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ON HOMEOMORPHIC EMBEDDINGS OF K,..
IN THE CUBE

JEHUDA HARTMAN

1. Introduction. Homeomorphic embeddings of K, in the m-cube
were investigated in [6]. In particular, it was proved that any homeo-
morph of K, ;1 embedded in the m-cube has at least n? edges. Further-
more, homeomorphic embeddings of K,,; having exactly n? edges are
unique up to isomorphism. In this paper a similar problem for the com-
plete bipartite graph is considered.

We adopt the notation and terminology of [5].

All graphs considered are without loops and multiple edges.

Let x = uv be an edge of a graph G; x will be called subdivided if it is
replaced by a vertex w and by edges uw and wv. A graph G’ is called a
subdivision of G if it is obtained from G by a subdivision of an edge of G.
A refinement G of G, is a graph isomorphic to a graph obtained from G
by a finite sequence of subdivisions. The vertices of G corresponding to
vertices of G are called essential vertices, whereas the vertices of G which
are not essential are called false vertices. Two graphs are said to be
homeomorphic if both can be obtained from the same graph by a sequence
of subdivisions of edges. Note that if m, n > 2, then the homeomorphs
of K,, , are refinements of K, ,. A graph G’ is defined to be homeomor-
phically embeddable, or simply embeddable in a graph G, if there exists a
homeomorph of G’ which is isomorphic to a subgraph of G.

Let Q' denote the graph of the /-dimensional cube. Q' has 2! vertices,
which may be labeled by binary vectors of length /. Two vertices of Q" are
adjacent if their binary representations differ at exactly one coordinate.
The infinite graph Q is defined as a graph whose vertices are infinite
binary sequences with a finite number of ones, and two vertices are
adjacent in Q if their binary representations differ at exactly one place.
Clearly, a finite graph G is a subgraph of Q if and only if there exists a
finite / such that G C QU

Since K,,,, is embeddable in Q"+"~1 [6] and K,, , C Kuyin, Kn.» is also
embeddable in Q™+"—! and therefore in Q.

Denote by ¢(G) the number of edges of G and for 1 = m, n < o define
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the function &(m, n) as follows:
z(m,n) = Minp{e(T): T is a refinement of K, ,, ' C Q}.

Our aim in this paper is to calculate é(m, n) for 1 < m,n < 0 and to
characterize refinements of K,, , embedded in Q having exactly &(m, n)
edges (i.e., the minimal embedding of K,, , in Q).

2. Bounds on é(m, #). In this section we introduce more notation and
derive lower and upper bounds for &(m, n).

K., » has two sets of vertices, which shall be denoted by x4, %2, . . . , %,
and y1, 92, ..., 9. Let K, , be a refinement of K, , Denote by
£1, %9, ..., &y I1, P2, . - ., F, the essential vertices of Km_n corresponding
to X1, %2, . . ., Xy Y1, Y2, - - -, Yy Tespectively. Let p,; be the path in
K, . connectmg %, and §; and corresponding to the edge x5y, in K, ,.
We denote by K,, , — &; the refinement of K,,_; , obtained from K, , by
elimination of the vertex £; and all the false vertices on the paths p;
(1=7=n). Kn,— 9;is defined similarly.

By {x} we mean the smallest integer =x.

LEMMA 1. For 2 £ nand 1 £ m,

1) &m,n) = {nfl-é(m,n - 1)}.

Proof. Let Km'n C Q be any refinement of K,, ,. Since K’m,n — $;is a
refinement of K, ,-1 (1 =7 = n), we have,
(2) e(Km,n - 5}]) = e(m n — 1)
Therefore

3) Z: e(Kpn — 9;) = ne(mn — 1).

On the other hand,

n

@ 2 e®un—9)

j=1

From (3) and (4)
(6) (= 1DeKn,) 2 n-elmn—1).
By choosing K,, , with &(m, n) edges, we obtain from (5)

(n — De(K,..).

(n—1)e(m,n) =2 né(m,n — 1),
from which (1) follows.

