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Abstract. In this talk, we present the general principles of binary evolution and give two
examples. The first example is the formation of subdwarf B stars (sdBs) and their application to
the long-standing problem of ultraviolet excess (also known as UV-upturn) in elliptical galaxies.
The second is for the progenitors of type Ia supernovae (SNe Ia). We discuss the main binary
interactions, i.e., stable Roche lobe overflow (RLOF) and common envelope (CE) evolution,
and show evolutionary channels leading to the formation of various binary-related objects. In
the first example, we show that the binary model of sdB stars of Han et al. (2002, 2003)
can reproduce field sdB stars and their counterparts, extreme horizontal branch (EHB) stars,
in globular clusters. By applying the binary model to the study of evolutionary population
synthesis, we have obtained an “a priori” model for the UV-upturn of elliptical galaxies and
showed that the UV-upturn is most likely resulted from binary interactions. This has major
implications for understanding the evolution of the UV excess and elliptical galaxies in general.
In the second example, we introduce the single degenerate channel and the double degenerate
channel for the progenitors of SNe Ia. We give the birth rates and delay time distributions
for each channel and the distributions of companion stars at the moment of SN explosion for
the single degenerate channel, which would help to search for the remnant companion stars
observationally.

Keywords. binaries: close, galaxies: elliptical and lenticular, cD, stars: evolution, subdwarfs,
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1. General Principles of Binary Evolution
About half of the stars are in binaries and binary evolution plays a crucial role in

the formation of many interesting objects, such as Algols, FK Comae (FK Com) stars,
cataclysmic variables (CVs), planetary nebulae (PNe), barium (Ba) stars, CH stars,
type Ia supernovae (SNe Ia), AM Canum Venaticorum (AM CVn) stars, low mass X-
ray binaries (LMXB), high mass X-ray binaries (HMXB), symbiotic (Sym) stars, blue
stragglers (BSs), pulsars, subdwarf B (sdB) stars, double degenerates (DDs) etc. Binary
evolution is also important in the study of evolutionary population synthesis, which is a
power tool in the study of galaxies.

A binary system (of low/intermediate mass) has two components: the primary (the
initially more massive one) and the secondary. As the binary evolves, the primary expands
and may fill its Roche lobe on the Hertzsprung gap or on the giant branch. Roche lobe
overflow (RLOF) begins and the primary’s envelope mass transfers to the secondary.
Given the mass ratio q of primary to secondary less than a critical value qc (Hjellming
& Webbink, 1987; Webbink, 1988; Han & Webbink, 1999; Han et al., 2002) at the onset
of the mass transfer, where qc mainly depends on the entropy profile of the primary’s
envelope and the angular momentum loss from the system, the mass transfer is stable,
leading to a wide white dwarf (WD) binary. Given the mass ratio q larger than qc , the
mass transfer is dynamically unstable, leading to the formation of a common envelope
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Figure 1. A simplified version of flow chart of binary evolution. See paragraph 1 of Section 1
of the text for the acronyms.

(CE; Paczyński, 1976). The CE engulfs the core of the primary and the secondary, and
does not co-rotate with the embedded binary. The friction between the CE and the
embedded binary makes the orbit decay, and a large amount of orbital energy released
is deposited into the CE. If the CE can be ejected, a close WD binary forms, otherwise
a fast rotating merger is resulted. For a WD binary system, the secondary continues to
evolve and may experience mass transfer. Similar to the process described above, the
mass transfer may lead to the formation of a CE and the CE ejection produces a double
degenerate.

Figure 1 is a flow chart of binary evolution. It is by no means comprehensive, but
it does show evolutionary channels leading to various objects for a binary system with
given conditions.

A good stellar evolution theory should give and predict the statistical properties of a
stellar population as well as the properties of individual stars or binaries. Binary popula-
tion synthesis (BPS) is to evolve a large number of stars (including binaries) in order to
investigate statistical properties of stars and check evolutionary mechanisms for different
types of stars. In a BPS study, we first generate a binary sample (10 million binaries),
then evolve the sample according to stellar evolution model grids and taking into account
binary interactions, and we obtain different types of binary-related objects, which can
be directly compared to observations.
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In addition to the grids of stellar evolutionary models, we adopt the following input in
BPS simulations:

(1) A constant star-formation rate is taken over the last 15 Gyr for a field population,
or alternatively, a single star burst for a globular cluster or an elliptical galaxy.

