
16 Command-Line Parsing

Many of the OCaml programs that you'll write will end up as binaries that need to be

run from a command prompt. Any nontrivial command line should support a collection

of basic features:

• Parsing of command-line arguments

• Generation of error messages in response to incorrect inputs

• Help for all the available options

• Interactive autocompletion

It's tedious and error-prone to code all of this manually for every program you write.

Core provides the Command library, which simpli�es all of this by letting you declare

your command-line options in one place and by deriving all of the above functionality

from these declarations.

Command is simple to use for simple applications but also scales well as your needs

grow more complex. In particular, Command provides a sophisticated subcommand

mode that groups related commands together as the complexity of your user interface

grows. You may already be familiar with this command-line style from the Git or

Mercurial version control systems.

In this chapter, we'll:

• Learn how to use Command to construct basic and grouped command-line interfaces

• Build simple equivalents to the cryptographic md5 and shasum utilities

• Demonstrate how to declare complex command-line interfaces in a type-safe and

elegant way

16.1 Basic Command-Line Parsing

Let's start by working through a clone of the md5sum command that is present on most

Linux installations (the equivalent command on macOS is simply md5). The following

function de�ned below reads in the contents of a �le, applies the MD5 one-way

cryptographic hash function to the data, and outputs an ASCII hex representation of

the result:

open Core

https://doi.org/10.1017/9781009129220.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.019

16.1 De�ning Basic Commands 281

let do_hash file =
Md5.digest_file_blocking file |> Md5.to_hex |> print_endline

The do_hash function accepts a filename parameter and prints the human-readable

MD5 string to the console standard output. The �rst step toward turning this function

into a command-line program is to create a parser for the command line arguments. The

module Command.Param provides a set of combinators that can be combined together

to de�ne a parameter parser for optional �ags and positional arguments, including

documentation, the types they should map to, and whether to take special actions such

as pausing for interactive input if certain inputs are encountered.

16.1.1 De�ning an Anonymous Argument

Let's build a parser for a command line UI with a single anonymous argument, i.e., an

argument that is passed in without a �ag.

let filename_param =
let open Command.Param in
anon ("filename" %: string)

Here, anon is used to signal the parsing of an anonymous argument, and the ex-

pression ("filename" %: string) indicates the textual name of the argument and

speci�cation that describes the kind of value that is expected. The textual name is used

for generating help text, and the speci�cation, which has type Command.Arg_type.t, is

used both to nail down the OCaml type of the returned value (string, in this case) and

to guide features like input validation. The values anon, string and %: all come from

the Command.Param module.

16.1.2 De�ning Basic Commands

Once we've de�ned a speci�cation, we need to put it to work on real input. The simplest

way is to directly create a command-line interface with Command.basic.

let command =
Command.basic
~summary:"Generate an MD5 hash of the input data"
~readme:(fun () -> "More detailed information")
(Command.Param.map filename_param ~f:(fun filename () ->

do_hash filename))

The summary argument is a one-line description which goes at the top of the help

screen, while the (optional) readme argument is for providing a more detailed descrip-

tion that will be provided on demand.

The �nal argument is the most interesting one, which is the parameter parser. This

will be easier to understand if we �rst learn a bit more about the type signatures of the

various components we've been using. Let's do that by recreating some of this code in

the toplevel.

let filename_param = Command.Param.(anon ("filename" %: string));;
val filename_param : string Command.Spec.param = <abstr>

https://doi.org/10.1017/9781009129220.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.019

282 Command-Line Parsing

The type parameter of filename_param is there to indicate the type of the value returned

by the parser; in this case, string.

But Command.basic requires a parameter parser that returns a value of type unit

-> unit. We can see that by using #show to explore the types.

#show Command.basic;;
val basic : unit Command.basic_command

#show Command.basic_command;;
type nonrec 'result basic_command =

summary:string ->

?readme:(unit -> string) ->

(unit -> 'result) Command.Spec.param -> Command.t

Note that the 'result parameter of the type alias basic_command is instantiated as

unit for the type of Command.basic.

It makes sense that Command.basic wants a parser that returns a function; after all,

in the end, it needs a function it can run that constitutes the execution of the program.

But how do we get such a parser, given the parser we have returns just a �lename?

The answer is to use a map function to change the value returned by the parser.

As you can see below, the type of Command.Param.map is very similar to the type of

List.map.