Note that from the symmetry of &(m, n) we have

6) é(m,n) = {ﬁni i -e(m — l,n)} for2 =m,1 = n.
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Since K, is homeomorphically embeddable in Q*~* and K,, , C K, the
methods of [6] can be used to obtain homeomorphic embeddings of K, ,,
in Q™! and consequently achieve an upper bound on &(m, n).

THEOREM 1. There exists a subgraph T of Q™! which s a refinement of
K, ., and

e(T) = 2mn — max(m, n).

Proof. Let v, = (0,0,...,0) and v; = (a1, @s, . .., Gpin—1), where
a; =1, a; = 0 Vj # ¢ and define v;; as the vector sum of v; and v,.
Assume n = m and construct T as follows. The vertices of T are
Y0, U1, « « + » Umin—1, Whereas the edges are vw; (m < j <m 4+ n) and
V0 Vi0; M =7 <m+n,1=17<m). Tisobviously a refinement of
K, , and has 2mn — = edges.

If we denote ¢*(m, n) = 2mn — max(m, n), then by Theorem 1,
(7)  e(m,n) < e*(m,n).

It will be shown that except for a finite number of cases, equality holds
in (7).

A subgraph T of Q is defined to be standard if there exists an auto-
morphism of Q transforming T to the graph described in Theorem 1. For
a refinement Km,n of K, , we define a matrix Hy,, = (hy) (1 £ 1 < m,
1 £ j < n) where ky; is the number of false vertices of K,, , on the path
p4; (connecting £; with 9, in K,u..). Hu.. is called the refinement matrix
of K, ., and it characterizes K,, , up to isomorphism.

Note that after an appropriate arrangement of the vertices of a stan-
dard refinement of K,,, (n = m) the corresponding refinement matrix
will have the form,

1 1...1]

1 1...1
Hm,n:

1 1 1

0 0...0]

On the other hand, it is clear that a matrix H, , of this form represents a
standard refinement of K, ,. Let

n

r; = Zh‘l]' 1

j=1

lIA
o,
IIA

m,

m

S
I
.
—
IIA
<
IIA
S
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and

Mg =hij+ hivr; + hojpr+ by, 1S2<m, 157<n.

mq; is the number of false vertices on a cycle of K,, ,.. Since all cycles of
Q are even, we have

Lemma 2. If Km'" is a refinement of K, , and K,.C Q, then
My =0(mod2),l1 £1<m1=j<mn

3. The minimal embeddings. Denote by P(m, n) the following
statement: If T is any subgraph of Q which is a refinement of K,, , then
e(T) = e*(m, n). In view of (7) if P(m, n) then e(m, n) = e*(m, n).

Denote by P*(m, n) the statement: P(m, n) and if e(T') = *(m, n),
then T is standard. Obviously, P(m, n) <> P(n, m) and the same holds
for P*(m, n).

We shall prove P(m, n) for1 = m < n < oo except for the pairs (2, 2),
(2, 3) and (3, 3), where P (m, n) is not true. P*(m, n) will be proved for
1 =m = n < o except for the pairs (2, 2), (2, 3), (2,4), (3, 3), (3,4)
and (4, 4), where P*(m, n) does not hold. (Clearly, P*(1, n)). The excep-
tional cases were investigated and the results will be stated without
proofs.

THEOREM 2. If n = m, then
P(m,n) — P(m,n + 1).
Proof. Assume P (m, n), i.e., e(m,n) = (2m — 1)n. By Lemma 1,

2o, m + 1) 2

e(m,n) = 2m — 1)(n + 1),

which proves P(m, n + 1).
THEOREM 3. If n = m > 2, then
P*(m,n) —» P*(m,n + 1).

