
Paul R. Shapiro¹, Ira Wasserman², and Mark L. Giroux¹ ¹University of Texas at Austin ²Cornell University

We have generalized the classical description of ionization front propagation to the case of a point source in a uniform, cosmologically expanding gas. We present illustrative curves for the comoving radius and peculiar velocity for several turn-on redshifts, z_{ON} , for Ω_{tot} = 1, $\Omega_{\rm b}$ = 0.1, h = 1. The quantity RS is the generalized Strömgren radius $[RS = RS_{i} (1 + z_{ON})/(1 + z), RS_{i} = (3N_{u}/4\pi n_{H,i}^{2} \alpha_{2})^{1/3}, N_{u} =$ photoionizing number flux per source, α_2 = recombination rate to n = 2, $n_{\rm H,i} = n_{\rm H}^{\circ} (1 + z_{\rm ON})^3]$. The quantity $T_{\rm ON} = 2(1 + z_{\rm ON})^{-3/2}/(3H_{\rm O})$. We also plot ζ , the value of $(2n_{\rm Q}^{\circ}N_{\rm ph,Q}/3H_{\rm O}n_{\rm H}^{\circ})$ needed to ionize the IGM with overlapping QSO HII regions by redshift z_{OV} for QSO turn-on at various z_{ON} , where $N_{ph,O}$ = ionizing photon luminosity per QSO, n_O° = QSO number density (present co-moving value), $n_{\rm H}$ = H density of IGM, and $n_{\rm H}/n_{\rm H}^{\circ} = n_{\rm O}/n_{\rm O}^{\circ} = (1 + z)^3$. From a recent preprint by Koo (1985), we estimate $\frac{1}{2} \lesssim 1$ (for $\Omega_{\rm b}$ = 0.1, h = 1) for QSO's with L $\sim 10^{45}$ erg s⁻¹. In this case, the observed QSO's cannot be the sole source of the IGM ionization that is implied by the null detection of the Gunn-Peterson effect for QSO's with z > 2.

366

J. Kormendy and G. R. Knapp (eds.), Dark Matter in the Universe, 366. © 1987 by the IAU.