#show Command.Param.map;;
val map : 'a Command.Spec.param -> f:('a -> 'b) -> 'b Command.Spec.param

In our program, we used map to convert the filename_param parser, which returns a

string representing the �le name, into a parser that returns a function of type unit ->

unit containing the body of the command. It might not be obvious that the function

passed to map returns a function, but remember that, due to currying, the invocation

of map above could be written equivalently as follows.

Command.Param.map filename_param ~f:(fun filename ->
fun () -> do_hash filename)

16.1.3 Running Commands

Once we've de�ned the basic command, running it is just one function call away.

let () = Command.run ~version:"1.0" ~build_info:"RWO" command

Command.run takes a couple of optional arguments that are useful to identify which

version of the binary you are running in production. You'll need the following dune

�le:

(executable
(name md5)
(libraries core)
(preprocess (pps ppx_jane)))

At which point we can build and execute the program using dune exec. Let's use

this to query version information from the binary.

https://doi.org/10.1017/9781009129220.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.019

16.1 Multi-Argument Commands 283

$ dune exec -- ./md5.exe -version
1.0
$ dune exec -- ./md5.exe -build-info
RWO

The versions that you see in the output were de�ned via the optional arguments

to Command.run. You can leave these blank in your own programs or get your build

system to generate them directly from your version control system. Dune provides a

dune-build-info library1 that automates this process for most common work�ows.

We can invoke our binary with -help to see the auto-generated help.

$ dune exec -- ./md5.exe -help
Generate an MD5 hash of the input data

md5.exe FILENAME

More detailed information

=== flags ===

[-build-info] print info about this build and exit
[-version] print the version of this build and exit
[-help] print this help text and exit

(alias: -?)

If you supply the filename argument, then do_hash is called with the argument and

the MD5 output is displayed to the standard output.

$ dune exec -- ./md5.exe md5.ml
2ae55d17ff11d337492a1ca5510ee01b

And that's all it takes to build our little MD5 utility! Here's a complete version

of the example we just walked through, made slightly more succinct by removing

intermediate variables.

open Core

let do_hash file =
Md5.digest_file_blocking file |> Md5.to_hex |> print_endline

let command =
Command.basic
~summary:"Generate an MD5 hash of the input data"
~readme:(fun () -> "More detailed information")
Command.Param.(
map
(anon ("filename" %: string))
~f:(fun filename () -> do_hash filename))

let () = Command.run ~version:"1.0" ~build_info:"RWO" command

1 https://dune.readthedocs.io/en/stable/executables.html#
embedding-build-information-into-executables

https://doi.org/10.1017/9781009129220.019 Published online by Cambridge University Press

https://dune.readthedocs.io/en/stable/executables.html#embedding-build-information-into-executables
https://dune.readthedocs.io/en/stable/executables.html#embedding-build-information-into-executables
https://doi.org/10.1017/9781009129220.019

284 Command-Line Parsing

16.1.4 Multi-Argument Commands

All the examples thus far have involved a single argument, but we can of course create

multi-argument commands as well. We can make a parser for multiple arguments by

binding together simpler parsers, using the function Command.Param.both. Here is its

type.

#show Command.Param.both;;
val both :

'a Command.Spec.param ->

'b Command.Spec.param -> ('a * 'b) Command.Spec.param

both allows us to take two parameter parsers and combine them into a single parser

that returns the two arguments as a pair. In the following, we rewrite our md5 program

so it takes two anonymous arguments: the �rst is an integer saying howmany characters

of the hash to print out, and the second is the �lename.

open Core

let do_hash hash_length filename =
Md5.digest_file_blocking filename
|> Md5.to_hex
|> (fun s -> String.prefix s hash_length)
|> print_endline

let command =
Command.basic
~summary:"Generate an MD5 hash of the input data"
~readme:(fun () -> "More detailed information")
Command.Param.(
map
(both
(anon ("hash_length" %: int))
(anon ("filename" %: string)))

~f:(fun (hash_length, filename) () ->
do_hash hash_length filename))

let () = Command.run ~version:"1.0" ~build_info:"RWO" command

Building and running this command, we can see that it now indeed expects two

arguments.

