(2mxm2)r20+(1xc)2(1xm)2r1r2:

(20)

The parameter m refers specifically to migration from
population 1 (Africa) to population 2 (Europe), since
migration in the opposite direction is ignored. The
value of r2

2 is dependent on the size of population 2,
but does not affect eqn (20).

Equations (19) and (20)were used to calculate values
of T for different values of m, over the range c=
0.1–0.3 cM under the supposition of a true number of
3000 generations since separation. Values calculated
for m=0.00015 gave a mean T close to the calculated
mean for Hapmap values. However, as shown in
Fig. 4, the slope of estimated T values was much
higher than the slope of the observed values. This is a
consequence of the fact that the denominator of eqn
(19) contains c. Evidently the change in the numerator
of eqn (19) is not sufficient to compensate for the in-
crease in the value of c in the denominator over the
range 0.1–0.3 cM.

Various models were then examined in which mi-
gration was applied over less than the full number
of generations. Applying migration only in the latter
stages of the divergence increased the slope of the
relationship. The most extreme model of this kind is
one in which all migration occurs in the final gener-
ation, just before measurements are made. It can be
shown that in the extreme case where sufficient time
has passed so that the expected value of r1r2 is zero,
migration between the two populations at rate m
induces a non-zero correlation in r values, such that
the estimated value of T is approximately equal to
xln(2m)/2c. Of course T ceases to be a time estimate
at all in such a case.

By contrast, if migration occurs only in the
earlier part of the divergence, then the slope of T es-
timates decreases. Figure 4 shows that migration
at the higher rate of m=0.00071 for the first 2650
of 3000 generations, followed by 350 generations
with no migration, provides a satisfactory fit to the
data.

A common feature of models that explain the data
is that migration occurs earlier in the divergence
rather than later. Note that any final period with no
migration needs to be less than 1000 generations to
generate T estimates less than 1000 generations, no
matter what the migration rate preceding this period.
The figure of 350 generations without migration in
Fig. 4 is chosen to provide approximately the correct

slope in Fig. 4. However, the assumption of a con-
stant migration rate for the first period, followed by
zero for the second period, is obviously only one of
a spectrum of models that could provide a fit to the
data.

5. Discussion

Values of r2 and r1r2 from the computer simulations
agreed reasonably well with expectations when the
populations were founded with alleles at central fre-
quencies at both loci. The agreement was worse in
the case of populations founded with one or both
loci having one allele at low frequency. The simu-
lation with a mixture of frequencies generated by a
mutation model constrained to a high MAF value
before separation, MAF=0.3, showed levels of agree-
ment not very different from the central frequency
simulation.

Fixation of one or more alleles cannot be taken into
account by the current LIBD method. The LIBD
probability does not take allele frequencies into ac-
count, and includes fixed and unfixed populations. By
contrast, estimates of LD using r or r2 cannot take
into account populations where fixation has occurred.
Furthermore there are obvious biases in the fixation
process. Since LD is produced by fluctuation of allele
frequencies, populations where such fluctuations are
more extreme, and therefore where fixation may tend
to occur earlier, are also those populations where high
levels of LD are expected. A different type of ‘fixation
bias ’ has also been discussed by Sved et al. (2008).
These effects may be responsible for the discrepancy
in the build-up of LD from r2=0 seen for the low
MAF simulations in Fig. 2. As remarked earlier,
however, fixation cannot account for all of the dis-
crepancies.

Selection for particular genes combinations would
be expected to have a high effect on the migration
estimates. Any selective force favouring particular
allele combinations will tend to affect values of r in
different islands in the same manner. Values of rirj will
thus be inflated, and similarly estimates of m if this
effect is not recognized.

One other factor that needs to be considered is the
possibility of heterogeneous samples. The calculations
of the present paper have assumed a simple structure
of islands within which mating is at random. If
the structure of a subdivided population is less well
defined, it may not be possible to recognize within-
and between-island contributions. Nei & Li (1973)
and Feldman & Christiansen (1974) have pointed
out that if a sample contains contributions from
heterogeneous sources then some LD will be found,
regardless of whether it exists within the random
mating regions. Such LD will not persist over genera-
tions except to the extent that exactly the same regions

J. A. Sved 190

https://doi.org/10.1017/S0016672309000159 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672309000159


are combined in successive samples. Such sample
heterogeneity should also be detectable at the individ-
ual locus level through departure from Hardy–
Weinberg expectations.

The variation in values between different samples
also needs to be emphasized. The observed values of
Figs 2 and 3 are based on averages of many thousands
of replicate simulations. Any estimated values of mi-
gration and effective population size parameters from
a single set of populations may thus have extremely
high standard errors.