Proof. We assume P*(m, n) and therefore P(m,n). By Theorem 2
P(m, n + 1) follows. Let K, .1 be any refinement of K,, .1 such that
Kppir C Qand e(Kyni1) = e(m, n + 1). Using (4) and (5), the graph
K1 — 9; must be minimal for 1 <7 < n + 1. By the assumption
P*(m,n), Kpnp1 — 9, is standard for 1 £j £ #n + 1. In particular,
Ko i1 — 9npr is standard. Let Hpni1 be the refinement matrix of

Py

K,, »+1 and assume n > m. Since K, ,+1 — Fn41 is standard, H,, .41 has
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the following form:

1 1...1  hyp]
1 1...1  honn

Hm,n+1 =

1 1...1
0 0 0 hm,n+1_

-

The elimination of the j-th column (1 < j < #n) from H,, 441 results in a
refinement matrix of K,, ,.1 — ¥, which is also standard; therefore

Ring1=0,1for1 =1 = m.
From the minimality of K, ,i1 — $us1,
Q) umu=0Cm—-—1)n+1)—mmn4+1) —nm—1) =m — 1.
Furthermore, from Lemma 2,

Ring1 = hjap1(mod 2) and hy, yy1 # hipe(mod 2), 1 = 2, 7 < m.

Hence the # 4+ 1-th column of H, ,.: is either (0,0,...,0,1)7 or
(1,1,...,1,0)7. The first possibility contradicts (8) (m > 2); the
second possibility proves that K,, .1 is standard. The case #n = m is
treated similarly.

Lemma 3. If n = 5 then
P¥(n — 1,n) — P(n, n).
Proof. By Lemma 1 and P*(n — 1, n),

9) en,n) = {h_z—f -e(n,n — 1)} = {hz—l 2nn —1) — n)}

={2n2—n—1—n11}=2n2——n—1.

By (7) and (9),
(10) 2n* —n=zé(n,n) = 2n* — n — 1.

Assume é(n,n) = 2n*> —n — 1. Then there must exist a graph
K’M C Q, such that K, , is a refinement of K, ,and has n? — n — 1 false
vertices.
If H, , denotes the refinement matrix of Kn,,, then,
n n

Zri=26]’=n2—n—1.

i=1 =1
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Observe that

A1) c¢pri=n—1,1=24,7 = n

Otherwise there would exist a graph K,_;, C Q such that
eKp1,) £202 —n—1—2n < e¥(n — 1, n),

contradicting P*(n — 1, n). On the other hand, there must be a natural
number £ (1 £ k £ #n), such that ¢, = n — 1. Otherwise,

n

Z Ci

=1
Assume without loss of generality

12) ¢, =n— 1.
Let H, 5,1 be the matrix obtained from H, , by omitting the n-th column.
For the graph K, , — #, whose refinement matrix is H, ,—1 we have

eKyy—F) =20 —n—1— 2n —1) = *(n — 1, n).

I\

nm—2) <n®—n—1.

By P*(n — 1,n), K, , — $, must be standard and hence we may assume
for H,,thathy =0 (1 =2t =n),hy=11=1=n2=j=n-—1).
From (11) 24, = 1,1 £ 7 £ n. From (12) we may assume without loss
of generality %1, = 0 and consequently %;, = 1, 1 < ¢ < n. But then
w1 -1 = 1(mod 2), contradicting Lemma 2.
Therefore from (10), é(r, n) = 2n®> — n, which proves the lemma.

THEOREM 4. If n = 5, then
P*(n — 1,n — 1) — P*(n, n).

Proof. P*(n — 1,n — 1) > P*(n — 1, "Z by Theorem 2 and
P*¥*(n — 1,n) > P(n,n) by Lemma 3. Let K, , C Q be any refinement
of K, , such that

(13) e(K,.) = 2n* — n.

From (13) we have,

(14) Zf’i=zcj=n2—n.

i=1 j=1
Similarly to the proof of (11), the following can be shown:
(15) Cry Vi é n, 1 é k é n.

Now we show that there must exist an integer k (1 < k& < n), such that

ry =morcy =mn Forassumer, <n —land¢ =n—1 102k 2 n).
Then by (14),

16) m=cag=n—-1,1=5%

IIA

n.
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Since

n

n
> 2 hy=n"—n,
i=1 =1

there must exist integers 2 and j (1 < 4,7 £ n), such that z,; = 0.

