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Abstract

In this paper, we consider the existence of multi-soliton structures for the nonlinear Klein–Gordon
(NLKG) equation in R1+d . We prove that, independently of the unstable character of NLKG
solitons, it is possible to construct a N -soliton family of solutions to the NLKG equation, of
dimension 2N , globally well defined in the energy space H 1 × L2 for all large positive times.
The method of proof involves the generalization of previous works on supercritical Nonlinear
Schrödinger (NLS) and generalized Korteweg–de Vries (gKdV) equations by Martel, Merle, and
the first author [R. Côte, Y. Martel and F. Merle, Rev. Mat. Iberoam. 27 (1) (2011), 273–302]
to the wave case, where we replace the unstable mode associated to the linear NLKG operator
by two generalized directions that are controlled without appealing to modulation theory. As a
byproduct, we generalize the linear theory described in Grillakis, Shatah, and Strauss [J. Funct.
Anal. 74 (1) (1987), 160–197] and Duyckaerts and Merle [Int. Math. Res. Pap. IMRP (2008), Art
ID rpn002] to the case of boosted solitons, and provide new solutions to be studied using the recent
work of Nakanishi and Schlag [Zurich Lectures in Advanced Mathematics, vi+253 pp (European
Mathematical Society (EMS), Zürich, 2011)] theory.

2010 Mathematics Subject Classification: 35Q51 (primary); 35L71, 35Q40 (secondary)

1. Introduction

In this paper, we are interested in the problem of constructing multi-soliton
solutions for some well-known scalar field equations. Let f = f (s) be a real-
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valued C 1-function. We consider the nonlinear Klein–Gordon (NLKG) equation
in R1+d , d > 1,

∂t t u −∆u + u − f (u) = 0, u(t, x) ∈ R, (t, x) ∈ R× Rd . (NLKG)

This equation arises in quantum field physics as a model for a self-interacting,
nonlinear scalar field, invariant under Lorentz transformations (see below).

Let F be the standard integral of f :

F(s) :=
∫ s

0
f (σ )dσ. (1)

We will assume that, for some fixed constant C > 0, the following hold.

(A) If d = 1,

(i) f is odd, and f (0) = f ′(0) = 0, and

(ii) there exists s0 > 0 such that F(s0)− 1
2

s2
0 > 0.

(B) If d > 2, f is a pure power H 1-subcritical nonlinearity: f (u) = λ|u|p−1u,
where λ > 0, p ∈ (1, 1+ 4/(d − 2)).

Prescribing f to the above class of focusing nonlinearities ensures that the
corresponding Cauchy problem for (NLKG) is locally well posed in H s(Rd) ×
H s−1(Rd), for any s > 1: we refer to Ginibre and Velo [12] and Nakamura and
Ozawa [23] (when d = 2) for more details.

Also under the above conditions, the energy and the momentum (every integral
is taken over Rd)

E[u, ut ](t) = 1
2

∫ [|∂t u(t, x)|2 + |∇u(t, x)|2 + |u(t, x)|2 − 2F(u(t, x))
]

dx,

(2)

P[u, ut ](t) = 1
2

∫
∂t u(t, x)∇u(t, x) dx, (3)

are conserved along the flow.
Another important feature of equation (NLKG), still under the previous

conditions, is the fact that it admits stationary solutions of the form u(t, x) =
U (x) (that is, with no dependence on t). Among them, we are interested in the
ground-state Q = Q(x), where Q is a positive solution of the elliptic partial
differential equation

∆Q − Q + f (Q) = 0, Q > 0, Q ∈ H 1(Rd). (4)

https://doi.org/10.1017/fms.2014.13 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2014.13


Multi-solitons for nonlinear Klein–Gordon equations 3

The existence of this solution goes back to Berestycki and Lions [1], provided that
the above conditions (in particular (ii)) hold. Additionally, it is well known that Q
is radial and exponentially decreasing, along with its first and second derivatives
(Gidas, Ni, and Nirenberg [9]), and unique up to definition of the origin (see
Kwong [14] and Serrin and Tang [27]).

In fact, our main result written below could be extended to more general
nonlinearity under an additional assumption of spectral nature, namely that the
linearized operator around Q has a standard simple spectrum. More precisely,
Theorem 1 holds, as soon as f satisfies (i), (ii), and the following.

(iii) If d = 2, | f ′(s)| 6 C |s|peκs2
, for some p > 0, κ > 0 and all s ∈ R.

(iv) If d > 3, | f ′(s)| 6 C(1+ |s|p−1) for some p < 1+ 4
d − 2

and all s ∈ R.

(v) −∆z + z − f ′(Q)z has a unique simple negative eigenvalue, and its kernel
is given by {x · ∇Q|x ∈ Rd}, and it is nondegenerate.

Assumption (v) has been checked in cases (A) and (B) (using ordinary differential
equation analysis), and is believed to hold for a wide class of functions f . (See
Lemma 4.)

Since (NLKG) is invariant under Lorentz boosts, we can define a boosted
ground state (a soliton from now on) with relative velocity β ∈ Rd . More
precisely, let β = (β1, . . . , βd) ∈ Rd , with |β| < 1 (we denote | · | the Euclidian
norm on Rd). The corresponding Lorentz boost is given by the (d + 1)× (d + 1)
matrix

Λβ :=


γ −β1γ · · · −βdγ

−β1γ
... Idd + (γ − 1)

|β|2 ββT

−βdγ

 where γ := 1√
1− |β|2

(5)
(ββT is the d × d rank-1 matrix with coefficient of index (i, j) βiβ j ). Then the
boosted soliton with velocity β is

Qβ(x) := Q
(
Λβ

(
0
x

))
= Q

(
x + γ − 1

|β|2 (β · x)β
)
, (6)

where with a slight abuse of notation Q(t, x) = Q(x) in the first equality (namely,
we project on the last d coordinates). Also notice that (NLKG) is invariant by
space translation (shifts). Hence the general family of solitons is parameterized
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by speed β ∈ Rd and shift (translation) x0 ∈ Rd ; they are the travelling wave
solution to (NLKG) defined by

Rβ,x0(t, x) :=
(

Qβ(x − βt − x0)

−β · ∇Qβ(x − βt − x0)

)
. (7)

(Observe that the second component is the time derivative of the first one.) This
family is the orbit of {Q} under all the symmetries of (NLKG) (general Lorentz
transformation, time and space shifts); in particular, it is invariant under these
transformations: see Appendix A for further details.

In the rest of this work, it will be convenient to work with vector data
(u, ∂t u)T . For notational purposes, we use upper-case letters to denote vector
valued functions and lower-case letters for scalar functions (except for the scalar
field Qβ).

We will work in the energy space H 1(Rd)×L2(Rd) endowed with the following
scalar product: denoting U = (u1, u2)

T , V = (v1, v2)
T , we define

〈U |V 〉 =
〈(

u1

u2

) ∣∣∣∣ (v1

v2

)〉
:= (u1|v1)+ (u2|v2) =

∫
(u1v1 + u2v2), (8)

where (u|v) :=
∫

uv,

and the energy norm

‖U‖2 := 〈U |U 〉 + (∇u1|∇u1) = ‖u1‖2
H1 + ‖u2‖2

L2 . (9)

It is well known (see, e.g., Grillakis, Shatah, and Strauss [10]) that (Q, 0) is
unstable in the energy space (This result is known in the physics literature as
Derrick’s theorem [5].). The instability properties of Q and the solution with
energy slightly above E[(Q, 0)] have recently been further studied by Nakanishi
and Schlag; see [24] and subsequent works. Their ideas are further developments
of the primary idea introduced in Duyckaerts and Merle [6], in the context of
the energy-critical nonlinear wave equation; there, the relevant nonlinear object
is the ground state W , the unique positive function (up to symmetries) that solves
∆W + W 1+4/(d−2) = 0 – a major difference is that W has polynomial decay,
whereas Q has exponential decay, and so the interaction between two solitons
with different speeds is exponentially small.

In this paper, we want to understand the dynamics of large, quantized energy
solutions. More precisely, we address the question whether is it possible to
construct a multi-soliton solution for (NLKG), that is a solution u to (NLKG)
defined on a semi-infinite interval of time, such that

(u, ∂t u)(t, x) ∼
N∑

j=1

Rβ j ,x j (t, x) as t →+∞.
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Such solutions were constructed for the nonlinear Schrödinger (NLS) equation
and the generalized Korteweg–de Vries (gKdV) equation, first in the L2-critical
and subcritical case by Merle [18], Martel [16], and Martel and Merle [19].
These results followed from the stability and asymptotic stability theory that these
authors developed.

The existence of multi-solitons was then extended by Martel, Merle, and the
first author [3] to the L2 supercritical case: in this latter case, each single soliton
is unstable, and hence the multi-soliton is a highly unstable solution. It turns out
that this is also the case for scalar field equations such as (NLKG). We prove
that, regardless of the instability of the soliton, one can construct large mass
multi-solitons, on the whole range of parameters β1, . . . , βN ∈ Rd distinct, with
|β j | < 1 and x1, . . . , xN ∈ Rd . More precisely, the main result of this paper is the
following.

THEOREM 1. Assume (A) or (B), let β1, β2, . . . , βN ∈ Rd be a set of different
velocities

∀i 6= j, βi 6= β j , and |β j | < 1,

and let x1, x2, . . . , xN ∈ Rd be the shift parameters.
Then there exist a time T0 ∈ R, constants C > 0, and γ0 > 0, only depending on

the sets (β j) j , (x j) j , and a solution (u, ∂t u) ∈ C ([T0,+∞), H 1(Rd) × L2(Rd))

of (NLKG), globally defined for forward times, and satisfying

∀t > T0,

∥∥∥∥∥(u, ∂t u)(t, x)−
N∑

j=1

Rβ j ,x j (t, x)

∥∥∥∥∥ 6 Ce−γ0t .

