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ON A THEOREM OF RAMANAN
HIROSHI UMEMURA

Let G be a simply connected Lie group and P a parabolic subgroup
without simple factor. A finite dimensional irreducible representation
of P defines a homogeneous vector bundle E over the homogeneous space
G/P. Ramanan [2] proved that, if the second Betti number b, of G/P
is 1, the inequality in Definition (2.8) holds provided F' is locally free.
Since the notion of the H-stability was not established at that time, it
was inevitable to assume that b, = 1 and F is locally free. In this paper,
pushing Ramanan’s idea through, we prove that E is H-stable for any
ample line bundle H. Our proof as well as Ramanan’s depends on the
Borel-Weil theorem. If we recall that the Borel-Weil theorem fails in
characteristic p > 0, it is interesting to ask whether our theorem remains
true in characteristic p > 0.

§1. The Borel-Weil theorem

Let us review the Borel-Weil theorem on which the proof of our
theorem heavily depends. We use the notation of Kostant [1] with slight
modifications. For example, we shall denote by p a parabolic Lie sub-
algebra which Kostant denotes by u. In this section all the results are
stated without proofs. The details are found in the paper of Kostant
cited above.

Let g be a complex semi-simple Lie algebra and let (g) be the Cartan-
Killing form on g namely (z,y) = tr (adzoady) for z,y € g.

A compact form of g is a real Lie subalgebra  of g satisfying the
following conditions:

(i) g=1 4+ if is the direct sum of real Lie algebra.

(ii) the Cartan-Killing form is negative definite on f. We fix a compact
form once and for all. Let q = if so that the restriction of the Cartan-
Killing form to q is positive definite. Evidently we have a real decom-
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position g = q + 7q. The star operator is defined by the formula
(U 4 )* = u — w for any 4 +iveg=4q + 1q .

Now let V be a vector space. We denote by V’ the dual of V.

Let ) be a Cartan subalgebra of g and let ¢ be its dimension i.e., ¢
is the rank of the semi-simple Lie algebra g. We know that the restric-
tion () of (g) to § is non-singular and hence we can define a map p—z,
of § onto § by the relation

(y,z,) =<y, o for all yej.

If we define (p, ) = (x,, 2>, we get a non-singular bilinear form (§’) on
§. If we consider g as an j-module through the adjoint representation,
then we get the decomposition of g into §h-invariant spaces:

g="b+ 2, ¢
0Eh

where § acts on g through the character ¢. Let ¢,eg denote an eigen-
vector corresponding to a character ¢, hence [z,e,] = {x,¢ye, for any
x € and, by the structure theorem of semi-simple Lie algebra, g* = Ce,.
Let 4 be the set of characters of §) such that g»£0. 4 is the set of roots of
g and an eigenvector corresponding to a root is called a root vector. We
know that the root vector e, can be chosen so that

(e, e,) =0 if o £ —o
=1 if = —0¢.

Then moreover we have [e,,¢_] = z,.

Let %* be the R-linear subspace of §) generated by the set 4. We
know that the restriction of the Cartan-Killing form on §* is positive
definite. Let © be a subspace of g invariant under the adjoint represen-
tation of §. Then 4(x) is by definition the subset of 4 consisting of all
the roots ¢ such that the eigenspace g is contained in v and 1° is the
set of all the elements zcg snch that (z,y) = 0 for any yer.

Let b be a Borel subalgebra of g. We fix b once and for all. Let
now consider a simply connected complex Lie group G whose Lie alge-
bra is isomorphic to g. Let B be the Borel subgroup of G correspond-
ing to the Borel subalgebra 0. Let 8 be the set of all the parabolic Lie
subalgebra p containing the Borel subalgebra . Let 0 Cp be a parabolic
Lie subalgebra and B C P be the parabolic subgroup corresponding to .
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It is well-known that the quotient space X = G/P is a projective alge-
braic variety. We assume that p does not contain a simple factor. We
denote by n the dimension of X. If we put g, = pN p* and m = 0°, then
g, is reductive in g and m is a maximal nilpotent Lie subalgebra and m
is the set of all nilpotent elements in 6. We know that if n = g° then
n is the maximal nilpotent ideal in p and that p =g, + n. If we put
A, =40n) and 4_ = —A4,, then 4 =4, U 4_ is a disjoint union and there
exists a subset I © 4 such that for any element pe4d, o = 3,1 2.0
where the n, are non-negative or non-positive integers according as pe 4,
or pcd_. The set I is called the set of simple roots.