(2) The initial mass function of Miller & Scalo (1979) is adopted.
(3) We mainly adopt a constant initial mass ratio distribution n(q′), where q′ = 1/q is

the ratio of secondary to primary.
(4) We take the distribution of separations to be constant in log a for wide binaries,

where a is the orbital separation. The adopted distribution gives that ∼ 50 % of stellar
systems are binary systems with orbital periods less than 100 yr.

The main model parameters in BPS are mass transfer efficiency αRLOF for the first
stable RLOF (where the accretor is a main sequence star), CE ejection efficiency αCE
and thermal contribution αth for CE evolution. The mass transfer efficiency αRLOF is
the fraction of the envelope mass that is transferred onto the secondary rather than is
ejected from the system, where we assume that the matter lost from the system carries
away the specific angular momentum of the system. A typical value for αRLOF is 0.5. The
CE ejection efficiency αCE is the fraction of the released orbital energy used to overcome
the binding energy of the envelope during the spiral-in process of a CE. The thermal
contribution αth defines the fraction of the internal energy of thermodynamics (including
recombination energy as well as the thermal energy) contributing to the binding energy
of the CE. A CE is ejected if

αCE∆Eorb � Egr − αthEth , (1.1)

where ∆Eorb is the orbital energy released during the spiral-in process, Egr the gravita-
tional binding energy of the CE, Eth the internal energy of the CE. Both Egr and Eth
are calculated from detailed stellar models and therefore the prescription here is differ-
ent from the λ prescription but appear to be more physical. We refer the reader to Han,
Podsiadlowski & Eggleton (1994), Dewi & Tauris (2000) and Podsiadlowski, Rappaport
& Han (2003) for the details. The inclusion of the internal energy in ejecting the CE
seems to be the most plausible in the explanation of both long-period and short-period
binaries containing compact objects (Han et al., 1995a; 1995b; Dewi & Tauris, 2000).
Webbink (2007) has made a physical investigation on both the energetics of CE evolu-
tion and the angular momentum prescription (i.e. the γ prescription, Nelemans et al.,
2000), and convincingly showed the necessity of recombination energy term for common
envelope evolution. Previous studies, e.g., Han, Eggleton, Podsiadlowski & Tout (1995),
Han, Podsiadlowski & Eggleton (1995), Han (1998), Han et al. (2002), Han et al. (2003),
Han & Podsiadlowski (2004), have showed that both αth and αth are close to one.

2. The binary model for subdwarf B stars and the UV-upturn of
elliptical galaxies

Subdwarf B (sdB) stars† are core helium-burning stars with very thin hydrogen en-
velope (Heber, 1986). They are important in many aspects of astrophysics, e.g., stellar
evolution, distance indicators, Galactic structure, and the long-standing problem of far-
ultraviolet excess in early-type galaxies (Kilkenny et al., 1997; Green, Schmidt & Liebert,
1986; Han, Podsiadlowski & Lynas-Gray, 2007).