We remark that this is the first multi-soliton result for wave-type equations.
Although the nonlinear object under consideration is the same as for NLS, for
example, the structure of the flow is different (recall that all solitons are unstable
for (NLKG), irrespective of the nonlinearity). Hence we need to work in a more
general framework, the one given by a matrix description of (NLKG).

Let us describe the main steps of the proof. We first revisit the standard spectral
theory of linearized operators around the soliton, and the second-order derivative
of the energy–momentum functional (see H in (15)) [10]. Since solitons are
unstable objects, it is clear that such a theory will not be enough to describe the
dynamics of several solitons. However, a slight variation of this functional (see H
in (25)) turns out to be the key element to study. We describe its spectrum in great
detail; in particular, we prove that this operator has three eigenvalues: the kernel
zero, and two opposite-sign eigenvalues, with associated eigenfunctions Z±. After
some work we are able to prove a coercivity property for the operator H modulo
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the two directions Z+ and Z−. This analysis was first conducted by Pego and
Weinstein [25] in the context of gKdV equations.

The rest of the work is devoted to the study of the dynamics of small
perturbations of the sum of N solitons, and in particular how the two directions
associated to Z± evolve. Using a topological argument, we can show the existence
of suitable initial data for (NLKG) such that both directions remain controlled for
all large positive time, proving the main theorem. We remark that this method is
general and does not require the study of the linear evolution at large, only a deep
understanding of suitable alternative directions of the linearized operator. A nice
open question should be the extension of this result to the nonlinear wave case,
where the soliton decays polynomially.

For the sake of easiness and clarity, we present the detailed computations in
the one-dimensional case d = 1. This case encompass all difficulties, the higher-
dimension case adding only indices and notational inconvenience: we will briefly
describe the corresponding differences at the end of each section.

Organization of this paper. In Section 2, we develop spectral aspects of the
linearized flow around Qβ , which are more subtle than in the NLS or gKdV
case. In Section 3, we construct approximate N -soliton solutions in Proposition 3,
which we do by estimation backward in time as in [16, 18, 19]. There we present
the nonlinear argument, relying in fine on a topological argument as in [3].
The Lyapunov functional has to be chosen carefully, as we cannot allow mixed
derivatives of the form ∂t x u. Finally, in Section 4, we prove Theorem 1, relying
on the previously proved Proposition 3 and a compactness procedure.

2. Spectral theory

In this section, we describe and solve two spectral problems related to (NLKG).
We will work with functions independent of time, unless specified explicitly. The
main result of this section is Proposition 2.

2.1. Coercivity of the Hessian. First of all, we recall the structure of the
Hessian of the energy around Q. Given Q = Q(x) the ground state of (4) and
Qβ(x) = Q(γ x), where γ = (1− β2)−1/2, we define the operators

L+ := −∂xx + Id− f ′(Q), and L+β = −γ −2∂xx + Id− f ′(Qβ), (10)

Note that L+β is a rescaled version of L+:

L+β (v(γ x)) = (L+v)(γ x).
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As a consequence of the Sturm–Liouville theory and the previous identity, we
have the following spectral properties for L+, and therefore for L+β .

LEMMA 1. The unbounded operator L+, defined in L2(R) with domain H 2(R),
is self-adjoint, has a unique negative eigenvalue −λ0 < 0 (with corresponding
L2-normalized eigenfunction Q−), and its kernel is spanned by ∂x Q. Moreover,
the continuous spectrum is [1,+∞), and 0 is an isolated eigenvalue.

We recall that, from standard elliptic theory, Q− is smooth, even, and
exponentially decreasing in space: there exists c0 > 0 such that

∀ k ∈ N, ∀ x ∈ R, ∃ Ck, |∂k
x Q−(x)| 6 Cke−c0|x |. (11)

It is not difficult to check that one can take any c0 satisfying 0 < c0 6
√

1+ λ0.
Another consequence of Lemma 1 is the following fact: L+β has a unique

negative eigenvalue −λ0 with (even) eigenfunction Q−β (x) := Q−(γ x), and its
kernel is spanned by ∂x Qβ and has continuous spectrum [1,+∞). Additionally,
we have the following.

COROLLARY 1. There exists ν0 ∈ (0, 1) such that, if v ∈ H 1(R) satisfies
(v|Q−β ) = (v|∂x Qβ) = 0, then (L+β v|v) > ν0‖v‖2

H1 .

We now introduce suitable matrix operators associated to the dynamics around
a soliton. These operators will be dependent on the velocity parameter β, but, for
simplicity of notation, we will omit the subscript β when there is no ambiguity.
Define (Do not confuse with the transpose symbol (·)T .)

T = Tβ := −∂xx + Id− f ′(Qβ) = L+β − β2∂xx , (12)

J :=
(

0 1
−1 0

)
, (13)

L :=
(

T 0
0 Id

)
, (14)

and

H := L − J
(
β∂x 0

0 β∂x

)
=
(

T −β∂x

β∂x Id

)
. (15)

The operator H is the standard second-order derivative of the functional for which
the vector soliton R = (Qβ,−β∂x Qβ)

T is an associated local minimizer. Later,
we will discuss this assertion in detail. The following proposition describes the
main spectral properties of H . Recall that 〈·|·〉 and (·|·) denote the symmetric
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bilinear forms on H 1(R)× L2(R) and L2(R), respectively, introduced in (8), and
‖ · ‖ is the energy norm defined in (9).

PROPOSITION 1. Let β ∈ R, |β| < 1. The matrix operator H, defined in
L2(R) × L2(R) with dense domain H 2(R) × H 1(R), is a self-adjoint operator.
Furthermore, there exist α0 > 0, Φ0 = Φ0,β , and Φ− = Φ0,β ∈ S (R)2 (with
exponential decay, along with their derivatives) such that

HΦ0 = 0, 〈Φ0|Φ−〉 = 0, (16)
〈HΦ−|Φ−〉 < 0, (17)

and the following coercivity property holds. Let V = (v1, v2)
T ∈ H 1(R)× L2(R).

Then,

if 〈V |Φ0〉 = 〈V |HΦ−〉 = 0, one has 〈H V |V 〉 > α0‖V ‖2. (18)

For simplicity of notation, we drop the index β in this section, but we will write
for example Φ0,β in the subsequent sections of the paper.

A stronger version of this result was stated by Grillakis, Shatah, and Strauss in
[10, Lemma 6.2], but the proof given there contained a gap, as noted in the errata
at the end of [11, page 347]. As a replacement, the proposition above (weaker than
the original Grillakis–Shatah–Strauss result, but adequate for our purposes) was
proposed in the errata [11], without proof. We have not found a clear definition
and meaning of the function Φ− in [11], so therefore, for the convenience of the
reader, we write the details of the proof in the following.

Proof of Proposition 1. It is easy to check that H is indeed a self-adjoint operator.
On the other hand, let V = (v1, v2)

T . We have, from (15),

〈H V |V 〉 =
〈(

T v1 − β∂xv2

β∂xv1 + v2

) ∣∣∣∣ (v1

v2

)〉
= (T v1|v1)− β(∂xv2|v1)+ β(∂xv1|v2)+ (v2|v2)

= (L+β v1|v1)+ β2(∂xv1|∂xv1)+ 2β(v2|∂xv1)+ (v2|v2)

= (L+β v1|v1)+ (β∂xv1 + v2|β∂xv1 + v2). (19)

Recalling the notation of Corollary 1, we define

Φ0 :=
(

∂x Qβ

−β∂xx Qβ

)
, Φ− :=

(
Q−β

−β∂x Q−β

)
. (20)

One can check from (19) that 〈Φ0|Φ0〉 6= 0 and 〈HΦ0|Φ0〉= 0, since L+β ∂x Qβ = 0.
Note additionally that by parity 〈Φ−|Φ0〉 = 0. Therefore, (16) is directly satisfied.
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Also notice that

HΦ− = −λ0

(
Q−β
0

)
. (21)

We now prove (18). Let V = (v1, v2)
T ∈ H 1(R) × L2(R) satisfy the

orthogonality properties

〈V |Φ0〉 = 〈V |HΦ−〉 = 0.

Let us decompose v1 in terms of the nonpositive spectral elements of L+β , and
L2-orthogonally:

v1 = aQ−β + b∂x Qβ + q, (q|Q−β ) = (q|∂x Qβ) = 0.

From the orthogonality conditions in (18), we have〈(
v1

v2

)(
Q−β
0

)〉
= 0,

so that a = 0, and hence, from Corollary 1,

〈H V |V 〉 = (L+β q|q)+ (β∂xv1 + v2|β∂xv1 + v2) > ν0‖q‖2
H1 > 0. (22)

We now argue by contradiction. Assume that there exists a normalized sequence
V n = (vn

1 , v
n
2 )

T ∈ H 1(R)× L2(R) that satisfies the orthogonality properties

〈V n|Φ0〉 = 〈V n|HΦ−〉 = 0, ‖V n‖2 = 1, and such that 〈H V n|V n〉 → 0.
(23)

Let us write the L2-orthogonal decomposition for each vn
1 :

vn
1 = bn∂x Qβ + qn, (qn|∂x Qβ) = 0.

Then, in view of (22) and (23) applied this time to the sequence V n , qn → 0 in
H 1 and β∂xv

n
1 + vn

2 → 0 in L2. Now, we compute

0 = 〈V n|Φ0〉 =
∫
(vn

1∂x Qβ − vn
2β∂xx Qβ)

=
∫
vn

1∂x Qβ + β
∫
(β∂xv

n
1 + oL2(1))∂xx Qβ

= bn‖∂x Qβ‖2
L2 + β2

∫
(bn∂xx Qβ + ∂xqn)∂xx Qβ + o(1)

= bn(‖∂x Qβ‖2
L2 + β2‖∂xx Qβ‖2

L2)− β2
∫

qn∂xxx Qβ + o(1).
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Now qn → 0 in L2, so that (qn|∂xxx Qβ) → 0, and hence bn → 0 as n → +∞.
But, in this case, vn

1 = bn∂x Qβ + qn → 0 in H 1 and vn
2 = β∂xv

n
1 + oL2(1)→ 0 in

L2. Hence ‖V n‖2 = ‖vn
1‖2

H1 + ‖vn
2‖2

L2 → 0, a contradiction to (23).
It remains to show that 〈HΦ−|Φ−〉 < 0, namely (17). Indeed,

〈HΦ−|Φ−〉 = −λ0

〈(
Q−β
0

) ∣∣∣∣ ( Q−β
∂x Q−β

)〉
= −λ0‖Q−β ‖2

L2 < 0.