$ dune exec -- ./md5.exe 5 md5.ml
f8824

This works well enough for two parameters, but if you want longer parameter lists,

this approach gets old fast. A better way is to use let-syntax, which was discussed in

Chapter 8.1.3 (bind and Other Error Handling Idioms).

let command =
Command.basic
~summary:"Generate an MD5 hash of the input data"
~readme:(fun () -> "More detailed information")
(let open Command.Let_syntax in
let open Command.Param in
let%map hash_length = anon ("hash_length" %: int)

https://doi.org/10.1017/9781009129220.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.019

16.2 De�ning Custom Argument Types 285

and filename = anon ("filename" %: string) in
fun () -> do_hash hash_length filename)

Here, we take advantage of let-syntax's support for parallel let bindings, using and

to join the de�nitions together. This syntax translates down to the same pattern based

on both that we showed above, but it's easier to read and use, and scales better to more

arguments.

The need to open both modules is a little awkward, and the Param module in par-

ticular you really only need on the right-hand-side of the equals-sign. This is achieved

automatically by using the let%map_open syntax, demonstrated below. We'll also drop

the open of Command.Let_syntax in favor of explicitly using let%map_open.Command

to mark the let-syntax as coming from the Command module

let command =
Command.basic
~summary:"Generate an MD5 hash of the input data"
~readme:(fun () -> "More detailed information")
(let%map_open.Command hash_length = anon ("hash_length" %: int)
and filename = anon ("filename" %: string) in
fun () -> do_hash hash_length filename)

Let-syntax is the most common way of writing parsers for Command, and we'll use

that idiom from here on.

Now that we have the basics in place, the rest of the chapter will examine some of

the more advanced features of Command.

16.2 Argument Types

You aren't just limited to parsing command lines of strings and ints. There are some

other argument types de�ned in Command.Param, like date and percent. But most of

the time, argument types for speci�c types in Core and other associated libraries are

de�ned in the module that de�nes the type in question.

As an example, we can tighten up the speci�cation of the command to

Filename.arg_type to re�ect that the argument must be a valid �lename, and not

just any string.

let command =
Command.basic
~summary:"Generate an MD5 hash of the input data"
~readme:(fun () -> "More detailed information")
(let%map_open.Command file =
anon ("filename" %: Filename.arg_type)

in
fun () -> do_hash file)

This doesn't change the validation of the provided value, but it does enable interactive

command-line completion. We'll explain how to enable that later in the chapter.

https://doi.org/10.1017/9781009129220.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.019

286 Command-Line Parsing

16.2.1 De�ning Custom Argument Types

We can also de�ne our own argument types if the prede�ned ones aren't su�cient. For

instance, let's make a regular_file argument type that ensures that the input �le isn't

a character device or some other odd UNIX �le type that can't be fully read.

open Core

let do_hash file =
Md5.digest_file_blocking file |> Md5.to_hex |> print_endline

let regular_file =
Command.Arg_type.create (fun filename ->

match Sys.is_file filename with
| `Yes -> filename
| `No -> failwith "Not a regular file"
| `Unknown ->
failwith "Could not determine if this was a regular file")

let command =
Command.basic
~summary:"Generate an MD5 hash of the input data"
~readme:(fun () -> "More detailed information")
(let%map_open.Command filename =
anon ("filename" %: regular_file)

in
fun () -> do_hash filename)

let () = Command.run ~version:"1.0" ~build_info:"RWO" command

The regular_file function transforms a filename string parameter into the same

string but �rst checks that the �le exists and is a regular �le type. When you build and

run this code, you will see the new error messages if you try to open a special device

such as /dev/null:

$ dune exec -- ./md5.exe md5.ml
5df5ec6301ea37bebc22912ceaa6b2e2
$ dune exec -- ./md5.exe /dev/null
Error parsing command line:

failed to parse FILENAME value "/dev/null"
(Failure "Not a regular file")

For usage information, run

md5.exe -help

[1]

16.2.2 Optional and Default Arguments

A more realistic md5 binary could also read from the standard input if a filename isn't

speci�ed. To do this, we need to declare the �lename argument as optional, which we

can do with the maybe operator.

https://doi.org/10.1017/9781009129220.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.019

16.2 Optional and Default Arguments 287

let command =
Command.basic
~summary:"Generate an MD5 hash of the input data"
~readme:(fun () -> "More detailed information")
(let%map_open.Command filename =
anon (maybe ("filename" %: string))

in
fun () -> do_hash filename)

But building this results in a compile-time error.