Without loss of generality we may assume #4,, = 0.

Let H,_; ,—1 be the matrix obtained from H, , by omitting the nth row
and nth column. H,_; ,_; is a refinement matrix of a graph K,_;, 1,
which is a refinement of K, ;,1 and is obtained from K, . by omitt-
ing £, and 4§, and all the false vertices on the paths corresponding to
the edges incident with x, and y, in K,,. Thus K,_;,_; has exactly

n? — n — 2(n — 1) false vertices. Consequently,
eKprmr) = n—1)24+n2—n—2n—1)=e*(n —1,n—1).

By P*(n — 1,n — 1), K,_1 -1 is standard. We may therefore assume
that H, , has the form,

0 1 ... 1 hi,
0 1 ... 1 han
Hn,n =
0 1 ... 1 Iy,
_hnl hn? hn,n—l ]- _
From (16),
S R Y |
(17) hn1 =n—1
hln = h?n = ... = hn—l,n = 1

92, 93, 94 are all adjacent to §, in Q, since K,_;,_ is standard. From
(17) 92, 93, 94 are also adjacent to £,. Thus, K, , D K, 3. However K, 3
is not a subgraph of Q (see Proposition 1). This completes the proof that
there exists an integer £ (1 £ k¢ < n), such that

Yy = N Or ¢ = M.
Without loss of generality assume ¢, = n and let H,,_; be the matrix
obtained from H, , by the elimination of the nth column. From (14),

n n—1
(18) Z Z hij = n2 — 2n.

i=1 j=1

Therefore, if K,, — §, is the refinement of K, ,_,, represented by
Hn.n—ly then

(19) eKpp —F) =n2—2n+nn —1) = ¥, n — 1).
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By Theorem 3 and (19), K,,.— $, must be standard. Therefore, for
Hy

hn=ha=...=hyn=0
and
hy=1 1Sisnl<j<n

But then ¢,_; = n and as before, K,L,n — 4,_, is standard, which indicates
hw £1,1 £1 =< n. Sincec¢, = n we have hy, = 1,1 < 7 = n. Therefore
K, , is standard and P*(n, n) is proved.

From Theorems 3 and 4 we conclude the following.
COROLLARY 1. If there exist 1, j < 5 such that P*(1, j) then
P*(m,n) form = i, n = j.

We now list some special cases. The proofs of the statements follow
from similar methods used in the previous arguments. (Clearly,
e(2,2) = 4).

ProrosiTioN 1. (a) (2, 3) = 8.
(b) Let T be any refinement of K, 3 such that T C Q and
e(I') = 8. Then T is unique (up to automorphism

of Q).

ProposiTiON 2. (a) P (2, n) for n = 4.
(b) There are exactly two isomorphism types of sub-
graphs of Q, having exactly e* (2, 4) edges, which are

refinements of Ko 4.

(c) P*(2,n) for n = 5.

Note that, in a standard refinement of K, ,, essential vertices of degree
two may be exchanged by false vertices.

ProposiTioN 3. (a) &(3,3) = 14.
(b) Let T be any refinement of K 3 such that T C Q and
e(T) = 14. Then T 1s unique (up to automorphism

of Q).

PropositTiON 4. (a) P(3,n) for n = 4.
(b) There are exactly four isomorphism types of sub-
graphs of Q, having €* (3, 4) edges, which are refine-
ments of K 4.
(c) P*(3, n) forn = 5.

ProrositioN 5. (a) P(4, n) for n = 4.
(b) There are exactly three isomorphism types of sub-
graphs of Q, having e* (4, 4) edges, which are refine-
ments of K, 4.
(c) P*(4,n) for n = 5.
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ProrosiTiON 6. (a) P*(5, 5).

From Corollary 1 and Proposition 6, we get the following scheme for
proving P*(m, n) for m, n = 5.

P*(5, 5)

P*(5,7)

TS N
M 7)‘/ \‘P*(G, 8)
N o T

Thus,

THEOREM 5. P*(m, n) for m,n = 5.
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