(i) Comparison with previous studies

Three previous studies have looked at LD within
subdivided populations (Ohta, 1982a, b ; Tachida
& Cockerham, 1986; Vitalis & Couvet, 2001a, b).
Ohta introduced a range of within- and between-
population LD parameters by analogy with the IS, IT,
ST notation introduced by Wright (1931) to measure
inbreeding in a hierarchical manner. Five parameters
were introduced, including DIS

2 measuring LD within
populations and DIT

2 , DST
2 , DST

k2 and DST
k2 , measuring

various levels of departure of within-population
haplotype and gene frequencies compared with over-
all haplotype and gene frequencies.

Tachida & Cockerham (1986) introduced a more
systematic parameter set. They considered genes on
the same gamete, genes on different gametes within an
individual, genes on different individuals within a
deme, and genes on different demes within the same
population. Derivations assumed the Wright–Fisher
model in which there is no distinction between genes
in the same individual and genes in different individ-
uals within the same deme. As in Ohta (1982a, b),
expectations were derived for the equilibrium case in
a model including mutation, migration and recombi-
nation.

The formulation of the present paper differs from
that of Ohta (1982a, b) and of Tachida & Cockerham
(1986) in the types of population and mutation
models. The latter studies are relevant to long-term
population descriptions. Ohta considered a model for
the past evolution of humans, assuming a population
structure of 200 subpopulations of size 100, with
substantial migration levels and replacement of sub-
populations following extinction. The model assumed
a high mutation rate to new alleles. By contrast, the
present study is oriented towards migration between
current human populations. It considers the level of
LD within and between populations starting with
subdivision at arbitrary levels of LD, over time inter-
vals sufficiently limited that mutation will not play a
role. Although the equations have simple steady state
solutions, their applicability is limited in the case
where time periods are long enough for mutation to
be of importance.

The between-population measure of the present
study, rirj, also differs from the between-population
measures of previous studies. Although it uses corre-
lation r values rather than the D values of these
studies, the corresponding Di Dj statistic does not
appear explicitly in their measures. In a model with
large numbers of populations, however, the expec-
tation of Di Dj is approximately equal to the demic
LD measure of Tachida & Cockerham (1986).

The model introduced by Vitalis & Couvet
(2001a, b) is similar to the model of Tachida &
Cockerham (1986), except that a distinction is made
between genes in the same individual and genes in
different individuals, thereby allowing different de-
grees of self-fertilization to be taken into account.
Explicit measures for between-population LD are
not given in this formulation, since their expectation
would require 28 parameters (Vitalis & Couvet,
2001a). These authors consider instead optimal pro-
cedures for estimating Ne and m, assuming a model
with an infinitely large number of sub-populations.
The extra information available from the combi-
nation of single locus and two-locus parameters
allows a more accurate estimate of Nem com-
pared with that given by the application of eqns (14)
and (15), which consider only two-locus LD mea-
sures.

(ii) Application to human populations

The recurrence equations have been applied to esti-
mate the time of divergence of human populations
(Fig. 4), using data from African (YRI) and non-
African (CEU) Hapmap populations. A primary
conclusion from this analysis is that the divergence
between populations is difficult to explain without
invoking some gene exchange between populations.
The results are in best agreement with a model in
which this gene exchange occurred some time in the
past rather than recently.

It is important to note that such gene exchange
does not need to be very large before it overwhelms
separation time as a factor determining population
divergence in LD values. The conclusion regarding
gene exchange from the present paper is similar to the
proposal of multiple migration and back-migration
events suggested by Templeton (2002) from single
locus analyses. The time frames considered in the
present study are, however, much shorter. The calcu-
lations of Fig. 4 are based on the assumption of
an actual separation time of around 0.06 Myr, as
opposed to separation times suggested by Templeton
ranging up to and beyond 1 Myr. In reconciling these
estimates, it therefore needs to be borne in mind that
the LD analysis of the current paper is very sensitive
to low levels of migration. Once migration has been
invoked as a factor in limiting the divergence of LD
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values, the possibility of separation times much longer
than 0.06 Myr cannot be ruled out.

I am grateful for the advice and encouragement of Bill Hill
over a number of years in discussions of LD theory,
particularly in the writing of the present paper. I am also
grateful to Eugene Seneta for his suggestions on possible
alternative approaches. Hidenori Tachida, Peter Visscher,
Maria Luisa Castro and an anonymous reviewer made
valuable suggestions for improvements in the paper.
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