Let G; be the subgroup of G corresponding to the subalgebra g, and
Z C 5 C Y be the set of all integral linear forms on ). Then the elements
of Z are the weights of all the finite dimensional representation of G,.
Let v, be a finite dimensional irreducible representation of G,. An ex-
tremal weight of v, is a weight appearing in », that becomes highest for
a some lexiographical ordering of Z. We denote by W, the Weyl group
of g,. If & is an extremal weight of v, then the collection {4}, s W,
is the set of all the extremal weights. Let £cZ. We denote by »f the
unique irreducible representation of g, having & as an extremal weight.
Let &, &, be two elements of Z. Then the representations uf:, vi* are
isomorphic if and only if there exists an element ¢ € W, such that &,
=& Letmy=mNg and D, ={geZ|(g,¢) >0 for all pe 4(m,)}. The
elements of D, will be called dominant. One knows that D, is a funda-
mental domain for the action of W, on Z. Hence every irreducible
representation of G, is equivalent to v for one and only one &eD,. The
weight & is called the highest weight of the representation vi. Similarly
—D, is a fundamental domain for the action of W, on Z. Hence every
irreducible representation of G, is equivalent to »{ for one and only one
&e —D,. The weight & is called the lowest weight of the representation.
An irreducible representation of G, is determined by its lowest weight
as well as by its highest weight. When we take g itself as a parabolic
subgroup, we denote W, D for W, and D,. Note that D C D, and W, is
a subgroup of W.

Furthermore if we put

— 1
9=z
@€ 4(my)
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— 1
9= 13
9 € 4(mz)

and

g=9:+ 9.,

then g,e D, and geD.

Define a subset W' C W by putting W' ={oce Wled_ N 4, C 4n)}.
Let D! be a subset of D, defined by putting D} = {§€D|g + £ is regular}.
Recall that an element peZ is said to be regular if (g,¢) # 0 for all
ped.

LEMMA (1.1) (Kostant [1]). The mapping D X W*— Z given by (4, o)
—o(g + ) — g maps D x W' bijectively onto D\.

Now for any ocec W, we denote by 7(s¢) the number of roots in
gd_N 4,.

Let N be the subgroup of G corresponding to the subalgebra n of
g. Then P = G,N is a semi-direct product. It is not difficult to see
that any irreducible representation of P is trivial on N and hence is
equivalent to »7¢ for some &eD, on G,. Conversely if v7¢, e D, is an
irreducible representation of G,, we can extend it to an irreducible
representation of P by giving the action of N trivial. Hereafter we will
regard v ¢ as so extended. Thus, up to equivalence, all irreducible rep-
resentation of P are of the form »;¢ for some &eD,.

Let now £ e D, and consider the product G x Vi¢. If we set

(ou, 8) = (a, vr¢(u)s)

for any ac G,ue P and seV;¢, then = is an equivalence relation, and
E-¢=G X Vi¢/ = — G/P is a vector bundle with fibre V;¢. Let a,beG.
If xt =bPecX, let arxe X denote the coset abP. Similarly if ve E-¢ is
the equivalence class containing (b,s8) e G X Vi¢, let ave E-¢ denote the
equivalence class containing (ab,s). It is clear then that if X,C X is an
open set in X and + is a local holomorphic section of E-¢ defined on
o' X,, given by a()(®) = ay-(a~'x) where xc X, is a local holomorphic
section of E~¢ defined on X,. Now the mapping + — ay- defines an op-
erator p~¢(a) on HYX,E~%). Since G/P is projective H(X,E~¢) is an
finite dimensional representation of G. The Borel-Weil theorem teaches
us that H{(X, E-¢) is irreducible and gives us its lowest weight.
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Borel-Weil Theorem (1.2). Let&eD,. Thenif &¢ D), one has H/(X, E)
=0 for any j. If &¢ Dj, then upon writing & = £(1, ¢) one has HY(X, E~¢)
=0 for all 7 # n(s) and for j = n(c), the representation on HY(X, E~¢)
is isomorphic to the irreducible representation v=* of G.