$ dune build md5.exe
File "md5.ml", line 15, characters 23-31:
15 | fun () -> do_hash filename)

^^^^^^^^
Error: This expression has type string option

but an expression was expected of type string
[1]

This is because changing the argument type has also changed the type of the value

that is returned by the parser. It now produces a string option instead of a string,

re�ecting the optionality of the argument. We can adapt our example to use the new

information and read from standard input if no �le is speci�ed.

open Core

let get_contents = function
| None | Some "-" -> In_channel.input_all In_channel.stdin
| Some filename -> In_channel.read_all filename

let do_hash filename =
get_contents filename
|> Md5.digest_string
|> Md5.to_hex
|> print_endline

let command =
Command.basic
~summary:"Generate an MD5 hash of the input data"
~readme:(fun () -> "More detailed information")
(let%map_open.Command filename =
anon (maybe ("filename" %: Filename.arg_type))

in
fun () -> do_hash filename)

let () = Command.run ~version:"1.0" ~build_info:"RWO" command

The filename parameter to do_hash is now a string option type. This is resolved

into a string via get_contents to determine whether to read the standard input or a

�le, and then the rest of the command is similar to our previous examples.

$ cat md5.ml | dune exec -- ./md5.exe
54fd98cd30f8faa76be46be0005f00bf

Another possible way to handle this would be to supply a dash as the default

�lename if one isn't speci�ed. The maybe_with_default function can do just this, with

the bene�t of not having to change the callback parameter type.

https://doi.org/10.1017/9781009129220.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.019

288 Command-Line Parsing

The following example behaves exactly the same as the previous example, but

replaces maybe with maybe_with_default:

open Core

let get_contents = function
| "-" -> In_channel.input_all In_channel.stdin
| filename -> In_channel.read_all filename

let do_hash filename =
get_contents filename
|> Md5.digest_string
|> Md5.to_hex
|> print_endline

let command =
Command.basic
~summary:"Generate an MD5 hash of the input data"
~readme:(fun () -> "More detailed information")
(let%map_open.Command filename =
anon (maybe_with_default "-" ("filename" %: Filename.arg_type))

in
fun () -> do_hash filename)

let () = Command.run ~version:"1.0" ~build_info:"RWO" command

Building and running this con�rms that it has the same behavior as before.

$ cat md5.ml | dune exec -- ./md5.exe
f0ea4085ca226eef2c0d70026619a244

16.2.3 Sequences of Arguments

Another common way of parsing anonymous arguments is as a variable length list. As

an example, let's modify our MD5 code to take a collection of �les to process on the

command line.

open Core

let get_contents = function
| "-" -> In_channel.input_all In_channel.stdin
| filename -> In_channel.read_all filename

let do_hash filename =
get_contents filename
|> Md5.digest_string
|> Md5.to_hex
|> fun md5 -> printf "MD5 (%s) = %s\n" filename md5

let command =
Command.basic
~summary:"Generate an MD5 hash of the input data"
~readme:(fun () -> "More detailed information")
(let%map_open.Command files =
anon (sequence ("filename" %: Filename.arg_type))

https://doi.org/10.1017/9781009129220.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.019

16.3 Adding Labeled Flags 289

in
fun () ->
match files with
| [] -> do_hash "-"
| _ -> List.iter files ~f:do_hash)

let () = Command.run ~version:"1.0" ~build_info:"RWO" command

The callback function is a little more complex now, to handle the extra options. The

files are now a string list, and an empty list reverts to using standard input, just

as our previous maybe and maybe_with_default examples did. If the list of �les isn't

empty, then it opens up each �le and runs them through do_hash sequentially.

$ dune exec -- ./md5.exe /etc/services ./_build/default/md5.exe
MD5 (/etc/services) = 6501e9c7bf20b1dc56f015e341f79833
MD5 (./_build/default/md5.exe) = 6602408aa98478ba5617494f7460d3d9

16.3 Adding Labeled Flags

You aren't limited to anonymous arguments on the command line. A �ag is a named

�eld that can be followed by an optional argument. These �ags can appear in any order

on the command line, or multiple times, depending on how they're declared in the

speci�cation.

