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Abstract

Mealybug is an important pest of cassava plant in Thailand and tropical countries,
leading to severe damage of crop yield. One of the most successful controls of
mealybug spread is using its natural enemies such as green lacewings, where the
development of mathematical models forecasting mealybug population dynamics
improves implementation of biological control. In this work, the Sharpe–Lotka–
McKendrick equation is extended and combined with an integro-differential equation
to study population dynamics of mealybugs (prey) and released green lacewings
(predator). Here, an age-dependent formula is employed for mealybug population. The
solutions and the stability of the system are considered. The steady age distributions and
their bifurcation diagrams are presented. Finally, the threshold of the rate of released
green lacewings for mealybug extermination is investigated.
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1. Introduction
Mealybug is a serious pest of food crops, fruit trees and many other cultivated
plants such as cassava, cotton, mango, grape vine and orchid [9]. It is in the
Pseudococcidae family. The commonly found species are Phenacoccus manihoti,
Ferrisiana virgata (cockerell), Phenacoccus madeirensis, Phenacoccus solenopis and
Phenacoccus jackbeardsleyi. Mealybug at any stages can cause damage in plants.
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It sucks sap from many parts of the plant, leading to reduction of photosynthesis,
distortion of leaf and stem, and death [15]. In the absence of its natural enemies and
other control management, this damage can reduce yields by more than 80% [9].

To control the spread of mealybugs, biological control by releasing their natural
enemies has proved experimentally to be an effective method; one of the most powerful
predators is green lacewing [11, 12]. There are many sources of guidelines to deal
with the rate of releasing green lacewings to control the spread of mealybugs. In
1995, Papacek et al. [6] employed green lacewing (Mallada signata (Schneider))
to control aphid populations with release rates of 500–1000 lacewing larvae per
hectare or 1–5 lacewing larvae per plant. Alternatively, pest management specialists
in Australia suggested that a suitable release rate for biological control is about
2000–10 000 green lacewings per hectare [7]. In January 2010, the National Biological
Control Research Center (NBCRC)-Central Regional Center suggested releasing 10
million green lacewing eggs to control the spread of mealybugs in the infested areas of
Kanchanaburi and Suphanburi provinces in Thailand [32]. To verify the optimal rate
of green lacewing release in farm work, an in-depth understanding of mealybug–green
lacewing (predator–prey) interactions is necessary.

Traditionally, the population dynamics of two species have been described by Lotka
and Volterra [25, 35] as follows:

dx
dt

= cx − αxy, (1.1)

dy
dt

= γxy − dy, (1.2)

where x(t) and y(t) denote the populations of the prey and predator species,
respectively; c is the natural growth rate of prey, d is the natural death rate of predator,
α is the death rate per encounter of prey due to predation, and γ is the efficiency
of conversion of eaten prey into predator. Over the past few decades, this model
has been improved and applied by many researchers. Because of the difference of
two behavioural time scales, Arditi and Ginzburg [4] suggested including a predator
abundance term in the trophic function (the per capita rate of consumption), which
led to ratio-dependent models. This new form of function is more appropriate for
heterogeneous systems, and can solve the problems which may occur in the classical
predator–prey model (1.1)–(1.2), including paradoxes of enrichment and biological
control [3, 5]. Since the integer-order differential operator is local, the fractional-order
differential operator is introduced to obtain non-local properties. The next state of the
system is then dependent on the current state and all of the preceding states of the
system [21].

A fractional Lotka–Volterra model was proposed by Das et al. [14]. Its solution was
obtained through an analytical method called the homotopy perturbation method. The
influence of the fractional order on both predator and prey populations was discussed
[13]. On the other hand, approximate analytical solutions of the fractional Lotka–
Volterra model were derived by using a hybrid approach which is the combination of
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the homotopy analysis method, Laplace transforms and homotopy polynomials [21].
To handle spatial and individual behaviours of heterogeneity, Hugo et al. proposed a
population-driven, individual-based model where the individual scale was used only
for the predation process [33]. Their work demonstrated the link between individual
and population scales. Recently, the Lotka–Volterra model with the state-dependent
Riccati equation control technique was employed to study biological control of spider
mite Panonychus ulmi. The results indicated that the approaches are efficient in
stabilizing the system at the desired point, which can minimize economic damage
[34].

Due to the widely recognized biological fact that age plays an important role in
death and fecundity rates of a population, a partial differential equation in which time
and age are independent was introduced. Let u(a, t) be the population density (or age
distribution) of individuals of age a at time t, a ≥ 0, t ≥ 0. A general age-structured
model for the evolution process was proposed by Sharpe et al. [26]:

∂u(a, t)
∂a

+
∂u(a, t)
∂t

= −µ(a, t)u(a, t), (1.3)

where µ(a, t) is the mortality rates per capita. Equation (1.3) is also known as the
Sharpe–Lotka–McKendrick equation used to describe the dynamics of population
density of individuals.

