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Summary

A mathematical theory of the separating flow past a cascade of aerofoils
is developed. The flow is assumed to be inviscid, incompressible and two-
dimensional. The wakes are represented by regions of stationary fluid,
which could, in the general case, maintain a pressure gradient, although
much of the theory is developed for the case of constant wake pressure.

The theory is thus a generalization of the classical Helmholtz flow past
isolated obstacles to a cascade of such bodies. There is no limit on the
stagger of the cascade. Equations are given for the lift and drag on each
body of the cascade, and for the flow deflexion and velocity distributions.

The theory is shown to have a number of interesting applications in
addition to that of the cascade of stalled aerofoils for which it was first
developed.

1. Introduction

A reasonable first approximation to the flow through the blading of an
axial compressor can be obtained by studying the flow through an infinite
cascade of aerofoils. The theory for the design of cascades (see Rosenblat
and Woods 1956, [6], where further references are given) and for the steady
flow through given cascades (see Robinson and Laurmann 1956 [5], pp.
147—158) is well-established for the case of non-separating flows, but
extensions of this theory to the case of separating flows have apparently
not yet been made.* Yet the stall problem in the blades of axial com-
pressors is still a very serious one.

* After completing this paper my attention was drawn to some work reported in p.p.
148—150 of a recent text by Birkhoff and Zarantonello (1957) [1]. The method and results
given in the present paper appear to be more general than those published earlier, but I
have not been able to obtain the references quoted by Birkhoff and Zarantonello to check this.
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The phenomena is very complicated. There are two distinct aspects of
the stall problem; first, and most serious, is the problem of "stall flutter",
which occurs when a row of blades reaches the critical stall angle, and
secondly the phenomena of the "rotating stall", which occurs at an angle
of attack somewhat smaller than the critical stall angle (Pearson 1953 [4]).
Both these flow problems are extremely difficult to represent by accurate
theoretical models, amenable to mathematical analysis.

The aerodynamics of the stall flutter problem involves an unsteady flow
problem akin to the unsteady non-separating flow past an isolated oscillating
aerofoil, the theory of which is well-known. Theories for the non-separating
flow through a cascade of oscillating aerofoils have been given in [2], [3]
and [8]. A theory of the aerodynamics appropriate to the stall flutter of
an isolated aerofoil has been developed in [10]; it is hoped at a later date
to extend this work to cascade of aerofoils, and the theory given in this
paper will form the basis for this extension.

In this paper we shall study the steady problem of the flow through a
cascade of stalled or partially stalled aerofoils. In later papers, provided
the mathematical analysis does not become prohibitively complicated, it
is hoped to extend this work first to the stall flutter problem, and secondly
to the rotating stall problem. In as much as the flow in the later problem
can be regarded as being quasi-stationary, and provided the stalled region
covers at least three or four blades, the theory given below has an im-
mediate application, permitting an estimate in the "lift" force acting on
the blading due to the stall.

Several other applications of the theory given in the paper are also
indicated: they are (a) the flow past a slotted wall, (b) the flow through a
slotted wall and (c) the flow through a series of tubes (see figure 5).

2. General Theory

Consider the cascade of aerofoils of chord length c, gap H and stagger
angle a shown in figure 1. They are arranged along the Oy-axis at intervals
of H, so that the flow conditions at points (x, y + nH), n = 0, ± 1 , ±2 ,
are identical.

Ley (q, 6) be the velocity vector in polar coordinates, then the inlet and
outlet conditions are

(1) (V, 0) = (V, «), and (q, B) = (V, fi),

respectively.
The flow is assumed to separate from the aerofoils at corresponding

points Dx on their upper surfaces, with the result that a relatively large
wake of slowly moving, turbulent fluid extends behind each aerofoil. We

https://doi.org/10.1017/S1446788700025568 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700025568


212 L. C. Woods [3]

shall represent these wakes by regions of stationary fluid, separated from
the main stream by "free" streamlines along which, in general, the pressure
could vary. The nature of this pressure variation is unfortunately not
deducible from inviscid flow theory, and therefore, short of attempting
to solve the almost prohibitively difficult equations of viscous, turbulent
flow, we are forced to adopt some hypothesis about this wake pressure.

z = x+ iy Plane

Figure 1

The simplest hypothesis is that of Helmholtz, namely that the wake pressure
is constant, and therefore equal to its value downstream at infinity, p^.
While this is the hypothesis adopted in this paper, it should be noted that
the general theory (see equation (17) below) is by no means restricted
to this case, so if a better hypothesis is found the theory given below could
easily be extended.

Let the wake displacement thickness equal a downstream at infinity,
then this will be the width of our stationary air model of the wake. There-
fore the equation of continuity of mass applied to the "channel" * ^' A

(see figure 1) yields
00

(2) HV cos a = {H - a)U cos

assuming the flow to be two-dimensional and incompressible.
Let D, L be the Ox, Oy components of the force acting on an aerofoil

of the cascade, then it readily follows from the momentum equation, Ber-
noulli's theorem and (2) that

(3) D = \HPV* cos* a

and

tan* 0 - tan* a +
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(4) cos a [tan a - ( - \ tan

where p is the fluid density. When a = 0 these equations reduce to the
classical results for non-separating cascade flow (see [5]).