Let's add two arguments to our md5 command that mimics the macOS version. A

-s �ag speci�es the string to be hashed directly on the command line and -t runs a

self-test. The complete example follows.

open Core

let checksum_from_string buf =
Md5.digest_string buf |> Md5.to_hex |> print_endline

let checksum_from_file filename =
let contents =
match filename with
| "-" -> In_channel.input_all In_channel.stdin
| filename -> In_channel.read_all filename

in
Md5.digest_string contents |> Md5.to_hex |> print_endline

let command =
Command.basic
~summary:"Generate an MD5 hash of the input data"
(let%map_open.Command use_string =
flag
"-s"
(optional string)
~doc:"string Checksum the given string"

and trial = flag "-t" no_arg ~doc:" run a built-in time trial"
and filename =
anon (maybe_with_default "-" ("filename" %: Filename.arg_type))

in

https://doi.org/10.1017/9781009129220.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.019

290 Command-Line Parsing

fun () ->
if trial
then printf "Running time trial\n"
else (
match use_string with
| Some buf -> checksum_from_string buf
| None -> checksum_from_file filename))

let () = Command.run command

The speci�cation now uses the flag function to de�ne the two new labeled,

command-line arguments. The doc string is formatted so that the �rst word is the

short name that appears in the usage text, with the remainder being the full help text.

Notice that the -t �ag has no argument, and so we prepend its doc text with a blank

space. The help text for the preceding code looks like this:

$ dune exec -- ./md5.exe -help
Generate an MD5 hash of the input data

md5.exe [FILENAME]

=== flags ===

[-s string] Checksum the given string
[-t] run a built-in time trial
[-build-info] print info about this build and exit
[-version] print the version of this build and exit
[-help] print this help text and exit

(alias: -?)

$ dune exec -- ./md5.exe -s "ocaml rocks"
5a118fe92ac3b6c7854c595ecf6419cb

The -s �ag in our speci�cation requires a string argument and isn't optional.

The Command parser outputs an error message if the �ag isn't supplied, as with the

anonymous arguments in earlier examples. There are a number of other functions that

you can wrap �ags in to control how they are parsed:

• required <arg> will return <arg> and error if not present
• optional <arg> with return <arg> option
• optional_with_default <val> <arg> will return <arg> with default <val> if not

present

• listed <arg> will return <arg> list (this �ag may appear multiple times)
• no_arg will return a bool that is true if the �ag is present

The �ags a�ect the type of the callback function in exactly the same way as anony-

mous arguments do. This lets you change the speci�cation and ensure that all the

callback functions are updated appropriately, without runtime errors.

https://doi.org/10.1017/9781009129220.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.019

16.4 Grouping Subcommands Together 291

16.4 Grouping Subcommands Together

You can get pretty far by using �ags and anonymous arguments to assemble complex,

command-line interfaces. After a while, though, too many options can make the pro-

gram very confusing for newcomers to your application. One way to solve this is by

grouping common operations together and adding some hierarchy to the command-line

interface.

You'll have run across this style already when using the opam package manager (or,

in the non-OCaml world, the Git or Mercurial commands). opam exposes commands

in this form:

$ opam env
$ opam remote list -k git
$ opam install --help
$ opam install core --verbose

The config, remote, and install keywords form a logical grouping of commands

that factor out a set of �ags and arguments. This lets you prevent �ags that are speci�c

to a particular subcommand from leaking into the general con�guration space.

This usually only becomes a concern when your application organically grows

features. Luckily, it's simple to extend your application to do this in Command: just

use Command.group, which lets you merge a collection of Command.t's into one.

Command.group;;
- : summary:string ->

?readme:(unit -> string) ->

?preserve_subcommand_order:unit ->

?body:(path:string list -> unit) ->

(string * Command.t) list -> Command.t

= <fun>

The group signature accepts a list of basic Command.t values and their corresponding

names. When executed, it looks for the appropriate subcommand from the name list,

and dispatches it to the right command handler.

Let's build the outline of a calendar tool that does a few operations over dates from

the command line. We �rst need to de�ne a command that adds days to an input date

and prints the resulting date:

open Core

let add =
Command.basic
~summary:"Add [days] to the [base] date and print day"
(let%map_open.Command base = anon ("base" %: date)
and days = anon ("days" %: int) in
fun () ->
Date.add_days base days |> Date.to_string |> print_endline)

let () = Command.run add

Everything in this command should be familiar to you by now, and it works as you

might expect.

https://doi.org/10.1017/9781009129220.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.019

292 Command-Line Parsing

$ dune exec -- ./cal.exe -help
Add [days] to the [base] date and print day

cal.exe BASE DAYS

=== flags ===

[-build-info] print info about this build and exit
[-version] print the version of this build and exit
[-help] print this help text and exit

(alias: -?)