We shall use the theorem in the following weak form.

COROLLARY (1.3). Using the notation of the theorem, if &¢ D, then
H'X,E~%) = 0.

For if HY(X,E~¢) #+ 0, & = £, 0) with n(e) = 0. ¢(4_) = 4_hence ¢ = id.
Therefore £¢ D.

§2, Stability of homogeneous vector bundles

LEMMA (2.1). Let E be an irreducible homogeneous vector bundle
of rank r. Let s <r be an integer and E’ be an irreducible component

of AE. Then the first Chern class ¢,(E’) of E’ is equal to S rank E’c,(E).
r

Proof. Since E corresponds to the irreducible representation of the
reductive Lie algebra, A°E is the direct sum of indecomposable homoge-
neous vector bundles. Since g, is reductive, g, is isomorphic to the direct
sum ¢® 2q, where ¢ is the center of g, and 2g, = [g;,g,]. We know that
§ is also a Cartan subalgebra of g;,. Hence, denoting by f a Cartan sub-
algebra of 2g, 5 =c@®L Therefore i/ = @Y. ¢ is generated by the
weights of representations of degree 1 of G, and ¥ is generated by the
root system of 2g,. Now let o' = (), 0) e @ ¥ = be the highest
weight of the irreducible representation of G, yielding the vector bundle
E. Then other weights appearing in the representation are of the form
(0, 0p) With o' e? 1< i< 7. detE is given by the representation of
degree 1 of G, with its weight > 7, (w, »}) = trace of the representation
o'. But 7. (0}, o) should be in ¢/ @0. Hence > 7_; (wh), w}) = (0}, 0).
The weights appearing in A*V* are of the form (sof,, ) with o e?.
det £’ is given by the representation of degree 1 of G, with its weight
2.ho1 (Swhy, o)) where t is the rank of E’. By the same argument as above
we conclude >, (Swpy, o)) = ts(wy), 0). This proves Lemma (2.1).

LEMMA (2.2). Let E’ be an irreducible homogeneous wvector bundle
over X. Assume that there exists an ample line bundle H such that
(e,(E")-H*Y) < 0. Then H(X,E) =0 if rank £/ > 2.
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Proof. Let —& be the lowest weight of the representation of G,
giving the vector bundle E. Let —&, be the weight of the representa-
tion of G, of degree 1 giving the line bundle det E’. Hence —¢&, = try;*.
If &, ¢ D, then H'(X, det E’) # 0 by the Borel-Weil theorem. Hence det £/ =
Ox i.e., £, = 0. Now let us obgerve: 1°dim, V¢ > 2, 2° an irreducible rep-
resentation of a semi-simple Lie algebra is the tensor product of irre-
ducible representations of simple Lie algebras, 3° the Dynkin diagram
of a simple Lie algebra is connected. It follows, from the above obser-
vations and from &, =0, that there exists a simple root 5 such that
(&,p) <0. This shows that & does not belong to the Weyl chamber D.
Hence by the Borel-Weil theorem HYX,E’) =0. If & &D, then there
exists a simple root ge Il such that (£,8 < 0. The lowest weight —§,

is written in the form —¢&, = ——11782 + > eem M. Where 1, is a non-positive

integer and r is the rank of E’.*> Therefore (£, 8) = —1—(v, B) — > wem Nalat, B)
r

< 0. Hence & &D and the lemma follows from the Borel-Weil theorem.