The problem solved in this paper is that of calculating (U, /?) given
(V, at), the blade geometry and the point of flow separation D,tt. After this
calculation equations (2), (3) and (4) enable us to deduce a, D and L.

3. The Gonformal Transformations

Let w = q> + itp, where <p is the velocity potential, and ip is; the stream
function, then the w-plane will appear as shown in figure 2. We have
taken the origin of the ze>-plane to be at the front stagnation point 5 of
one of the aerofoils; the other aerofoils then lie on ip = -±nh cos a, n = 1,
2,. . ., where h = HV, and these aerofoils have their front stagnations

-

9? = - h sin a | / D,i/

xp

S,

a./

<p = b sin a
D, y-hcosa

T Do

xp = - h cos a

Do

w = q> + ixp Plane

Figure 2

points at <p = T nh sin a. The flow is assumed to separate at <p = <pv on
the upper surface and at <p = <Po (the trailing edge) on the lower surface
of the aerofoil on \p = 0. (We shall refer only to this particular aerofoil in
the sequel.)

If x{w) is a function characteristic of the flow it is apparent that x must
satisfy the periodic relation

(5) x(w) = x(w + nihe~ia).

Now consider the conformal transformation

w = — {£ sin a — 2 cos a In (cos
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- n

[5]

£ it} Plane

Figure 3

It is readily verified that this maps the aerofoil and wake on to— n < y < n,
t] = 0, as shown in figure 3. Furthermore as w{n, tj) = w{—n, n) + iheria,
it follows from (5) that
(7) r(n, rj) = T(—n, r\).

The separation points Dlt Do map on to r\ = 0, y = yv y0, where

<p0 = — {y0 sin a — 2 cos a In (cos \y0)} ,
271

h
= — {yi sin a — 2 cos a m (cos

2TT

(8)

and the upper and lower surfaces of the wake are mapped on to rj = 0,
— n < y < y0, and rj = 0, yx < y < n respectively. What may be described
as the "wetted" surface of the aerofoil — the surface over which 0,, the
surface slope, is known — is mapped on to rj = 0, y0 < y < yv The point
downstream at infinity maps on to y = -±nt rj = 0, while the point upstream
at infinity (<p =. — oo) maps on to the "point" rj = oo.

We shall use the variable £ as our independent variable in the stalled
cascade problem.

4. The Boundary-Value Problem of Stalled Cascade Flow and its
Solution

(9)

The most convenient dependent variable for our purpose is that defined in

(Udz\ U . _
\ dw ) q

which is obviously an analytic function of z, w and by (6) of £. The variable
Q is clearly depedent on the fluid pressure p, in fact

(10) P=Peo-+
where p^ is the pressure at <p = oo.
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It now follows from equations (1) and (7) that in the £-plane x satisfies
the mixed boundary conditions: —

(11) 1. x{n, rj) = T(—n, rj),

0: ? = f' ̂  < * <
o =o,(vo<y<Yi)

(13) Urn x{y, t]) = In - + toe,
3 ,-*oo V

(14) lim x{y, 0) = # f
y-*±n

where Dt, 0, are functions of y, which are known or can be deduced.
The solution to this mixed and periodic boundary value problem can be

written down directly from an equation due to Woods [9] for the flow past
a porous aerofoil. The equation in question is

T = — exp {£ I e cot \(y — £)dy J \ A + j (0, cos ne — Qs sin Tie)

( 1 5 ) 2n I J-* J L J-*
exp I —\0te I e cot £(y* — y)rfy* | cot \{y — Qdy ,

where A is a real constant, and e is a porosity factor of which it is sufficient
for our present purposes to know that it enters into the aerofoil boundary
condition as follows:

(16) 6 cos ne — Q sin ne = 0, cos ne — Qt sin ne,

and that it is positive on the lower surface of the aerofoil and negative
on the upper.

Comparison of (12) and (16) shows that in our application of (16),
e = £ in — n < y < y0, e = 0 in y0 < y < yv e = —\ in yx < y < n, and
consequently (15) yields

/ M { s in ! (C-y o ) s i n£ ( y i -C )}*

c o s * ? c o t * ( y -

r C O S ^ c o t i ( y ~

If we now adopt the Helmholtz hypothesis for the wake pressure then
q = U on the free streamlines, and so from (9), Q, — 0, which eliminates
the last term of (17).

The limit in (14) and the denominator term cos ££ in (17) require that
the term in the square brackets in (17) vanishes at £ = ±n. This enables
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us to calculate the constant A, and reduce (17) to

r(C) = ~ {sin «C - y0) sin *(yx - £)}*
^7C

f
Jy

cosec \{y - Qdy
ho ' {sin i(y — y0) sin \{yx — y)}*'

for the case of Helmholtz flow.
Equation (18) is the required solution of our boundary value problem.