$ dune exec -- ./cal.exe 2012-12-25 40
2013-02-03

Now, let's also add the ability to take the di�erence between two dates, but, in-

stead of creating a new binary, we'll group both operations as subcommands using

Command.group.

open Core

let add =
Command.basic
~summary:"Add [days] to the [base] date"
Command.Let_syntax.(
let%map_open base = anon ("base" %: date)
and days = anon ("days" %: int) in
fun () ->
Date.add_days base days |> Date.to_string |> print_endline)

let diff =
Command.basic
~summary:"Show days between [date1] and [date2]"
(let%map_open.Command date1 = anon ("date1" %: date)
and date2 = anon ("date2" %: date) in
fun () -> Date.diff date1 date2 |> printf "%d days\n")

let command =
Command.group
~summary:"Manipulate dates"
["add", add; "diff", diff]

let () = Command.run command

And that's all you really need to add subcommand support! Let's build the example

�rst in the usual way and inspect the help output, which now re�ects the subcommands

we just added.

(executable
(name cal)
(libraries core)
(preprocess (pps ppx_jane)))

$ dune exec -- ./cal.exe -help
Manipulate dates

https://doi.org/10.1017/9781009129220.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.019

16.5 Prompting for Interactive Input 293

cal.exe SUBCOMMAND

=== subcommands ===

add Add [days] to the [base] date
diff Show days between [date1] and [date2]
version print version information
help explain a given subcommand (perhaps recursively)

We can invoke the two commands we just de�ned to verify that they work and see

the date parsing in action:

$ dune exec -- ./cal.exe add 2012-12-25 40
2013-02-03
$ dune exec -- ./cal.exe diff 2012-12-25 2012-11-01
54 days

16.5 Prompting for Interactive Input

Sometimes, if a value isn't provided on the command line, you want to prompt for it

instead. Let's return to the calendar tool we built before.

open Core

let add =
Command.basic
~summary:"Add [days] to the [base] date and print day"
(let%map_open.Command base = anon ("base" %: date)
and days = anon ("days" %: int) in
fun () ->
Date.add_days base days |> Date.to_string |> print_endline)

let () = Command.run add

This program requires you to specify both the base date and the number of days to

add onto it. If days isn't supplied on the command line, an error is output. Now let's

modify it to interactively prompt for a number of days if only the base date is supplied.

open Core

let add_days base days =
Date.add_days base days |> Date.to_string |> print_endline

let prompt_for_string name of_string =
printf "enter %s: %!" name;
match In_channel.input_line In_channel.stdin with
| None -> failwith "no value entered. aborting."
| Some line -> of_string line

let add =
Command.basic
~summary:"Add [days] to the [base] date and print day"
(let%map_open.Command base = anon ("base" %: date)
and days = anon (maybe ("days" %: int)) in

https://doi.org/10.1017/9781009129220.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.019

294 Command-Line Parsing

let days =
match days with
| Some x -> x
| None -> prompt_for_string "days" Int.of_string

in
fun () -> add_days base days)

let () = Command.run add

The days anonymous argument is now an optional integer in the spec, and when

it isn't there, we simply prompt for the value as part of the ordinary execution of our

program.

Sometimes, it's convenient to pack the prompting behavior into the parser itself. For

one thing, this would allow you to easily share the prompting behavior among multiple

commands. This is easy enough to do by adding a new function, anon_prompt, which

creates a parser that automatically prompts if the value isn't provided.

let anon_prompt name of_string =
let arg = Command.Arg_type.create of_string in
let%map_open.Command value = anon (maybe (name %: arg)) in
match value with
| Some v -> v
| None -> prompt_for_string name of_string

let add =
Command.basic
~summary:"Add [days] to the [base] date and print day"
(let%map_open.Command base = anon ("base" %: date)
and days = anon_prompt "days" Int.of_string in
fun () -> add_days base days)

We can see the prompting behavior if we run the program without providing the

second argument.

$ echo 35 | dune exec -- ./cal.exe 2013-12-01
enter days: 2014-01-05

16.6 Command-Line Autocompletion with bash

Modern UNIX shells usually have a tab-completion feature to interactively help you

�gure out how to build a command line. These work by pressing the Tab key in the

middle of typing a command, and seeing the options that pop up. You've probably used

this most often to �nd the �les in the current directory, but it can actually be extended

for other parts of the command, too.