† In this paper, we collectively refer to helium-core-burning stars with thin hydrogen envelopes
as sdB stars, even if some of them may in reality be sdO or sdOB stars
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Maxted et al. (2001) showed that the majority of field sdB stars are in binaries, and
this has posed a serious challenge to stellar evolution theory. Han et al. (2002; 2003)
proposed a binary model for their formation. In the model, there are three types of
formation channels for sdB stars: stable RLOF for sdB binaries with long orbital periods,
CE ejection for sdB binaries with short orbital periods, and the merger of helium WDs
to form single EHB stars. In the stable RLOF channel, the mass donor fills its Roche
lobe near the tip of the first giant branch and experiences a stable mass transfer, and
its envelope is striped off by the RLOF, and the naked helium core (with thin hydrogen
envelope) get ignited to produce a sdB stars. In the CE ejection channel, the mass donor
also fills its Roche lobe near the tip of the first giant branch to have a dynamically
unstable mass transfer leading to the formation of a CE. The CE ejection leaves a naked
helium core (with thin hydrogen envelope) and the naked helium core is ignited to produce
a sdB star. In the CE channel, the donor star needs to fill its Roche lobe closer to the
tip of the first giant branch, or, in other words, the minimum core mass required for
the donor star at the onset of mass transfer is larger than that in the stable RLOF
channel to produce a sdB star. This is simply because that the time scale of the CE
evolution is much shorter than that of the stable RLOF and the core does not grow by
much in the CE process. In the merger channel, a close helium WD pair coalesces due to
angular momentum loss via gravitational wave radiation. The binary model of Han et al.
(2002; 2003) has successfully explained the main observational characteristics of field
sdB stars: their distributions in the orbital period-minimum companion mass diagram,
and in the effective temperature-surface gravity diagram; their distributions of orbital
period and mass function; their binary fraction and the fraction of sdB binaries with
WD companions; their birth rates; and their space density. The model is indeed a step
forward and is widely used in the study of sdB stars (O’Tool, Heber & Benjamin, 2004).

Moni Bidin et al. (2006), Moni Bidin, Catelan & Altmann (2008) have done radial-
velocity surveys for extreme horizontal branch (EHB) stars, the counterparts of field sdB
stars, in globular clusters. They found that there is a remarkable lack of close binary
systems in EHB stars. This is surprising as compared to the high binary fraction in field
sdB stars. They speculated that there may exist a binary fraction-age relation for sdB
stars. Han (2008) showed that such a relation does exist and the binary model of Han
et al. (2002; 2003) can reproduce the EHB stars in globular clusters, in particular, the
low binary fraction of the EHB stars. The main reason for the low binary fraction is that
the stars in a globular cluster are all old, and the envelopes of donor stars in the CE
channel are loosely bound, leading to wide EHB binaries rather than close ones.

One of the first major discoveries soon after the advent of UV astronomy was the
discovery of an excess of light in the far-ultraviolet (far-UV) in elliptical galaxies (see
the review by O’Connell, 1999). This came as a complete surprise since elliptical galaxies
were supposed to be entirely composed of old, red stars and not to contain any young
stars that radiate in the UV. Since then it has become clear that the far-UV excess (or
upturn) is not a sign of active contemporary star formation, but is caused by an older
population of helium-burning stars or their descendants with a characteristic surface
temperature of 25,000 K (Ferguson et al., 1991).

The origin of this population of hot, blue stars in an otherwise red population has,
however, remained a major mystery. As we described above, the binary model of Han
et al. (2002; 2003) reproduces Galactic hot subdwarfs (synonymous with sdB stars in
this paper). The key feature of the channels in the model is that they provide the miss-
ing physical mechanism for ejecting the envelope and for producing a hot subdwarf.
Moreover, since it is known that these hot subdwarfs provide an important source of
far-UV light in our own Galaxy, it is not only reasonable to assume that they will also
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Figure 2. The evolution of the rest-frame intrinsic spectral energy distribution (SED) for a
simulated galaxy in which all stars formed at the same time, i.e. a simple stellar population
(SSP). The stellar population (including binaries) has a mass of 1011M� and the galaxy is
assumed to be at a distance of 10 Mpc. The figure is for the standard simulation set (with
αCE = αth = 0.75 and αRLOF = 0.5) in Han, Podsiadlowski & Lynas-Gray (2007) and no offset
is applied to the SEDs. Note that the line sections of between 500Å and 900Å for population
ages of 1.5 and 5.0 Gyr overlap.

contribute significantly to the far-UV in elliptical galaxies, but is in fact expected. It
would, therefore, be “a priori” to apply the Han et al. model to the study of the UV-
upturn problem.