2.2. Eigenfunctions of the linearized flow and Hessian. It is still unclear
whether or not the coercivity property (18)—a key point in the proof of any
stability result—is useful for us, since solitons are actually unstable. It turns
out that, for our purposes, we need a different version of Proposition 1, for the
linearized operator of the flow around Q. In order to state such a result, we
introduce some additional notation.

Let β ∈ R, |β| < 1 be a Lorentz parameter, and consider the operators T , J , L ,
and H defined in (12)–(15). Let

L = L (β) = J L =
(

0 Id
−T 0

)
, (24)

and

H =
(−β∂x −T

Id −β∂x

)
= −H J. (25)

Concerning this last operator, we prove the following result.

LEMMA 2. Let β ∈ R, |β| < 1, γ = (1 − β2)−1/2 be fixed parameters, and λ0

from Lemma 1. There are functions Z0 = Z0,β , and Z± = Z±,β , with components
exponentially decreasing in space, satisfying the spectral equations

H Z0 = 0, and H Z± = ±
√
λ0

γ
Z±. (26)

Moreover, by the nondegeneracy of the kernel spanned byΦ0, we can assume that
Φ0 = J Z0.

Proof. The proof is similar to that of [10]. In particular, we obtain explicit
expressions for Z0 and Z± in the following.

The eigenvalue problem H Z = λZ now reads, with Z(x) = (Ẑ1(x), Ẑ2(x))T ,

T Ẑ2 + β(Ẑ1)x + λẐ1 = 0, Ẑ1 − β(Ẑ2)x − λẐ2 = 0. (27)
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From the fact that T is defined with the soliton Qβ(x) = Q(γ x), it is better to use
functions depending on the coordinate s = γ x . Let

Z1(s) = Ẑ1(x), Z2(s) = Ẑ2(x).

Replacing Z1 in the first equation in (27), we get, in the variable s,

−γ 2 Z ′′2 + Z2 − f ′(Q)Z2 + βγ (λZ ′2 + βγ Z ′′2 )+ λ(βγ Z ′2 + λZ2) = 0,

namely
−Z ′′2 + Z2 − f ′(Q)Z2 + 2βγλZ ′2 = −λ2 Z2. (28)

Performing the transformation Z2(s) := Z̃2(s)eβγλs , where s ∈ R, we get

−Z̃ ′′2 + Z̃2 − f ′(Q)Z̃2 = −(β2γ 2 + 1)λ2 Z̃2 = −λ2γ 2 Z̃2.

Therefore, by virtue of Lemma 1, we can take Z̃2 = Q−(s) and λ±γ = ±
√
λ0,

where −λ0 < 0 is the first eigenvalue of the standard Schrödinger operator L+,
defined in (10). Thus,

Z±,2(s) = Q−(s)e±β
√
λ0s .

Note that, from (11), Z±,2 decreases exponentially at both sides of the origin,
since |β| < 1 and β

√
λ0 −
√

1+ λ0 < 0.
From (27), we have

Z±,1(s) = βγ Z ′±,2(s)+ λ±Z±,2(s)

=
[
βγ (Q−)s ± β2γ

√
λ0 Q− ±

√
λ0

γ
Q−
]

e±β
√
λ0s

= γ [β(Q−)s ±
√
λ0 Q−]e±β

√
λ0s .

By the same reasons as above, Z±,1 is an exponentially decreasing function. From
these identities, we have

Z±(x) =
(
γβ(Q−)s(γ x)± γ√λ0 Q−(γ x)

Q−(γ x)

)
e±β
√
λ0γ x

=
(
β(Q−β )x(x)± γ

√
λ0 Q−β (x)

Q−β (x)

)
e±β
√
λ0γ x . (29)

Now, we consider the computation of Z0. Replacing λ = 0 in (28), we can choose

Z0,2(s) = Q ′(s), and Z0,1 = βγ Q ′′(s),
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R. Côte and C. Muñoz 12

from which we get

Z0(x) = γ
(

Z0,1(x)
Z0,2(x)

)
= γ

(
βγ Q ′′(γ x)

Q ′(γ x)

)
=
(
βQ ′′β(x)
Q ′β(x)

)
. (30)

It is clear that H Z0 = 0. Similarly, we have H Z± = ±(
√
λ0/γ )Z±, which

proves (26).

In order to prove Proposition 2, we need to prove the existence of two additional
functions, both associated to Z±.

LEMMA 3. There exist unique functions Y±, with components exponentially
decreasing in space, such that

HY± = Z±, 〈Φ0|Y±〉 = 0.

Moreover, Y± satisfy the additional orthogonality conditions 〈Y±|HY±〉 = 0.

Proof. Let us prove the existence of Y±. It is well known that a necessary and
sufficient condition for existence is the following condition: it suffices to check
that Z± are orthogonal to Φ0, the generator of the kernel of H . Indeed, we have
from (26), (25), the self-adjointedness of H , and Proposition 1, that

〈Φ0|Z±〉 = ± γ√
λ0
〈Φ0|H Z±〉 = ∓ γ√

λ0
〈Φ0|H J Z±〉 = 0.

However, we need some additional estimates on Y±. In what follows, we write
down explicitly the equation HY± = Z±. It is not difficult to check that Y± =
(Y±,1, Y±,2)T satisfies the equations

T Y±,1 − β(Y±,2)x = Z±,1, β(Y±,1)x + Y±,2 = Z±,2.

Replacing the second equation in the first one, we get (see (10))

L+β Y±,1 = β(Z±,2)x + Z±,1.

Note that (β(Z±,2)x + Z±,1|∂x Qβ) = 0. Therefore, Y±,1 exists and it is
exponentially decreasing, with the same rate as Z±,1 and Z±,2. A similar
conclusion follows for Y±,2.

Since Y± is unique modulo the addition of a constant times Φ0, it is clear that
we can choose Y± such that 〈Φ0|Y±〉 = 0. On the other hand, from Lemma 2,

〈Y±|HY±〉 = 〈Y±|Z±〉 = ± γ√
λ0
〈Y±|H Z±〉 = ∓ γ√

λ0
〈HY±|J Z±〉

= ∓ γ√
λ0
〈Z±|J Z±〉 = 0.

The main result of this section is the following alternative to Proposition 1.
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PROPOSITION 2. There exists µ0 > 0 such that the following holds. Let V ∈
H 1 × L2 such that 〈Φ0|V 〉 = 0. Then

〈H V |V 〉 > µ0‖V ‖2 − 1
µ0
[〈Z+|V 〉2 + 〈Z−|V 〉2].

Proof. It is enough to prove that the orthogonalities 〈Φ0|V 〉 = 〈Z+|V 〉 =
〈Z−|V 〉 = 0 imply that

〈H V |V 〉 > µ0‖V ‖2,

for some µ0 > 0, independently of V . In order to prove this assertion, we first
assume that β 6= 0 and decompose orthogonally V and Y± (cf. the previous
Lemma) as follows:

V = Ṽ + α−Φ− + α0Φ0, Y± = Ỹ± + δ0Φ0 + δ±Φ−, (31)

with
〈Ṽ |Φ0〉 = 〈Ỹ±|Φ0〉 = 〈Ṽ |HΦ−〉 = 〈Ỹ±|HΦ−〉 = 0. (32)

Since 〈Φ0|Φ−〉 = 〈Φ0|V 〉 = 〈Φ0|Y±〉 = 0 and 〈Φ−|HΦ−〉 < 0, it is clear that
α0 = δ0 = 0 and α−, δ± are well defined. Moreover, we have the following.

CLAIM. For all β ∈ (−1, 1)\{0}, Ỹ+ and Ỹ− are linearly independent as L2(R)2
vector-valued functions with real coefficients.

Indeed, to see this, assume that there is λ̃ 6= 0 such that Ỹ+ = λ̃Ỹ−. Then, from
the previous decomposition and Lemma 3,

Z+ − λ̃Z− = H(Y+ − λ̃Y−) = (δ+ − λ̃δ−)HΦ−. (33)

This identity contradicts (29) and (20), which establish that Z+ and Z− have
essentially different rates of decay at infinity, different to that of HΦ−, for all
β 6= 0, which makes (33) impossible.

The analysis is now similar to that in [7, Lemma 5.2]. We have, from (31),

〈H V |V 〉 = 〈H Ṽ + α−HΦ−|Ṽ + α−Φ−〉 = 〈H Ṽ |Ṽ 〉 + α2
−〈HΦ−|Φ−〉. (34)

On the other hand, since 〈Z±|V 〉 = 0, we have, from Lemma 3,

0 = 〈Y±|H V 〉 = 〈Ỹ± + δ±Φ−|H Ṽ + α−HΦ−〉 = 〈Ỹ±|H Ṽ 〉 + α−δ±〈HΦ−|Φ−〉.
Similarly,

0 = 〈HY±|Y±〉 = 〈HỸ±|Ỹ±〉 + δ2
±〈HΦ−|Φ−〉.
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We then get

〈H V |V 〉 = 〈H Ṽ |Ṽ 〉 − 〈Ỹ−|H Ṽ 〉〈Ỹ+|H Ṽ 〉√
〈HỸ+|Ỹ+〉〈HỸ−|Ỹ−〉

. (35)

Consider

a := sup
W∈Span(Ỹ+,Ỹ−)\{E0}

∣∣∣∣∣∣ 〈Ỹ+|H W 〉√
〈HỸ+|Ỹ+〉〈H W |W 〉

· 〈Ỹ−|H W 〉√
〈HỸ−|Ỹ−〉〈H W |W 〉

∣∣∣∣∣∣ .
Recall that 〈H · |·〉 is positive definite on Span(Φ0, HΦ−)⊥. Hence apply

Cauchy–Schwarz’s inequality to both terms of the product: it transpires that
a 6 1. Furthermore, if a = 1 (as Span(Ỹ+, Ỹ−) is finite dimensional), there
exists W of norm 1 such that both terms are in the equality case in the Cauchy–
Schwarz inequality; that is, W and Ỹ+ are linearly dependent, and W and Ỹ−
are also linearly dependent. But it would then follow that Ỹ+ and Ỹ− are linearly
dependent, a contradiction to the above claim. This proves that a < 1.