The precise mechanism for autocompletion varies depending on what shell you are

using, but we'll assume you are using the most common one: bash. This is the default

interactive shell on most Linux distributions and macOS, but you may need to switch

to it on *BSD or Windows (when using Cygwin). The rest of this section assumes that

you're using bash.

https://doi.org/10.1017/9781009129220.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.019

16.6 Installing the Completion Fragment 295

Bash autocompletion isn't always installed by default, so check your OS package

manager to see if you have it available.

• On Debian Linux, do apt install bash-completion

• On macOS Homebrew, do brew install bash-completion

• On FreeBSD, do pkg install bash-completion.

Once bash completion is installed and con�gured, check that it works by typing the

ssh command and pressing the Tab key. This should show you the list of known hosts

from your ~/.ssh/known_hosts �le. If it lists some hosts that you've recently connected

to, you can continue on. If it lists the �les in your current directory instead, then check

your OS documentation to con�gure completion correctly.

One last bit of information you'll need to �nd is the location of the

bash_completion.d directory. This is where all the shell fragments that contain the

completion logic are held. On Linux, this is often in /etc/bash_completion.d, and in

Homebrew on macOS, it would be /usr/local/etc/bash_completion.d by default.

16.6.1 Generating Completion Fragments from Command

The Command library has a declarative description of all the possible valid options,

and it can use this information to generate a shell script that provides completion

support for that command. To generate the fragment, just run the command with the

COMMAND_OUTPUT_INSTALLATION_BASH environment variable set to any value.

For example, let's try it on our MD5 example from earlier, assuming that the binary

is called md5 in the current directory:

$ env COMMAND_OUTPUT_INSTALLATION_BASH=1 dune exec -- ./md5.exe
function _jsautocom_32087 {
export COMP_CWORD
COMP_WORDS[0]=./md5.exe
if type readarray > /dev/null
then readarray -t COMPREPLY < <("${COMP_WORDS[@]}")
else IFS="

" read -d "" -A COMPREPLY < <("${COMP_WORDS[@]}")
fi

}
complete -F _jsautocom_32087 ./md5.exe

Recall that we used the Arg_type.file to specify the argument type. This also

supplies the completion logic so that you can just press Tab to complete �les in your

current directory.

16.6.2 Installing the Completion Fragment

You don't need to worry about what the preceding output script actually does (unless

you have an unhealthy fascinationwith shell scripting internals, that is). Instead, redirect

the output to a �le in your current directory and source it into your current shell:

https://doi.org/10.1017/9781009129220.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.019

296 Command-Line Parsing

$ env COMMAND_OUTPUT_INSTALLATION_BASH=1 ./cal_add_sub_days.native >
cal.cmd

$. cal.cmd
$./cal_add_sub_days.native <tab>
add diff help version

Command completion support works for �ags and grouped commands and is very

useful when building larger command-line interfaces. Don't forget to install the shell

fragment into your global bash_completion.d directory if you want it to be loaded in

all of your login shells.

Installing a Generic Completion Handler

Sadly, bash doesn't support installing a generic handler for all Command-based ap-

plications. This means you have to install the completion script for every application,

but you should be able to automate this in the build and packaging system for your

application.

It will help to check out how other applications install tab-completion scripts and

follow their lead, as the details are very OS-speci�c.

16.7 Alternative Command-Line Parsers

This rounds up our tour of the Command library. This isn't the only way to parse

command-line arguments of course; there are several alternatives available on opam.

Three of the most prominent ones follow:

The Argmodule The Arg module is from the OCaml standard library, which is

used by the compiler itself to handle its command-line interface. Command

is built on top of Arg, but you can also use Arg directly. You can use

the Command.Spec.flags_of_args_exn function to convert Arg speci�cations

into ones compatible with Command, which is a simple way of porting an

Arg-based command line interface to Command.

ocaml-getopt2 ocaml-getopt provides the general command-line syntax of GNU

getopt and getopt_long. The GNU conventions are widely used in the open

source world, and this library lets your OCaml programs obey the same rules.

Cmdliner3 Cmdliner is a mix between the Command and Getopt libraries. It allows

for the declarative de�nition of command-line interfaces but exposes a more

getopt-like interface. It also automates the generation of UNIX man pages

as part of the speci�cation. Cmdliner is the parser used by opam to manage

its command line.

https://doi.org/10.1017/9781009129220.019 Published online by Cambridge University Press

https://doi.org/10.1017/9781009129220.019