To quantify the importance of the effects of binary interactions on the spectral ap-
pearance of elliptical galaxies, we have performed the first population synthesis study of
galaxies that includes binary evolution (see also Bruzual & Charlot, 1994; Worthy, 1994;
Zhang, Li & Han, 2005). It is based on a binary population synthesis model of Han et al.
(2002; 2003) that has been calibrated to reproduce the short-period hot subdwarf binaries
in our own Galaxy that make up the majority of Galactic hot subdwarfs (Maxted et al.,
2001). The population synthesis model follows the detailed time evolution of both single
and binary stars, including all binary interactions, and is capable of simulating galaxies
of arbitrary complexity, provided that the star-formation history is specified. To obtain
galaxy colours and spectra, we have calculated detailed grids of spectra for hot subdwarfs
using the ATLAS9 (Kurucz, 1992) stellar atmosphere code, which calculates plane-parallel
atmospheres in local thermodynamic equilibrium. For the spectra and colours of single
stars with hydrogen-rich envelopes, we use the comprehensive BaSeL library of theoretical
stellar spectra (Lejeune, Cuisinier & Buser, 1997; 1998).

Figure 2 shows our simulated evolution of the spectral energy distribution (SED) of
a galaxy in which all the stars formed at the same time. The total mass of the stellar
population (including binaries) is 1011M� and the galaxy is taken to be at a distance
of 10 Mpc. At early times, the far-UV flux is entirely caused by the contribution from
young stars. Hot subdwarfs from the various binary evolution channels become important
after about 1.1 Gyr, which corresponds to the evolutionary timescale of a 2M� star, and
soon start to dominate completely. After a few Gyr the far-UV SED no longer changes
appreciably relative to the visual flux. One immediate implication of this is that the
model predicts that the magnitude of the UV excess (1550 − V ), defined as the relative
ratio of the flux in the V band to the far-UV flux (Burstein et al., 1988), should not
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Figure 3. The evolution of birthrates of SNe Ia for a single star burst of 1011M� of solar
metallicity. Solid, dashed and dotted lines are for αCE = αth = 1.0, 0.75, 0.5, respectively
(αRLOF = 0.5). Thin lines are for the double degenerate channel, and thick lines are for the
single degenerate channel.

evolve significantly with look-back time or redshift. Indeed, this is exactly what seems
to have been found in recent observations (Brown et al., 2003; Rich et al., 2005).

We found that our binary model can naturally explain many observations of early-type
galaxies in spite of its simplicity, and UV-upturn is expected to be universal (from dwarf
to giant ellipticals; see Lisker & Han, 2008). The model also predicts that the magnitude
of UV-upturn does not depend much on metallicity or redshift. We refer the reader to
Han, Podsiadlowski & Lynas-Gray (2007) for the details.

3. Progenitors of Type Ia supernovae
Recent progress in cosmology is largely due to the use of Type Ia supernovae (SNe

Ia) as a calibrated distance indicator (Riess et al., 1998; Perlmutter et al., 1999). The
nature of their progenitors is still unclear, raising doubts as to the calibration which
is purely empirical and based on nearby SN Ia sample. The SNe Ia are believed to be
thermonuclear explosions of carbon-oxygen (CO) WDs. Observational characteristics of
SNe Ia imply that the explosion occurs when a CO WD reaches the Chandrasekhar
limit. There are mainly two channels to create Chandrasekhar-mass CO WDs: the single
degenerate channel, where the CO WD accretes mass from a non-degenerate companion
(Hachisu, Kato & Nomoto, 1999a; Han & Podsiadlowski, 2004), and the double degenerate
channel, where two CO WDs with a total mass larger than the Chandrasekhar mass
coalesce (Iben & Tutukov, 1984; Webbink & Iben, 1987)†.

Employing Eggelton’s stellar evolution code (Eggleton, 1971; 1972; 1973; Han,
Podsiadlowski & Eggleton, 1994; Pols et al., 1995) and adopting the prescription of
Hachisu et al. (1999) for the accretion efficiency of a CO WD, Han & Podsiadlowski
(2004) carried out detailed binary evolution calculations for about 2300 close CO WD
binaries, and mapped out the initial parameters in the orbital period-secondary mass