Now, using H -orthogonal decomposition on Span(Φ0, HΦ−)⊥, we deduce that

∀W ∈ Span(Φ0, HΦ−)⊥,

∣∣∣∣∣∣ 〈Ỹ−|H W 〉〈Ỹ+|H W 〉√
〈HỸ+|Ỹ+〉〈HỸ−|Ỹ−〉

∣∣∣∣∣∣ 6 a〈H W |W 〉.

By (35), (32) and (18), we get

〈H V |V 〉 > (1− a)〈H Ṽ |Ṽ 〉 > α0(1− a)‖Ṽ ‖2 > 0,

and so (34) implies that 〈H Ṽ |Ṽ 〉 > α2
−|〈HΦ−|Φ−〉|.

We then conclude that, for C = 4/((1−a))max(1/(α0),‖Φ−‖2/(|〈HΦ−|Φ−〉|)),
C〈H V |V 〉 > C(1− a)〈H Ṽ |Ṽ 〉

>
C(1− a)

2
(〈H Ṽ |Ṽ 〉 + α2

−|〈HΦ−|Φ−〉|)
> 2‖Ṽ ‖2 + 2α2

−‖Φ−‖2 > ‖Ṽ + α−Φ−‖2 = ‖V ‖2.

Finally, if β = 0, we proceed as follows. First of all, we have, from (29)
and (20),

Z± = Q−
(±√λ0

1

)
, Φ0 = Q ′

(
1
0

)
,

so that 〈Φ0|V 〉 = 〈Z±|V 〉 = 0 imply (v1|Q ′) = (v1|Q−) = (v2|Q−) = 0, where
V = (v1, v2)

T . Therefore,

〈H V |V 〉 = (L+v1|v1)+ (v2|v2) > ν0‖V ‖2.
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2.3. Extension to higher dimensions. The equivalent of Lemma 1 (and
therefore assumption (iv) of the Introduction) in dimension d > 2 has the
following form.

LEMMA 4. Assume that d > 2 and that assumption (B) holds. L+ has exactly
one negative eigenvalue, and its kernel is spanned by (∂xi Q)i=1,...,d . Its continuous
spectrum is [1,+∞).

Proof. See Maris [15] and McLeod [17].

As mentioned in the Introduction, this result is open for general nonlinearity
f . In that case, we need to assume that it holds, that is, we need to assume
assumption (v).

The null directions for H are now the d-dimensional vector space spanned
by the functions Φ0,i =

(
∂i Q

β.∇∂i Q

)
. In the proof of Lemma 2, one should rather

perform the transformation Z̃2 = Z2e−γ λβ·x . The rest of the argument is dimension
insensitive.

3. Construction of approximate N-solitons

In this section, we prove Theorem 1. Again, we will give a detailed proof in
the one-dimensional case d = 1, and point out how to extend the proof in higher
dimension, which is done in a similar fashion as in [16].

3.1. The topological argument. We continue with the same notation as in the
previous section, in particular for β ∈ (−1, 1), Qβ(x) = Q(γ x). We suppose
that we are given N different velocities β1, . . . , βN ∈ (−1, 1), already arranged
in such a way that

−1 < β1 < β2 < · · · < βN < 1, (36)

and N translation parameters x1, . . . , xN ∈ R, and we define the solitons and their
sum

R j(t, x) = Rβ j ,x j (t, x) =
(

Qβ j (x − β j t − x j)

−β j(∂x Qβ j )(x − β j t − x j)

)
,

R(t, x) =
N∑

j=1

R j(t, x),
(37)

and their center

y j(t) := β j t + x j , j = 1, . . . , N , (38)
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Finally, given B a real Banach space, x ∈ B, and r > 0, we denote

BB(x, r) = {y ∈B | ‖x − y‖B 6 r}
the closed ball in B centered at x of radius r , and ‖ · ‖B is the associated Banach
norm on B.

LEMMA 5 (Modulation). There exist L0 > 0 and ε0 > 0 such that the following
holds for some C > 0. For any L > L0 and 0 < ε < ε0, if U ∈ H 1(R) × L2(R)
is sufficiently near a sum of solitons whose centers ŷ j are sufficiently far apart,∥∥∥∥∥U −

N∑
j=1

(
Qβ j

−β j∂x Qβ j

)
(· − ŷ j)

∥∥∥∥∥ 6 ε, min{|ŷ j − ŷi | | i 6= j} > L ,

then there exist shifts ỹ j = ỹ j((βk, ŷk)k) such that, if we define

V (x) = U (x)−
N∑

j=1

(
Qβ j

−β j∂x Qβ j

)
(x − ỹ j), Φ0, j(x) = Φ0,β j (x − ỹ j)

(see Proposition 1 for the definition of Φ0,β), then

‖V ‖ 6 Cε, and 〈V |Φ0, j 〉 = 0. (39)

In such a case, we say that U can be modulated into (V, (ỹ j) j).
Moreover, the map U 7→ (V, (ỹ j) j) is a C∞-diffeomorphism on a

neighborhood of
∑N

j=1

( Qβ j
−β j ∂x Qβ j

)
(· − ŷ j).

Proof. This is the classical modulation result, stated as in [3, Lemma 2]. We also
refer to [30, 31], and give a proof in Appendix B.

In what follows, we introduce additional notation. Fix a constant γ0 given by

γ0 := min
{

1
4

√
λ0 min

{
1
γ1
,

1
γ2
, . . . ,

1
γN

}
,

1
4

min{γ1, γ2, . . . , γN }min{β1, β2−β1, . . . , βN −βN−1}
}
> 0.(40)

Let now ε ∈ (0, ε0) and L > L0 be given, where ε0 and L0 are obtained by Lemma
5. It is clear that there exists T0 ∈ R such that, for all t > T0, the center y j of the
solitons R j satisfies

min{|y j − yi | | i 6= j} > L .
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From now on, we fix t > T0. According to Lemma 5, if U ∈ H 1(R) × L2(R)
satisfies ‖U − R(t)‖ 6 ε, then U can be modulated into (V, (ỹ j) j). Moreover, up
to increasing T0, we can assume that e−γ0T0 < ε0.

We can then introduce the modulated solitons and their sum

R̃ j(x) :=
(

Qβ j

−β j∂x Qβ j

)
(x − ỹ j), R̃(x) :=

N∑
j=1

R̃ j(x), (41)

and, for any j = 1, . . . , N (see Proposition 1 and Lemma 2 for the definitions),
let {

Z±, j(s) := Z±(γ j(s − ỹ j)),

Φ0, j(s) := Φ0(γ j(s − ỹ j)), Φ−, j(s) := Φ−(γ j(s − ỹ j)),
(42)

where γ j := (1− β2
j )
−1/2, and

a±, j := 〈V |Z∓, j 〉, (43)

(please mind the signs) along with the vectors

a+ = (a+, j) j , a− = (a−, j) j , and ỹ = (ỹ j) j . (44)

We are now in a position to define our shrinking set.

DEFINITION 1 (Shrinking set V (t)). For t > T0, we define the set

V (t) ⊂ BH1×L2(R(t), ε0)

in the following way: U ∈ V (t) if and only if U can be modulated into (V, ỹ)
where (see (41) and (44))

V = U −
N∑

j=1

R̃ j ,

with

‖V ‖ 6 e−γ0t , |ỹ j − β j t − x j | 6 e−γ0t , (45)
‖a+‖`2 6 e−3γ0t/2, ‖a−‖`2 6 e−3γ0t/2. (46)

DEFINITION 2. We denote by ϕ = (u, ∂t u)T the flow of the NLKG equation; that
is, given S0 ∈ R and U0 ∈ H 1(R)× L2(R),

t 7→ ϕ(S0, t,U0) (47)

is the solution to (NLKG) with initial data U0 at time S0 (with values in H 1× L2).
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In most of what we do, we will have t 6 S0 so that U0 can be thought of as a
final data, and we work backwards in time. The key result of this section is the
following construction of an approximate N -soliton.

PROPOSITION 3 (Approximate N -soliton). There exists T0 > 0 such that the
following holds. For any S0 > T0, there exists a final data U0 such that

∀t ∈ [T0, S0], ϕ(S0, t,U0) ∈ V (t).

At this point, the solution ϕ(S0, t,U0) depends on S0. To prove Theorem 1, we
will need to derive such a solution independent of S0, which we will do via a
compactness argument in the next (and last) section, Section 4.

Our goal is now to prove Proposition 3.
Fix S0 > T0. Consider an initial data U0 at time S0 such that U0 ∈ V (S0). Due

to the blow-up criterion for (NLKG), and the fact that R(t) defined in (37) is
bounded in H 1(R) × L2(R), we have that ϕ(S0, t,U0) is defined at least as long
as it belongs to BH1×L2(R(t), 1). In particular, ϕ(S0, t,U0) does not blow up as
long as it belongs to V (t), and we can define the (backward) exit time

T ∗(U0) := inf{T ∈ [T0, S0] | ∀t ∈ [T, S0], ϕ(S0, t,U0) ∈ V (t)}.
Notice that we could have T ∗(U0) = S0. Also observe that ϕ(S0, t,U0) is defined
and can be modulated on a open neighborhood containing the point S0, due to
local well-posedness theory, up to choosing T0 sufficiently large. Therefore we
can perform computations, for example differentiations, even in the case when
T ∗(U0) = S0, by a standard limiting procedure. Our goal is to find U0 ∈ V (T0)

such that T ∗(U0) = T0.
In order to show such an assertion, we will only consider some very specific

initial data, namely U0 ∈ V (S0) such that (see (44))

• U0 ∈ R(S0)+ Span(Z±(γ j(· − ŷ j)) j=1,...,N ),

• a−(S0) = 0, and

• a+(S0) ∈ BRN (0, e−3γ0 S0/2).