The birth rate process is described by the renewal law

u(a, t) =

∫ ∞

0
β(a, t)u(a, t) da, (1.4)

where β(a, t) is the renewal rate, and gives the proportion of newborn population at
time t with parents of age a. The initial age distribution is given by

u(a, 0) = u0(a). (1.5)

The derivation and properties of this age-structure model are discussed (see, for
example, [2, 16, 27]). Equations (1.3)–(1.5) have been developed in many directions,
including partition into two subpopulations [18], spatial effect with diffusive process
[8, 17, 22, 23], and age–sex-structured population [31]. Different numerical methods
for age-structured population were reviewed and their numerical solutions were also
presented [1, 24, 28, 36]. Solutions of common age-structured models (the Leslie
matrix, the difference equation, the integral equation) were compared [20]. The
approximation of equations (1.3)–(1.5) in various forms of mortality function was
discussed [19]. Moreover, age-structured models have been tested with real data.
Sharpe and Lotka derived the expression for fixed age distribution (independent of
time), and applied this formula to calculate the population of England and Wales in
1871–1880. Their results indicated that the calculated values conform quite closely
to the observed data [30]. Chiu [10] proposed some new algorithms for estimating
parameter functions in the models by practical data. With these algorithms and a
numerical method, the human population can be predicted.
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Unlike the previous research which considers predator–prey interaction regardless
of age or focuses on the age-structure model of a single population, in this work we
study population dynamics of two species with age structure for prey by extending
equation (1.3) and considering the equation for prey in the Lotka–Volterra model.
We then also introduce a released-predator term in the system as a biological control.
Therefore, this model will be useful in the field of pest management.

In Section 2 the predator–prey model with an age-dependent formula for prey is
proposed. We initially derive the implicit solutions, one for predator and another for
prey. To simplify the model, we analyse the steady age distributions in Section 3.
Then the system can be solved explicitly. After the steady distributions are found, we
investigate their stabilities and obtain the bifurcation diagrams presented in Section 4.
In Section 5 we focus on numerical examples for the mealybug problem controlled by
green lacewings. Finally, in Section 6, we summarize the discussion of the results and
draw some conclusions.

2. The predator–prey model with age-dependent formula for the prey

Let P(a, t) be the population size density of prey over age a at time t, and M(t) be the
predator population size at time t for a, t ≥ 0. To investigate the population dynamics
of prey, we extend the Sharpe–Lotka–McKendrick equation (1.3) by multiplying the
mortality rate by the predator population size. Combining this equation with the
integro-differential equation for the predator leads to a population model with age
structure for prey as follows:

∂P(a, t)
∂a

+
∂P(a, t)
∂t

= −µM(t)P(a, t), (2.1)

dM(t)
dt

= µ
(∫ ∞

0
P(a, t) da

)
M(t) − δM(t) + g, (2.2)

with initial and boundary conditions

P(0+, t) = lim
a→0+

P(a, t) = b
∫ ∞

0
P(a, t) da, (2.3)

P(a, 0) = p0(a), (2.4)
M(0) = c, c > 0. (2.5)

We also define

K(t) =

∫ ∞

0
P(a, t) da.

Variables and their units are given in Table 1, where BM and T stand for biomass and
time (usually in days), respectively. We have taken β in equation (1.4) as a constant and
denoted it by b as shown in (2.3). Parameters µ, δ and g are also constants for sampling
where the rate of released predator g is used to control the growing population of prey
(for more information see [29]).
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Table 1. Details of variables and parameters used.

Variable Symbol Unit

Prey age population density P(a, t) BM · T−1

Predator population M(t) BM
Death rate of prey µ BM−1 · T−1

Death rate of predator δ T−1

Introduced predator rate g BM · T−1

Total prey (all ages) K(t) BM
Renewal rate of prey b T−1

2.1. Implicit solution of prey We solve equation (2.1) using the method of
characteristics. Let s = t − a and τ = t. Then equation (2.1) becomes the partial
differential equation

∂P(s, τ)
∂τ

= −µ(τ)P(s, τ).