DEFINITION (2.3). Let Y™ be a non-singular projective variety and
H an ample line bundle over Y. A vector bundle £ over Y is said to
be H-stable (in the sense of Mumford and Takemoto) if for any coherent
subsheaf F' with 1 < rank F' < rank F, we have following inequality;

((F)-H™) _ (e(B)-H™
rank F' rank F )

THEOREM (2.4). Let E be an irreducible homogeneous vector bundle
over X. Then K is H-stable for any ample line bundle H over X.

Proof. Let F be a subsheaf of £ with 1 < rank F' < rank E such that
we have

(e()-H*™)  (e(E)-H"™)
rank F = rankE

We shall show the existence of such F' leads to a contradiction. Let s
be the rank F'. If we apply 4° to the exact sequence 0—F-—FE, we get
AF — AFE which is injective at the generic point of X. Since F is tor-
sion free, ASF' is isomorphic to a line bundle L over X minus a sub-

® JI, Il is a simple root system of g;.
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variety of codimension 2. On the other hand L uniquely extends to a
line bundle over X. We denote the extention again by L which is the
first Chern class ¢,(F) of F.. By tensoring L™, we get a generic injec-
tion 0 — A°E @ L™ over X minus a subvariety of codimension 2. Hence
H'(X, AE ® L) #+ 0. Now we recall the fact that a line bundle is homo-
geneous. It follows A*F @ L~ is homogeneous. Let E’ be an irreducible
component of ASE. The first Chern class ¢,(F’) is given by Lemma

(2.1) and equal to 35 rank E’-c(E). Hence ¢,(F"QL™) = 3 rank E’.c,(E)
r 7

— rank E’.¢,(F)) = rank E’(—S—CI(E) — cl(F)>. It follows (¢;(B’ Q@ L) o H*™Y)
7

< 0. By Lemma (2.2) H(X,E'® L™ =0 if rankE’ > 2. Hence the
generic injection 0 — AF ® L™ is trivial onto the irreducible component
E’ if rank E’ > 2. Therefore there exist line bundles M; 1 < i< ¢ such
that @{, M, is a direct summand of A°E ® L' and the map above
factors through ¢ — @i M, — AEQ® L. We choose M; so that ¢ is
minimum. The calculation above shows that (M,;-H*') < 0. On the
other hand we have a generic injection ¢ — M, for any 1 <7< 4. Hence
M; = 0 and the morphism ¢ — @i, M, =.(—B§=10 is given by a constant
matrix. Tensoring L, we get L—Léch—j»AsE. Let —¢, be the weight

of the representation of degree 1 of G, defining L. Since f is given
by the constant matrix, f is induced by the homomorphism of G,-modules
V- — @i, V%, The homomorphism j of vector bundles is induced by
the decomposition of the G;-module A°V-¢ where & D, and E is defined
by G,-module V%, We have proved that the homomorphism 7o f of the
vector bundle L to the vector bundle 4°F is induced by the homomorphism
of the G;-module V-% to the G,-module AV-4,

Now we notice the following; let p and p’ be representations of G,
we are given a homomorphism ¢ of G,-module V¢ to G,-module V*'. It
induces a homomorphism @ of vector bundle E°¢ to vector bundle E*.
If we know @, by looking at @ on a fibre we can recover ¢.

By the remark above, we can recover the homomorphism of V¢ to
AV from the homomorphism L — A°E hence from the homomorphism
AF — AE by looking at the homomorphism on a general fibre since
these two homomorphism coincide on an open set of X. This shows that
the image of V=% in AV ~¢ is reduced i.e., written in the form =z, A z,
A +-+ ANz, The subspace generated by ,, x,, - -+, x, in V=% ig G-invari-
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ant. This contradicts the irreducibility of V-—¢.,

EXAMPLES (2.4). The universal bundle and the tangent bundle of
the Grassmannian are H-stable. In particular the tangent bundle of the
projective space P" is H-stable.
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