These conditions can be satisfied due to the almost orthogonality of Z±, j , and this
is the content of the following.

LEMMA 6 (Modulated final data). Let S0 > T0 be sufficiently large. There exists
a C 1 map Θ : BRN (0, 1)→V (S0) as follows. Given a+= (a+, j) j ∈ BRN (0, 1),
U0 =: Θ(a+) ∈ V (S0) such that U0 can be modulated into (V0, ỹ) and the
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associated parameters (44) satisfy

a+(S0) = e−3γ0 S0/2a+, a−(S0) = 0. (48)

Moreover,
‖V0‖ 6 Ce−3γ0T0/2. (49)

Proof. The main idea is to consider the map BR2N (0, 1)→ BR2N (0, 1), b± 7→ a±,
where a± corresponds to the data U0 = R(S0) +∑±, j b±, j Z±(γ j(· − ŷ j)), and
to invoke the implicit mapping theorem. We refer to [3, Lemma 3], and provide a
fully detailed proof in Appendix B for the convenience of the reader.

If T ∗ := T ∗(U0) > T0, by maximality, we also have that, for the function ϕ(S0,

T ∗,U0), at least one of the inequalities in the definition of V (T ∗) is actually an
equality. It turns out that the equality is achieved by a+(T0) only, and that the
rescaled quantity e3γ0T ∗/2a+(t) is transverse to the sphere at t = T ∗. This is at the
heart of the proof and is the content of the following.

PROPOSITION 4. Let a+ ∈ BRN (0, 1), and assume that its maximal exit time is
(strictly) greater that T0:

T ∗ = T ∗(Θ(a+)) > T0.

Denote, for all t ∈ [T ∗, S0], the associated modulation (V (t), ỹ(t)) of ϕ(S0, t,
Θ(a+)), defined in (47). Then, for all t ∈ [T ∗, S0],

‖V (t)‖ 6 1
2 e−γ0t , |ỹ j(t)− β j t − x j | 6 1

2 e−γ0t , (50)

‖a−(t)‖`2 6 1
2 e−3γ0t/2, (51)

and
‖a+(T ∗)‖`2 = e−3γ0T ∗/2. (52)

Furthermore, a+(T ∗) is transverse to the sphere; that is,

d
dt
(e3γ0t‖a+(t)‖2

`2)

∣∣∣∣
t=T ∗

< 0.

(Recall that we consider the flow backwards in time.)

For the sake of continuity, we postpone the proof of Proposition 4 until later,
and conclude the proof of Proposition 3 here, assuming Proposition 4.

Let us state a few direct consequences of Proposition 4 (their proofs will also
be given later, in Section 3.2).
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R. Côte and C. Muñoz 20

COROLLARY 2. We have the following properties.

(1) The set of final data which give rise to solutions which exit strictly after T0

Ω := {a+ ∈ BRN (0, 1) | T ∗(Θ(a+)) > T0}

is open (in BRN (0, 1)).

(2) The mapΩ → R, a+ 7→ T ∗(Θ(a+)) ∈ R is continuous (we emphasize that
the data belong to Ω).

(3) The exit is instantaneous on the sphere:

if ‖a+‖`2 = 1, then T ∗(a+) = S0. (53)

We are now in a position to complete the proof of Proposition 3.

End of the proof of Proposition 3. We argue by contradiction. Assume that all
possible a+ ∈ BRN (0, 1) give rise to initial data U0 = Θ(a+) ∈ V (S0) and
corresponding solutions ϕ(S0, t,U0) that exit V (t) strictly after T0; that is,

assume that Ω = BRN (0, 1). (54)

Given U0 ∈ V (S0), we denote Φ(U0) the rescaled projection of the exit spot,

Φ(U0) = e3γ0T ∗(U0)/2a+(T ∗(U0)),

so that Φ(U0) ∈ BRN (0, 1). Let us finally consider the rescaled projection of the
exit spot Ψ , defined as follows:

Ψ : BRN (0, 1)→ BRN (0, 1), a+ 7→ Ψ (a+) = Φ ◦Θ(a+).

Corollary 2 then translates into the following properties for Ψ .

• Ψ : BRN (0, 1)→ SN−1 is continuous (like T ∗, Φ and Θ).

• If ‖a+‖`2 = 1, Ψ (a+) = a+ (see (53) and (48)); that is, Ψ |SN−1 = Id.

These two affirmations contradict Brouwer’s theorem. Hence our assumption (54)
is wrong, and there exists a+ such that the solution U (t) = ϕ(S0, t,Θ(a+))
satisfies T ∗(Θ(a+)) = T0. In particular, U (t) ∈ V (t) for all t ∈ [T0, S0], and
U0 := U (S0) = Θ(a+) satisfies the conditions of Proposition 3.
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3.2. Bootstrap estimates. This section is devoted to the last remaining results
needed to complete Proposition 3: Proposition 4 and Corollary 2.

Proof of Proposition 3. Step 1. First, we introduce some notation. Consider the
flow ϕ(t) = ϕ(S0, t,Θ(a+)) given by Proposition 4, and valid for all t ∈ [T ∗, S0].
From Lemma 5, we have

ϕ(t) = R̃(t)+ V (t), (55)

where

R̃(t, x) =
N∑

j=1

R̃ j(t, x), R̃ j(t, x) = (Qβ j , ∂t Qβ j )
T (x − ỹ j(t)), (56)

ỹ j(t) = β j t + x̃ j(t), (57)

and
V (t) = (v1(t), v2(t))T .

Additionally, from the equation satisfied by ϕ, we have

ϕt =
(

0 Id
∂2

x − Id 0

)
ϕ +

(
0

f (u)

)
,

where ϕ = (u, ut)
T . Replacing the decomposition (55), we have, for

Qβ j = Qβ j (· − ỹ j),

Vt =
(

0 Id
∂2

x − Id+ f ′(Qβ j ) 0

)
V + Rem(t) = L j V + Rem(t), (58)

with L j := L(β j) defined in (24) with potential f ′(Qβ j (· − ỹ j)) (and the same
for H j := Hβ j ),

Rem(t) :=
(

0 Id
∂2

x − Id 0

)
R̃ − R̃t +

(
0

f (u)− f ′(Qβ j )v1

)
=

N∑
k=1

x̃ ′k(t)∂x

(
Qβk

−βk∂x Qβk

)

+

 0

f

(
N∑

k=1

Qβk + v1

)
−

N∑
k=1

f (Qβk )− f ′(Qβ j )v1

 .
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First of all, note that from (20) we have
( ∂x Qβk−βk ∂xx Qβk

) = Φ0,k . If we take the scalar

product of (58) with (R̃ j)x , then the orthogonality (39) (coming from modulation)
leads to the estimate

|x̃ ′j(t)| 6 C(‖V (t)‖ + e−3γ0t), (59)

valid for all j = 1, . . . , N . Indeed, we have

〈(R̃ j)x |Vt〉 = 〈(R̃ j)x |L j V 〉 + 〈(R̃ j)x |Rem(t)〉.
Note that, from (57),

〈(R̃ j)x |Vt〉 = −〈(R̃ j)xt |V 〉 = (β j + x̃ ′j(t))〈∂xx R̃ j |V 〉.
Consequently,

|〈(R̃ j)x |Vt〉| 6 C(1+ |x̃ ′j(t)|)‖V (t)‖.
On the other hand,

〈(R̃ j)x |L j V 〉 =
〈(
∂x Qβ j

∂xt Qβ j

) ∣∣∣∣( v2

−Tβ jv1

)〉
=
〈(

∂x Qβ j

−Tβ j ∂xt Qβ j

)∣∣∣∣ (v2

v1

)〉
,

so that
|〈(R̃ j)x |L j V 〉| 6 C‖V (t)‖.

Finally, we deal with the term 〈(R̃ j)x |Rem(t)〉. From the definition of Rem(t),
we have

〈(R̃ j)x |Rem(t)〉 =
N∑

k=1

x̃ ′k(t)〈(R̃ j)x |Φ0,k〉

+
(
∂xt Qβ j

∣∣∣ f

(
N∑

k=1

Qβk + v1

)
−

N∑
k=1

f (Qβk )− f ′(Qβ j )v1

)
.

Since (R̃ j)x = Φ0, j , we get

〈(R̃ j)x |Φ0, j 〉 = ‖Φ0, j‖2,

and, if k 6= j ,
|〈(R̃ j)x |Φ0,k〉| = |〈Φ0, j |Φ0,k〉| 6 Ce−3γ0t .

We introduce the parameters

m j := 1
2 (β j + β j−1),
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with j = 2, . . . , N − 1, and m1 := −∞, m N = +∞. If x ∈ [m j t,m j+1t], then,
for all p 6= j (see (40)),

|Qβp(t, x)| 6 Ce−3γ0t .

Therefore, inside this region (note that if d > 2 then f is a pure power
nonlinearity)∥∥∥∥∥ f

(
N∑

k=1

Qβk + v1

)
−

N∑
k=1

f (Qβk )− f ′(Qβ j )v1

∥∥∥∥∥
L2

6 Ce−3γ0t + C‖V (t)‖2.

On the other hand, if x /∈ [m j t,m j+1t],
|∂xt Qβ j | 6 Ce−3γ0t .