We solve this equation by integrating by parts and obtain

P(s, τ) = F(s)e−µ
∫ τ

0 M(τ′) dτ′ ,

where F is an arbitrary function to be found. The solution of the original equation is,
therefore,

P(a, t) = F(t − a)eµ
∫ t

0 M(t′) dt′. (2.6)

Case I: t < a. The initial condition at t = 0 gives P(a, 0) = F(−a) = p0(a), so
F(t − a) = p0(a − t) and

P(a, t) = p0(a − t)e−µ
∫ t

0 M(t′) dt′ for t < a. (2.7)

Case II: t > a. The renewal condition at a = 0: from equations (2.3) and (2.6),
P(0, t) = F(t)e−µ

∫ t
0 M(t′) dt′ = b

∫ ∞
0 P(a, t) da. So

F(t) = beµ
∫ t

0 M(t′) dt′
(∫ t

0
P(a, t) da +

∫ ∞

t
P(a, t) da

)
= beµ

∫ t
0 M(t′) dt′

(∫ t

0
F(t − a)e−µ

∫ t
0 M(t′)dt′ da +

∫ ∞

t
p0(a − t)e−µ

∫ t
0 M(t′) dt′da

)
= b

∫ t

0
F(t − a) da + b

∫ ∞

t
p0(a − t) da. (2.8)

Let a′′ = t − a and a′ = a − t. Then equation (2.8) becomes

F(t) = b
∫ t

0
F(a′′) da′′ + b

∫ ∞

0
p0(a′) da′,

which yields
F′(t) = bF(t)
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and so
F(t) = Cebt. (2.9)

From equation (2.8),

F(0) = C = b
∫ ∞

0
p0(a) da.

Substituting for C into (2.9),

F(t) = bebt
∫ ∞

0
p0(a) da ≡ bebtK0,

where K0 =
∫ ∞

0 P0(a) da. Thus,

P(a, t) = beb(t−a)K0e−µ
∫ t

0 M(t′) dt′ for t > a. (2.10)

2.2. Implicit solution for the predator Solving equation (2.2) by using the

integrating factor e−µ
∫ t

0 K(z) dz+δt and the definition of K(t) in equation (2.3) yields

M(t) = geµ
∫ t

0 K(z) dz−δt
∫ t

0
e−µ

∫ t′

0 K(z) dz+δt′ dt′. (2.11)

Later in Section 4, we find an equation for M(t).

3. The steady age distribution of the system
Let Ps(a) and Ms be the equilibrium solutions of our age-structured population

model (2.1)–(2.5) called the steady age distributions which are independent of time.
We then obtain the corresponding system

dPs

da
=−µMsPs, (3.1)

dMs

dt
= µKsMs − δMs + g = 0, (3.2)

with renewal condition

Ps(0) = b
∫ ∞

0
Ps(a) da ≡ bKs. (3.3)

Here we define Ks =
∫ ∞

0 Ps(a) da. So either there is no prey (the monoculture solution),
or

Ps(a) = bKse−µaMs . (3.4)

From equations (2.2) and (3.2)–(3.4), we obtain

Ms =
b
µ
, Ps(a) =

bδ − gµ
µ

e−ab, and Ks =
bδ − gµ
µb

.

Thus, the solutions of the system (3.1)–(3.3) are:

(1) (Ps,Ms) = (0, g/δ);
(2) (Ps, Ms) = (e−ab(bδ − gµ)/µ, b/µ) which is biologically feasible, provided that

Ps(a) ≥ 0 if and only if g ≤ bδ/µ ≡ δMs.
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4. Stability

Recall from equation (2.2) that

dM(t)
dt

= µ
(∫ ∞

0
P(a, t) da

)
M(t) − δM(t) + g.

We substitute P(a, t) from (2.7) and (2.10) into the formula∫ ∞

0
P(a, t)da =

∫ t

0
P(a, t) da +

∫ ∞

t
P(a, t) da

=

(∫ t

0
beb(t−a)K0 da +

∫ ∞

t
p0(a − t) da

)
e−µ

∫ t
0 M(t′) dt′ .

Let a′ = a − t. Then∫ ∞

0
P(a, t) da =

(
K0ebt(1 − e−bt) +

∫ ∞

0
p0(a′) da′

)
e−µ

∫ t
0 M(t′) dt′

= K0ebt−µ
∫ t

0 M(t′) dt′

leads to
dM(t)

dt
= µK0ebt−µ

∫ t
0 M(t′) dt′M(t) − δM(t) + g (4.1)

with M(0) = c.
To obtain a local equation, we differentiate (4.1) with respect to t, which gives

d2M
dt2 = (µK0ebt−µ

∫ t
0 M(t′) dt′ − δ)

dM
dt

+ µK0M(b − µM)ebt−µ
∫ t

0 M(t′) dt′ . (4.2)

From equation (4.1),

ebt−µ
∫ t

0 M(t′) dt′ =
δ

µK0
−

g
µK0M

.