If 0,(y) is given or can be deduced, (18) gives r(£), then it follows from (6)
and (9) that z(£) is given by

Hi) = ̂ f
2nUJ

The flow pattern is completely determined by (18) and (19).
More generally 0,(y) is initially unknown, and (18) and (19) are in effect

a complicated integro-differential equation for 0,(y). We start with the linear
approximation, which consists in putting T(£) == 0 in (19), and deducing
0,(1)(y) from the resulting z{1)(y) relation on rj = 0. In (18) this value of
0,(1)(y) yields the "linear perturbation" solution, T(1)(£). The process is now
repeated with T(1)(£) in (19); this yields r(2)(y), and so on. The calculation
continues in this way until T<n) — T**1-1' is negligible. The details of this
iterative method are exactly parallel to those given in [7] for separating
flow past an isolated body, and we shall not consider it further. The linear
perturbation solution is often sufficient in practical problems.

5. The Outlet Conditions

From equations (12), (13) and (18) we deduce that

cos \{y-Xt)dy
{sin J(y - y0) sin *(yx -

and

sec \ydy(22) p = 1 {cos *y0 cos JyJ* P B.{y) —
Zn jy <sn{sin \{y - y0) sin %{Yl - y)}*

where

(23) A i ^

As the inlet conditions (V, a) and the separation points (y0, yx) are sup-
posed given, equation (21) is a restriction on the distribution 8,(y), which

1
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we must be careful to satisfy throughout the iterative process described
above. It is in effect a "closure" condition for the blade, which, while auto-
matically satisfied with a given blade profile, may not necessarily be
satisfied with an approximating profile, such as will occur in an iterative
solution of equations (18) and (19).

Equations (20) and (22) determine the outlet conditions immediately
6t(y) has been calculated. The forces acting on the blading can next be
deduced from equations (2) to (4).

6. An Example: A Cascade of Flat Plates

The simplest example of the theory of any interest occurs with a cascade
of flat plates. Suppose the plates are at an angle of attack of a + OCQ, SO

V,

% " • - - - :

o

Figure 4

that — OQ is the angle between the plates and Ox (see figure 4), then

d. = -«o + 7t{(U(0) -

where U(y) is the unit function and d is the value of y at the sharp leading
edge of the typical plate. Substituting this value of 0, in (18) we find that

(24)

where

r(C) = -*'oo - 2 {coth-i F(d, C) - coth-i F{0>

(25) n = (!Ln *( y "" ^ sin ^yi ~~
sin \{yx — y) sin i(C — y0) J

The Umits (13) and (14) give

-, u
{(26)

+ Meat'1 \eiX*

sm
sin (—

sin 4 >i j '
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and

(27)

L. C. Woods [9]

= -oc0 - 2 cot"1

+ 2 cot

sin £(>>! — d) cos

-, ftan ( -

s i n » j * -j
smi(C-yo)

tan \yx j

When (V, /?) and a0 are given these equations enable (U, /?) and d to be
calculated.

With flat plates separation is very likely to occur at the sharp leading
edge, y = 6. In this case yx = <5, and (24), (26) and (27) become

(28)

(29)

(30)

and

(31)

U
In — = — coth"1

a = —otn — cot"1

{sin ( - £y0) sin

sin

£ = —«,, + 2 cot"

{sin ( -

(tan ( -

sin

Several flow problems of practical interest can be calculated from these
equations. The three examples shown in figure 6 are the special cases
a = — \n + e, OLQ = \n, e small and positive (figure 5a) a — 0, a,, = \n,
yx = — y0 (figure 5b) and a0 = 0, yfi = — n (figure 5c). Thus our theory
is applicable to (a) the flow past a slotted wall, (b) the flow through a
family of apertures and (c) the flow through a bank of tubes.

Figure 5a

1 /11111 / / / / / / / /i

Figure 5b
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Figure 5c

References

[1] Birkhoff, G. and Zarantonello, E. H., Jets, Wakes and Cavities. Academic Press, New
York. (1957).

[2] Chang, C. C. and Chu, V. C, J. Appl. Mech. (1956).
[3] Kemp, H. N. and Sears, W. R., J. Aero. Sci. (9), 20, (1953). 585.
[4] Pearson, H., Proc. 4th Anglo-American Aero. Conference (R. Ae. S.), (1953). 127 — 162.
[5] Robinson, A. and Laurmann, J. A., Wing Theory, Camb. Univ. Press. (1956).
[6] Rosenblat, S. and Woods, L. C, Aust. Aero. Res. Comm. Report ACA-58. (1956).
[7] Woods, L. C, Proc. Roy. Soc. A, 227, (1955a). 367-386.
[8] Woods, L. C, Proc. Roy. Soc. A, 228, (1955b). 50—65.
[9] Woods, L. C, Proc. Roy. Soc. A, 238, (1956). 358—388.
[10] Woods, L. C, Proc. Roy. Soc. A, 239, (1957). 328-337.

The University of New South Wales, Sydney.

https://doi.org/10.1017/S1446788700025568 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700025568