In conclusion, we have(
∂xt Qβ j

∣∣∣ f

(
N∑

k=1

Qβk + v1

)
−

N∑
k=1

f (Qβk )− f ′(Qβ j )v1

)
6 Ce−3γ0t+C‖V (t)‖2.

(60)
Collecting the preceding estimates, we get (59).
Step 2. Control of degenerate directions. The next step of the proof is to
consider the dynamics of the associated scalar products a±, j(t) and a0, j(t)
introduced in (43).

LEMMA 7. Let a±, j(t) be as defined in (43). There is a constant C > 0,
independent of S0 and T ∗ > T0, such that, for all t ∈ [T ∗, S0],∣∣∣∣a′±, j(t)±

√
λ0

γ j
a±, j(t)

∣∣∣∣ 6 C‖V (t)‖2 + Ce−3γ0t . (61)

Proof. We prove the case of a−, j(t). The other case is similar. We compute the
time derivative of a−, j using (56) and (58), and we choose γ0 > 0 as small as
needed, but fixed.

a′−, j(t) = −ỹ′j(t)〈(Z+, j)x |V (t)〉 + 〈Z+, j |Vt(t)〉

= −x̃ ′j 〈(Z+, j)x |V (t)〉 + 〈(L ∗
j − β j∂x)Z+, j |V (t)〉 +

N∑
k=1

x ′k〈Φ0,k |Z+, j 〉

+ O(‖V (t)‖2 + e−3γ0t).

From Lemma 3, we have 〈Φ0, j |Z+, j 〉 = 0. Therefore, since L ∗
j − β j∂x = H j ,

where H j :=H (Qβ j ) (see (25)), we have, from Lemma 2 and (59),

a′−, j(t) =
√
λ0

γ j
a−, j(t)+ O(|x ′j |‖V (t)‖ + ‖V (t)‖2 + e−3γ0t)

https://doi.org/10.1017/fms.2014.13 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2014.13
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=
√
λ0

γ j
a−, j(t)+ O(‖V (t)‖2 + e−3γ0t).

Step 3. Lyapunov functional. Let L0 > 0 be a large constant to be chosen later.
Let (φ j) j=1,...,N be a partition of the unity of R placed at the midpoint between
two solitons. More precisely, let

φ ∈ C∞(R), φ′ > 0, lim
−∞

φ = 0, lim
+∞

φ = 1. (62)

We have (do not confuse the constant L in (63) with the operator L in (14)), for
all L > L0,

N∑
j=1

φ j(t, x) ≡ 1, φ j(t, x) = φ
(

x − m j t
L

)
− φ

(
x − m j+1t

L

)
, (63)

where m j := 1
2 (β j + β j−1), with j = 2, . . . , N − 1, and m1 := −∞, m N = +∞.

We introduce the j th portion of momentum,

Pj [ϕ](t) := 1
2

∫
φ j ut ux dx, ϕ = (u, ut)

T , (64)

and the modified Lyapunov functional,

F [ϕ](t) := E[ϕ](t)+ 2
N∑

j=1

β j Pj [ϕ](t), (65)

with E[ϕ] being the energy defined in (2). Our first result is a suitable
decomposition of F [u] around the multi-soliton solution.

LEMMA 8. Let V (t)= (v1(t), v2(t))T be the error function defined in Proposition
4. There is a positive constant C > 0 such that∣∣∣∣∣F [ϕ](t)− 1

2

∫
[Q2

x + Q2 − 2F(Q)]
N∑

j=1

1
γ j
−

N∑
j=1

〈H j V |V 〉
∣∣∣∣∣

6 C‖V (t)‖3 + C
L

e−2γ0t , (66)

where

〈H j V |V 〉 :=
∫
φ j(v

2
2 + (v1)

2
x + v2

1 − f ′(Qβ j )v
2 + 2β jv2(v1)x). (67)
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Proof. From the decomposition

ϕ(t) = (u, ut)(t) = (R̃1, R̃2)
T + (v1, v2)

T (t), (68)

we have

F [ϕ](t) = 1
2

∫
(u2

t + u2
x + u2 − F(u))+

N∑
j=1

β j

∫
φ j ut ux

= 1
2

∫
(R̃2

2 + (R̃1)
2
x + R̃2

1 − 2F(R̃1))+
N∑

j=1

β j

∫
R̃2(R̃1)x φ j

+
∫ [

R̃2v2 + (R̃1)x(v1)x + R̃1v1 − f (R̃1)v1

+
N∑

j=1

β j(R̃2(v1)x + v2(R̃1)x)φ j

]

+1
2

∫
(v2

2 + (v1)
2
x + v2

1 − f ′(R̃1)v
2
1)+

N∑
j=1

β j

∫
v2(v1)x φ j

−
∫
(F(R̃1 + v1)− F(R̃1)− f (R̃1)v1 − 1

2 f ′(R̃1)v
2
1)

=: I1 + I2 + I3 + I4.

Let us consider the term I1. Since R̃2 = −∑N
j=1 β j(Qβ j )x and (R̃1)x =∑N

j=1 (Qβ j )x , one has

I1 = 1
2

N∑
j=1

∫
[β2

j (Qβ j )
2
x + (Qβ j )

2
x + Q2

β j
− 2F(Qβ j )− 2β2

j (Qβ j )
2
x ] + O(e−3γ0t)

= 1
2

∫
[Q2

x + Q2 − 2F(Q)]
N∑

j=1

1
γ j
+ O(e−3γ0t).

Now, we consider I2. Integrating by parts, we have

I2 =
∫
v2

[
R̃2 + (R̃1)x

N∑
j=1

β jφ j

]

−
∫
v1

[
(R̃1)xx − R̃1 + f (R̃1)+ (R̃2)x

N∑
j=1

β jφ j

]
−

N∑
j=1

β j

∫
v1 R̃2(φ j)x .
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Note that

R̃2 + (R̃1)x

N∑
j=1

β jφ j =
N∑

k=1

[
−βk(Qβk )x + (Qβk )x

N∑
j=1

β jφ j

]

=
N∑

k=1

(Qβk )x

N∑
j 6=k

β jφ j .

Hence, ∫
v2

[
R̃2 + (R̃1)x

N∑
j=1

β jφ j

]
= O(e−3γ0t).

On the other hand,∫
v1

[
(R̃1)xx − R̃1 + f (R̃1)+ (R̃2)x

N∑
j=1

β jφ j

]
= O(e−3γ0t).

Finally, ∣∣∣∣∣
N∑

j=1

β j

∫
v1 R̃2(φ j)x

∣∣∣∣∣ 6 C‖v1‖L2(R)e−2γ0t .

Gathering the above estimates, we get

|I2| 6 Ce−3γ0t .

Let us consider the integral I3. Since
∑

j φ j = 1, we have

I3 = 1
2

N∑
j=1

∫
φ j(v

2
2 + (v1)

2
x + v2

1 − f ′(R̃1)v
2
1 + 2β jv2(v1)x)

= 1
2

N∑
j=1

∫
φ j(v

2
2 + (v1)

2
x + v2

1 − f ′(Qβ j )v
2
1 + 2β jv2(v1)x)

−1
2

∑
k 6= j

∫
φ j f ′(Qk)v

2
1

−1
2

N∑
j=1

∫
φ j

(
f ′
(

N∑
k=1

Qβk

)
−

N∑
k=1

f ′(Qβk )

)
v2

1 .

Fix ` ∈ {1, . . . , N − 1}. If x ∈ [m`t,m`+1t], then, for all p 6= `,
|Qβp(t, x)| 6 Ce−2γ0t .
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Therefore, for all x ∈ [m`t,m`+1t],∣∣∣∣∣ f ′
(

N∑
k=1

Qβk (t, x)

)
−

N∑
k=1

f ′(Qβk (t, x))

∣∣∣∣∣ 6 Ce−γ0t .

Repeating the same argument for each `, and using (50), we get

I3 = 1
2 〈H j V |V 〉 + O(e−3γ0t).

Finally, we consider I4. It is not difficult to check that

|I4| 6 C‖V ‖3.

Collecting the above results, we get finally (66).

Our next result describes the variation of the momentum Pj .

LEMMA 9. There exists C > 0 independent of time and L such that, for all
t ∈ [T ∗, S0], ∣∣Pj [ϕ](t)− Pj [ϕ](S0)

∣∣ 6 C
L

e−2γ0t . (69)

Proof. A simple computation using (NLKG) shows that

∂t Pj [ϕ](t) = −1
4

∫
u2

t (φ j)x − 1
4

∫
u2

x(φ j)x + 1
4

∫
u2(φ j)x

−1
2

∫
F(u)(φ j)x + 1

2

∫
ut ux(φ j)t . (70)

Indeed, one has

∂t Pj [ϕ](t) = 1
2

∫
ut ux(φ j)t + 1

2

∫
ut ut xφ j + 1

2

∫
ut t uxφ j

= 1
2

∫
ut ux(φ j)t + 1

4

∫
(u2

t )xφ j + 1
2

∫
(uxx − u + f (u))uxφ j

= 1
2

∫
ut ux(φ j)t − 1

4

∫
u2

t (φ j)x − 1
4

∫
(u2

x − u2 + 2F(u))(φ j)x ,

as desired. Now, from the decomposition (68), we replace above to obtain
(compare with (60))

|∂t Pj [ϕ](t)|
6 C

(
e−3γ0t

L
+
∫
v2

2(φ j)x +
∫
(v1)

2
x(φ j)x +

∫
v2

1(φ j)x +
∫

F(v1)(φ j)x

)
.

From the smallness condition of v, we get finally
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R. Côte and C. Muñoz 28

|∂t Pj [ϕ](t)| 6 C
L

e−2γ0t ,

as desired. The conclusion follows after integration in time. �

The previous lemma and the energy conservation law imply the following.