† Note, however, that in this case it is quite likely that the merger product experiences core
collapse rather than a thermonuclear explosion(Nomoto & Iben, 1985).
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Figure 4. Snapshot probability distribution of companion stars in the plane of (Vorb , Vrot ) at
the current epoch, where Vorb is the orbital velocity and Vrot the equatorial rotational velocity
for the companion stars at the moment of SN explosion. The probability decreases from inner
regions to outer regions. Regions, from inside to outside with corresponding gradational grey
scale in the legend (from bottom to top), together with the inner regions, contain 50.0%, 68.3%,
95.4%, and 99.7% of all the systems, respectively. The model adopts a constant star formation
rate over the last 15 Gyr and αCE = αth = 0.75 (αRLOF = 0.5). For a similar model but with
αCE = αth = 1.0, the distribution is similar, but the upper edge of 190 km/s moves down to
170 km/s.

plane (for a range of WD masses) which lead to a SN Ia. They have implemented these
results in a binary population synthesis (BPS) study to obtain the birth rates for SNe
Ia for a constant star formation rate. The Galactic birth rate is lower than (but com-
parable to) that inferred observationally. They have also obtained the evolution of birth
rates with time for a single star burst. We see from Fig. 3 that the time delay of SN Ia
explosion from star burst is ∼ 0.1 to ∼ 1 Gyr for the single degenerate channel. The birth
rates from the double degenerate channel reach to peaks at ∼ 0.1 Gyr and decays with
age (approximately ∝ t−1). Meng, Chen & Han (2008) did similar investigations, but for
10 metallicities in order to investigate the metallicity effect.

For the single degenerate model, the remnant companion star after SN explosion would
be a fast rotator and have a high space velocity. Fig. 4 is the distribution of companion
star in the plane of orbital velocity-rotational velocity at the moment of SN explosion, as
derived from a BPS study with the implementation of the results of Han & Podsiadlowski
(2004). Note, however, the ejecta of SN explosion would impact the companion and the
companion obtains a kick velocity and the total velocity may be higher by up to 10%
(Meng, Chen & Han, 2007). See Han (2008) for more distributions of companion stars.
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Discussion

Belczynski: Comment: Not only common envelope (CE) efficiency is very uncertain,
but the very treatment of CE is highly uncertain. Question: How do you make single
degenerate scenario of SNIa work? Since, it is known that it is rather hard to accumulate
hydrogen and significantly increase white dwarf mass.

Han: Indeed, common envelope evolution is the least understood process in binary evo-
lution. The evolution is parameterized and calibrated with observations, which gives
acceptable results. For the mass growth of white dwarf, I adopted the accumulation ef-
ficiency of Hachisu’s. The mass transfer rates need to be in the right range for the WD
to increase in its mass.

Christensen-Dalsgaard: Comment: Many SdB stars are observed to pulsate. Thus
we may constrain their structure from observed frequencies. Question: To what extent
does the structure of the SdB star depend on the formation channel? That determines
an ability to distinguish them from astroseismology.

Han: The properties of SdB stars originated from different channels are quite different.
SdB stars from stable RLOF channel have thick hydrogen envelopes, the SdB stars from
common envelope ejection channel have thin envelopes. The merger channel produces
SdB stars with no or extremely thin hydrogen envelopes, and the mass range of the SdB
stars is also larger.

Vink: You mentioned most SdBs are in binaries, which holds for the field. For clusters
such as NGC 6752, Moni Bidin et al. (2006) looked for close binaries in a sample of 51
objects, but found none. Are these all mergers?

Han: Yes. There exists a relation between SdB binary fraction and population age, for
which I have submitted a Letter to A&A. For an old stellar population, SdB stars from
the merger channel dominate.

Wang: Do you care about the age of the binary components? For example if the sec-
ondary is a pre-main-sequence stars.

Han: Both components have the same age, but the equivalent age of each component
may be different. The mass gainer is rejuvenated and its equivalent age is smaller.

Yi: Regarding SdB production, what is the source of the biggest uncertainty?

Han: The biggest uncertainties are from common envelope ejection efficiency and the ini-
tial distribution of mass ratios. However, these can be calibrated b comparing theoretical
results with observations of many binary related objects. We just used those calibrated
parameters to produce SdB population and then applied to the UV-upturn problem in
an ‘a priori’ way, and the UV-upturn is explained naturally.
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