Then equation (4.2) becomes

d2M
dt2 = −

g
M

dM
dt

+ (b − µM)(δM − g). (4.3)

For stability of the steady age distribution, we let solutions of model (4.3) be

M(t) = Ms + m(t),

where |m(t)| � 1, that is, m(t) is a small disturbance from the fixed point. We get

d2m
dt2 = −

g
Ms

dm
dt

+ (b − µ(Ms + m))(δ(Ms + m) − g).

From the previous section, we have two steady-state age distributions, which are
(Ps,Ms) = (0, g/δ) and (Ps,Ms) = (e−ab(bδ − gµ)/µ, b/µ).
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Figure 1. Bifurcation diagrams for (a) prey and (b) predator.

For Ms = g/δ, we have

d2m
dt2 + δ

dm
dt

+ (µg − δb)m + δµm2︸︷︷︸
higher-order term

= 0.

We determine the stability of this system using the corresponding eigenvalues. We then
obtain that (Ps,Ms) = (0, g/δ) is stable when g > δb/µ, and is unstable elsewhere.

For Ms = b/µ,

d2m
dt2 +

gµ
b

dm
dt

+ (δb − µg)m + δµm2︸︷︷︸
higher-order term

= 0.

Again, the eigenvalue technique is employed, providing the stability condition for
(Ps, Ms) = (e−ab(bδ − gµ)/µ, b/µ) which is g < δb/µ. Therefore, the stabilities of this
system are found and shown on the bifurcation diagrams in Figure 1.

5. Numerical results: application to the control of mealybugs in crops
In this section, specific examples are presented to verify the theoretical results

divided into two cases based on the steady state where the threshold is g = δb/µ. Let
b = 0.5, µ = 1.6, δ = 0.7, g = 1 (g > δb/µ) for the first case, and b = 0.5, µ = 0.2, δ =

0.7, g = 0.3 for the second. By breaking the second-order ODE (4.3) into two first-
order ODEs, the predator population dynamics is carried out. Each of Figures 2 and
3 shows the behaviour dynamics of the system consisting of two first-order ODEs
for a certain set of parameters. The long-term solutions for the first and second cases
are Ms1 = g/δ = 1.429 and Ms = b/µ = 2.5, respectively. Observe that the behaviour of
the predator population fluctuates considerably, and it takes more time to reach a stable
period when g is smaller. In other words, the greater the number of predators added,
the faster the control of mealybugs is achieved. Moreover, there is no overwhelming
population of predators which may cause another problem.
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Figure 2. Population of predator for b = 0.5, µ = 1.6, δ = 0.7, g = 1.

Figure 3. Population of predator for b = 0.5, µ = 0.2, δ = 0.7, g = 0.3.

Figure 4. Population of prey for b = 0.5, µ = 1.6, δ = 0.7, g = 1.

After obtaining the numerical results for M, we can simulate the prey density using
equations (2.7) and (2.10). Define the initial condition (2.4) as P(a, 0) = p0(a) = Ceka

for some positive constants C and k. This function represents the population of
mealybugs over age a at the first observation time. We then evaluate the population
density of prey for corresponding cases. The results are illustrated in Figures 4 and 5.

In the case where g > δb/µ, P(a, t) tends to zero for large t, that is, no mealybug
survives. Otherwise, P(a, t) converges to e−ab(bδ − gµ)/µ = 1.45e−0.5a.
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Figure 5. Population of prey for b = 0.5, µ = 0.2, δ = 0.7, g = 0.3.

6. Discussion and conclusion

We have analysed the predator–prey population model with age-dependent formula
for the prey. The implicit solutions for both predator and prey are evaluated as
equations (2.3), (2.10) and (2.11). By employing the steady age distribution, two
steady states of the system are obtained: one is mono-species and the other is
coexisting species. Then, local stability of both steady states is explained. Furthermore,
we get the threshold of the introduced predator level leading to mealybug extinction.
Numerical results with biological meaning are provided in Section 5, which is very
useful for visualizing the mealybug control problem.

Here we have shown that this useful hybrid model, with one age-structured
compartment coupled to an unstructured compartment, has exactly one asymptotically
globally stable steady state. The solution of the transient model is obtained analytically,
albeit implicitly, thus providing a check on computational solutions in more complex
situations. This parallels the outcome in systems which are not age or spatially
structured. The threshold for extermination of the mealybugs (g > δb/µ) will be useful
for practical situations. Prevention of recurring outbreaks requires that this predator
release rate should ideally be maintained. It is expected that a similar outcome will
apply when the parameters are functions of time and/or age.
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