COROLLARY 3. There exists C > 0 independent of time and L > 0 such that, for
all t ∈ [T ∗, S0],

|F [ϕ](t)−F [ϕ](S0)| 6 C
L

e−2γ0t . (71)

Now, we use the coercivity associated to H j . A standard localization argument
(see for example [21]), Proposition 2, and (43) give

N∑
j=1

〈H j V |V 〉 > ν0‖V (t)‖2 − 1
ν0

(‖a+‖2
`2 + ‖a−‖2

`2

)
,

for an independent constant ν0 > 0. From this coercivity estimate, using (71) and
(66), the initial bound (49), and bounding the terms in a± by (46), we get that, for
some C > 0,

∀t ∈ [T ∗, S0], ‖V (t)‖ 6 C√
L

e−γ0t + Ce−3/2γ0t .

Therefore, for L > 4C2, we improve the first condition in (45), to get (50). We can
now integrate the modulation equation (59) for x̃ ′j(t) to get the second estimates
in (50) (by increasing L if necessary).

Now, using (61) on a′−(t) and integrating in time, we improve in a similar way
the conditions in (46), to obtain (51). In conclusion, (52) must be satisfied.
Step 4. Transversality. For notation, let N (a+, t) := e3γ0t‖a+(t)‖2

`2 . Using the
expansion (61), we compute

d
dt

N (a+, t) = 2
N∑

j=1

e3γ0ta′+, j(t)a+, j(t)+ 3γ0N (a+, t)

= −2e3γ0t
√
λ0

N∑
j=1

|a+, j(t)|2
γ j

+O(e3γ0t(‖V (t)‖2
L2 + e−2γ0t)‖a+(t)‖`2)+ 3γ0N (a+, t)

6 −(2c0 − 3γ0)N (a+, t)
−O(e3γ0t(‖V (t)‖2

L2 + e−2γ0t)‖a+(t)‖`2),

where c0 =
√
λ0 mini{1/γi} > 0. Note that from (40) we have 2c0−3γ0 > γ0 > 0.
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Now, at time T ∗ = T ∗(a+), ‖V (T ∗)‖L2 = O(e−γ0T ∗), whereas ‖a+(T ∗)‖`2 =
e−3γ0T ∗/2; that is, N (a+, T ∗) = 1. Hence,

d
dt

N (a+, t)
∣∣∣∣
t=T ∗(a+)

6 −(2c0 − 3γ0)+ O(e−γ0T ∗/2).

Choosing T0 larger if necessary, and as T ∗ > T0 for all a+, we get

d
dt

N (a+, t)
∣∣∣∣
t=T ∗(a+)

6 −1
2
γ0 < 0. (72)

This concludes the proof of Proposition 4. �

We end this section with the proof of Corollary 2.

Proof of Corollary 2. Let us now show thatΩ is open and that the mapping a+ 7→
T ∗(a+) is continuous. Let a+ ∈Ω . We recall that N (a+, t) = e3γ0t‖a+(t)‖2

`2 . By
(72), for all ε > 0 small, there exists δ > 0 such that

• N (a+, T ∗(a+)− ε) > 1+ δ, and

• for all t ∈ [T ∗(a+)+ ε, S0] (possibly empty), N (a+, t) < 1− δ.
By continuity of the flow of the NLKG equation, it follows that there exists η > 0
such that the following holds. For all ã+ ∈ BRN (0, 1) such that ‖ã+ − a+‖ 6 η,
then |N (ã+, t) −N (a+, t)| 6 δ/2 for all t ∈ [T ∗(a+) − ε, S0]. In particular,
ã+ ∈ Ω and

T ∗(a+)− ε 6 T ∗(ã+) 6 T ∗(a+)+ ε.
This exactly means thatΩ contains a neighborhood of a+, and hence is open, and
that a+ 7→ T ∗(a+) is continuous.

Finally, let us show that the exit is instantaneous on the sphere. If ‖a+‖`2 = 1,
then N (a+, S0) = 1, and hence, by (72), N (a+, t) > 1 for all t < S0 in a
neighborhood of S0. This means that T ∗(a+) = S0. �

3.3. Extension to higher dimension. The main part of the proof remains
unchanged. One has to work only for a good definition of the Lyapunov
functional. The key point is to notice that one can find a suitable direction as
in [16]. The set

M = {β ∈ Rd | ∀ j, β · β j = 0},
is of zero measure: let β̄ /∈ M ; up to rescaling, we can assume that |β̄| = 1.
Without loss of generality, we can assume that the indices j satisfy

−1 < (β̄ · β1) < (β̄ · β2) < · · · < (β̄ · βN ) < 1.
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We use again the 1d cut-off function φ defined in Step 3 (see (62)) to define the
new cut-off functions

ψ j(x) = φ

(
β̄ · x − m j t

L

)
− φ

(
β̄ · x − m j+1t

L

)
,

where m j = 1
2 (β j + β j−1) · β̄.

Then all the computations of Step 3 of Section 3.2 follow unchanged. We refer to
[16] (Claim 1 and what follows) for further details.

4. Proof of Theorem 1

The proof of Theorem 1 follows from Proposition 3 in a standard fashion; see
for example [16]. The main point is continuity of the flow for the weak H 1 × L2

topology. More precisely, we have the following.

LEMMA 10. The NLKG flow is continuous for the weak H 1× L2 topology. More
precisely, let Un ∈ C ([0, T ], H 1× L2) be a sequence of solutions to (NLKG), and
assume that, for some M > 0,

Un(0) ⇀ U ∗ in H 1 × L2 − weak, and ∀n, ‖Un(t)‖C ([0,T ],H1×L2) 6 M.

Define U ∈ C ([0, T+(U )), H 1 × L2) to be the solution to (NLKG) with initial
data U (0) = U ∗. Then T+(U ) > T and

∀t ∈ [0, T ], Un(t) ⇀ U (t) in H 1 × L2 − weak.

Proof. This is a simple consequence of the local well-posedness of (NLKG) in
H s × Ḣ s−1 for some s < 1. More precisely, we have the following.

THEOREM (Local wellposedness). There exist 0 6 s f,d < 1 such that, for all
s > s f,g, the following holds. Given any data U0 = (u0, u1) ∈ H s × Ḣ s−1, there
exists a unique solution U ∈ C ([0, T+(U )), H s × Ḣ s−1) to (NLKG) such that
U (0) = U0. Furthermore, we have the following.

(1) The maximal time of existence T+(U ) is the same in all H σ × Ḣ σ−1 for
σ ∈ [s f,d, s]. If finite, it is characterized by

lim
t→T+(U )

‖U (t)‖H s×Ḣ s−1 = +∞.

(2) The flow is continuous in the sense that, if Un is a sequence of solutions
to (NLKG) such that Un(0) → U (0) in H s × Ḣ s−1, then T+(U ) >
lim infn T+(Un) and

∀t ∈ [0, T+(U )), ‖Un −U‖C ([0,t],H s×Ḣ s−1)→ 0 as n→+∞.
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We refer to [29, Theorem 1.2] and the Remark following it for a proof and the
precise value of s f,d (which is not important for us).

Fix 0 < s < 1 be such that the theorem holds. Let t ∈ [0, T ] such that t <
T+(U ).

Let V ∈ (D(Rd))2 and R > 0 such that Supp V ⊂ BRd (0, R).
As Un(0) ⇀ U (0) weakly in H 1 × L2(Rd), it holds by Sobolev compact

embedding that
‖Un(0)−U (0)‖H s×Ḣ s−1(BRd (0,R+t))→ 0.

It follows by finite speed of propagation and the continuity of the flow in the local
well-posedness theorem that

‖Un(t)−U (t)‖H s×Ḣ s−1(BRd (0,R))→ 0.

Hence, denoting Un = (un, ∂t un) and V = (v0, v1),

|〈Un(t)−U (t), V 〉| =
∣∣∣∣∫|x |6R

(
(∂t un(t, x)− ∂t un(t, x))v1(x)

+∇(un − u) · ∇v0 + (un(t, x)− u(t, x))v0(x)
)

dx
∣∣∣∣

6 ‖Un(t)−U (t)‖H s×Ḣ s−1(BRd (0,R))‖V ‖H2−s×Ḣ1−s → 0.

Therefore, Un(t) ⇀U (t) in D ′, and, by the H 1×L2 bound, Un(t) ⇀U (t)weakly
in H 1 × L2.

In particular, ‖U (t)‖H1×L2 6 lim infn→∞ ‖Un(t)‖ 6 M . From there, a
continuity argument shows that T+(U ) > T .

We can now prove Theorem 1. Let (Sn)n>1 ⊂ R be a sequence that satisfies
Sn > S0, Sn increasing and Sn→+∞. From Proposition 3, there exists a sequence
of final data functions U0,n ∈ H 1 × L2 such that

∀t ∈ [T0, Sn], Un(t) := ϕ(Sn, t,U0,n) ∈ V(t). (73)

(We recall that ϕ denotes the flow and is defined in (47).) Note that T0 does not
depend on Sn , and observe that there exists M independent of n such that

∀t ∈ [T0, Sn], ‖Un(t)− R(t)‖H1×L2 6 Me−γ0t . (74)

Let U ∗0 be a weak limit in H 1 × L2 of the bounded sequence Un(T0), and define

U ∗(t) = ϕ(t, T0,U ∗0 ).
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Fix t > T0. Then the previous lemma applies on [T0, t] and shows that T+(U ∗) > t
and Un(t) ⇀ U ∗(t) weakly in H 1 × L2. Hence (74) yields

‖U ∗(t)− R(t)‖H1×L2 6 lim inf
n
‖Un(t)− R(t)‖H1×L2 6 Me−γ0t .

Therefore, T+(U ∗) = +∞ and U ∗ is the desired multi-soliton.

Appendix A. The orbit of Q under general Lorentz transformations

In this appendix, we prove that the orbit of Q under the group generated by
space and time translations, and general Lorentz transformations, is

F := {(t, x) 7→ Qβ(x − βt − x0) | β, x0 ∈ Rd, |β| < 1}.
We recall that we consider Q as a function of time with the slight abuse of notation
Q(t, x) = Q(x).

The map β 7→ Λβ (see (5)) is a group homomorphism from (BRd (0, 1),⊕) to
(Md+1(R), ◦), where ⊕ denotes Einstein’s velocity addition

x ⊕ y = 1
1+ x · y

(
y + x · y
|y|2 y +

√
1− |y|2

(
x − x · y
|y|2 y

))
.

In particular, Λ−βΛβ = Idd+1.
A general Lorentz transformation is an element of O(1, d) ' Rd o O(d), and

hence can be written in the form

ΛU,β :=


1 0 · · · 0
0
... U
0

Λβ, where U ∈ SO(d), that is UU T = Idd .

As Q(x) is radially symmetric, it follows that

Q
(
ΛU,β

(
t
x

))
= Q

(
Λβ

(
t
x

))
= Qβ(x − βt),

and hence the orbit of {Q} under general Lorentz transformations is simply {(t,
x) 7→ Qβ(x − βt)|β ∈ Rd}. We now want to parameterize the other invariances
of (NLKG), that is, time and space shifts. Fortunately, the former reduce to the
latter. Indeed, notice that

ββT ∼


|β|2 0 · · · 0
0
...

0
0

 , so that Idd +γ − 1
|β|2 ββ

T ∼


γ 0 · · · 0
0
... Idd−1

0

 .
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(Here, ∼ indicates similarity of matrices.) In particular, Idd + γ−1
|β|2 ββ

T is
invertible. Then, time translations for Qβ can be thought of as an adequate
space shift:

Qβ(t + t0, x) = Q
(
Λβ

(
t + t0

x

))
= Q

(
Λβ

(
t
x

)
+ t0

(
γ

−β
))

= Q
(
Λβ

(
t
x

)
− t0

(
0
β

))
= Qβ

(
x − t0

(
Idd +γ − 1

β|2 ββT

)−1

(β)− βt

)
.

It follows that F is stable through all general Lorentz transformations and time
and space shifts, and hence it is the orbit of Q through the group generated by
these transformations.

Appendix B. Proof of Lemmas 5 and 6

Proof of Lemma 5. We use the following notation: ŷ = (ŷ j) j=1,...,N , with the
slight change (with respect to (37)) for convenience

R j(x) =
(

Qβ j (x − ŷ j)

−β j(∂x Qβ j )(x − ŷ j)

)
, R(x) =

N∑
j=1

R j(x),

and, if ŷ j = ŷ j(t), we define

R(t, x) :=
N∑

j=1

R j(x).

Similarly, we consider R̃ j and R̃ as in (41). For convenience also, we work with
W := U − R small in H 1 × L2. Consider (see (42))

Φ : (H 1 × L2)× RN → RN ,

(W, (ỹ j) j) 7→
(
〈W + R − R̃|Φ0, j 〉

)
j=1,...,N

.

Let z = (z j) j=1,...,N . By the decay properties of R̃ j ,

(d ỹΦ(W, ỹ).z) j

=
N∑

k=1

zk〈(Φ0,k |Φ0, j 〉 − z j 〈W + R − R̃|(Φ0, j)x〉
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= z j‖Φ0, j‖2
L2 + O

(
e−γ0 L |zk |

)+ O(|z j |‖W‖L2)+ O(|z j |‖ ỹ − ŷ‖).
Observe that ‖Φ0, j‖2

L2 = ‖∂x Qβ j‖2
L2+β2

j ‖∂xx Qβ j‖2
L2 does not depend on ỹ. Hence,

d ỹΦ(W, ỹ) = diag((‖Φ0, j‖2
L2) j)+ O(e−γ0 L)+ O(‖W‖L2)+ O(‖ ỹ− ŷ‖). (75)

Therefore, if L is sufficiently large, then d ỹΦ(0, ỹ) is invertible. Since Φ(0, ŷ) =
0, by the implicit function theorem, it follows that there exist ε > 0, ε 6 η,
and a C 1 function φ : BL2(0, ε)→ BRN ( ŷ, η) such that Φ(W, ỹ) = 0 in BL2(0,
ε)× φ(BL2(0, ε)) is equivalent to ỹ = φ(W ). Finally, we set

V = V (W ) = W + R −
N∑

j=1

R j(· − φ(W ) j).

Proof of Lemma 6. Consider the following maps:

I : R2N → H 1 × L2

b 7→ ∑
j,± b

±
j Z±(γ j(· − ŷ j)),

Θ : V → (H 1 × L2)× RN

W 7→ (V, ỹ),
S : (H 1 × L2)× RN → R2N

(V, ỹ) 7→ (〈
V |Z±, j

〉)
j,± ,

where, in the definition of Θ , (V, ỹ) represents the modulation of U = W +∑
j R j(· − ŷ j(S0)) and V = BH1(0, ε) (ε being defined in the proof Lemma 5);

and in the definition of S , Z±, j is as in (42).
Then I (0) = 0, Θ(0) = (0, ŷ), and S (0, ŷ) = 0. Recall also from Lemma 5

and (41) that

‖V ‖L2 + ‖ ỹ − ŷ‖ + ‖R j(S0)− R̃ j(S0)‖H1 6 C‖W‖L2 .

Lemma 6 is the statement that

Ψ := S ◦Θ ◦I

is a diffeomorphism (depending on S0) on a fixed neighborhood of 0 ∈ R2N (not
depending on S0). This follows from computing dΨ = dS ◦ dΘ ◦ dI . Indeed,
we claim the following.

CLAIM.

dΨ (b) =
(

A 〈Z+|Z−〉A
〈Z+|Z−〉A A

)
+ O(e−3/2γ0 S0 + ‖b‖), (76)

where A = diag((‖Z+, j‖2
L2) j) is an n × n square matrix.
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Let us first conclude the proof of Lemma 6 assuming the claim.
Since the leading order in dΨ (b) is invertible (Z+ and Z− are independent as

eigenfunctions with different eigenvalues of a commun operator H ; see (26)),
and independent of S0 (and of b), we deduce that dΨ is invertible on some ball
BR2N (0, η) (η > 0 independent of S0 sufficiently large). As a consequence, Ψ
is a diffeomorphism from BR2N (0, η) to some neighborhood W of 0 ∈ R2N . Let
δ > 0 be such that BR2N (0, δ) ⊂ W . For any a+ ∈ BRN (0, δ), there exists a unique
b = b(a+) ∈ BR2N (0, η) such that Ψ (b(a+)) = (a+, 0) and ‖b(a+)‖ 6 C‖a+‖.
Take a+ := e−3γ0 S0/2a+ from (48). Then, for all S0 large, we have a+ ∈ BRN (0, δ)
(note that δ does not depend on S0), and (48) is satisfied.

We now conclude by proving the claim, (76). We start with the computation of
the differentials of I , Θ , and S . First, I is linear, so that dI (b) = I for all
b. Second, for H ∈ H 1 × L2, z ∈ RN ,

(dS (V, ỹ).(H, z)) j,± = −z j 〈V |(Z±, j)x〉 + 〈H |Z±, j 〉.
Finally, we consider Θ . Let Φ and φ be defined as in the proof of the Lemma 5
above for R(S0). Then, by (75), d ỹΦ(W, ỹ) is a diagonally dominant matrix, and
thus it is invertible. Denoting by M its inverse, it follows from (75) that

M = diag((‖Φ0, j‖−2
L2 ) j)+ O(‖W‖L2 + ‖ ỹ − ŷ‖ + e−γ0 S0).

DifferentiatingΦ(W, φ(W )) = 0 with respect to W , we find that dφ(W ) = −M ◦
dWΦ(W, φ(W )). Since (dWΦ(W, ỹ).H) j = 〈H |(R̃ j)x(S0)〉 and

Θ(W ) =
(

W + R(S0)−
N∑

j=1

R j(S0, · − φ(W ) j), φ(W )

)
,

we obtain

dΘ(W ).H =
(

H −
∑

j

((M ◦ dWΦ).H) jΦ0, j ,−M ◦ dWΦ(W, φ(W )).H

)

=
(

H +
N∑

j=1

〈H |Φ0, j 〉
‖Φ0, j‖2

L2

Φ0, j ,

(
−〈H |Φ0, j 〉
‖Φ0, j‖2

L2

)
j=1,...,N

)
+ O(‖H‖L2(e−γ0 S0 + ‖W‖L2)).

(Here, Φ0, j depends on S0 through the modulated shift ỹ j .) Let b̃ ∈ R2N . We have

dΨ (b).b̃ = dS (Θ(I (b))).(dΘ(I (b)).I (b̃)).
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By the previous computations, we derive

dΘ(I (b)).I (b̃)=
(
I (b̃)+

N∑
j=1

〈I (b̃)|Φ0, j 〉
‖Φ0, j‖2

L2

Φ0, j ,

(
−〈I (b̃)|Φ0, j 〉
‖Φ0, j‖2

L2

)
j=1,...,N

)
+O(‖b̃‖L2(e−γ0 S0 + ‖b‖L2)).

Inserting the expression of I (b̃), using ‖ ỹ − ŷ‖ 6 C‖b‖, 〈Z±|Φ0〉 = 0, and the
decay properties of the functions Q and Z , we get

dΘ(I (b)).I (b̃) = (I (b̃), 0)+ O(‖b̃‖(e−γ0 S0 + ‖b‖)).
Therefore, using the expression of dS , we finally obtain

dΨ (b) = Gramm((Z±, j) j,±)+ O(e−γ0 S0 + ‖b‖) = P + O(e−γ0 + ‖b‖),
where Gramm((Z±, j) j,±) is the Gramm matrix of the family (Z±, j) j,±,

Gramm((Z±, j) j,±)( j1,±1),( j2,±2) = 〈Z±1, j1 |Z±2, j2〉,
so that

Gramm((Z±, j) j,±) =
(

A 〈Z+|Z−〉A
〈Z+|Z−〉A A

)
,

where A = diag((‖Z+, j‖2
L2) j) = diag((‖Z−, j‖2

L2) j) (recall ‖Z+‖ = ‖Z−‖ = 1).
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