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Abstract. The weak lensing effect generates spin-2 distortions, referred to as shear, on the
observable shape of distant galaxies, induced by intervening gravitational tidal fields. Tradition-
ally, the spin-2 distortion in the light distribution of distant galaxies is measured in terms of a
galaxy ellipticity. This is a very good unbiased estimator of the shear field in the limit that a
galaxy is measured at infinite signal-to-noise. However, the ellipticity is always defined as a ratio
between two quantities (for example, between the polarisation and measurement of the galaxy
size, or between the semi-major and semi-minor axis of the galaxy) and therefore requires some
non-linear combination of the image pixels. This means, in any realistic case, this would lead to
biases in the measurement of the shear (and hence in the cosmological parameters) whenever
noise is present in the image. This type of bias can be understood from the particular shape
of the 2D probability distribution of the ellipticity of an object measured from data. Moreover
this probability distribution can be used to explore strategies for calibration of noise biases in
present and future weak lensing surveys (e.g. KiDS, DES, HSC,Euclid, LSST...)
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1. Introduction
Weak gravitational lensing is a very powerful tool to study properties of dark matter

halos (e.g Hoekstra et al. 2013) as well to investigate the growth-rate of structures in
the Universe (e.g. Schrabback et al. 2010, Kilbinger et al. 2013). However it is quite
challenging from a practical point of view since it relies on measurements of tiny choerent
distortions (shear) in the shapes of background galaxies.

One of the reasons why measuring galaxy shapes (ellipticities) is notoriously challeng-
ing is because the measurements have to be done from noisy pixels.

Since 2007 it has become common practice in the weak-lensing community to test and
validate different algorithms used to infer the gravitational shear from measurements of
the shape of galaxies, on some sets of common image simulations (Heymans et al. (2007),
Massey et al. (2007), Bridle et al. (2010), Kitching et al. (2012)).

Some important lessons were learned: the bias in shear measurements is a strong
function of the galaxy signal-to-noise and of the galaxy size with respect to the size of
the point spread function (PSF): galaxies with sizes closer to the size of the PSF have
more bias then larger objects at equal signal-to-noise. This behaviour is common to all
algorithms tested on those simulations and usable on real data.

The bias in the shear is generally parameterised in terms of a multiplicative term m
and an additive term c: gobs = (1 + m)gtrue + c.

The additive bias c can be estimated from the data itself, making use of the fact that
over the full survey area, the average of each component of the ellipticity must vanish.

For galaxies with low signal-to-noise (15 or below) the multiplicative bias in the shear
is typically very large, of the order of 20% or larger. If not accounted for, this bias
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propagates directly into potentially large biases in the cosmological parameters or in
derived properties of dark matter halos.

Ideally, any bias in the shear measurements should be smaller than the measurement
statistical error, σγ � σε/

√
N, where σε � 0.3 is the intrinsic ellipticity dispertion and N

the number of galaxies used to infer the shear.
Even for existing surveys, like CFHTLenS, the amplitude of the bias is too large

at low signal noise for not being corrected, and some calibration needs to be applied
(Miller et al. 2013). Ongoing larger surveys, like Dark Energy Survey (DES),Kilo Degree
Survey (KiDS),Hyper Suprime-Cam (HSC), have even more stringent requirements on
the amplitude of the shear bias, which poses greater challenges about calibration of
existing shape measurements methods.

2. The Marsaglia-Tin distribution
At a very fundamental level, the bias in shear measurements is a consequence of the fact

that it is not possible to measure an unbiased ellipticity in presence of noise (if the effect
of the noise is not properly accounted for). The reason is that an ellipticity measurement
involves some non-linear transformation on the noisy pixels of an astronomical image.

In order to further investigate this problem, we derive the probability distribution of
the observed ellipicity in presence of noise given a true ellipticity.

Since the shear is derived as an average over an ensemble of measured ellipticities in a
region of the sky, this probability lies behind any weak lensing analysis.

This particular probability distribution was first derived by Marsaglia (1965) and Tin
(1965) and re-derived in a weak lensing context by Melchior & Viola (2012) and Viola,
Kitching, Joachimi (2014).

Here we summarise the derivation of the Marsaglia-Tin distribution.

2.1. Some definitions
We start by defining the i + j order moments of the object surface brightness I(x, y):

{Q}i,j =
∫

I(x, y)xiyjdxdy (2.1)

Note that in reality what are measured are weighted moments of the convolved surface
brightness. A weighting function has to be employed in order to suppress the pixel noise at
large distances from the galaxy centre, and its effect has to be accounted for (this involves
measuring higher order moments of the surface brightness). Moreover, the contribution
of the PSF has to be removed.

The second-order moments can be used to characterise the object’s normalised polar-
isation χ and the ε-ellipticity of the object:

χ :=
{Q}20 − {Q}02 + 2i{Q}11

{Q}20 + {Q}02
and ε :=

{Q}20 − {Q}02 + 2i{Q}11

{Q}20 + {Q}02 + 2
√

{Q}20{Q}02 − {Q}2
11

.

(2.2)
The two definitions are related through:

χ =
2ε

1 + |ε|2 . (2.3)

The shear is then derived by averaging many galaxies’ ellipticities under the assumption
that the the intrinsic orientation of galaxies in the universe is random.

Both definitions are used in literature. However only an unbiased measurement of ε is
indeed an unbiased estimate of the shear (Seitz & Schneider (1997)).
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We start focusing on what is the probability distribution for χ, which can also be
written as a ratio of the Stokes parameters u = {Q}20−{Q}02 ,v = 2{Q}11 and s={Q}20+
{Q}02 .

The probability distribution function of the Stokes parameters in presence of ho-
moscedastic noise (i.e. uncorrelated and gaussian) can be described in terms of a trivariate
Gaussian with correlation coefficients ρij between each of the variables.

The 2-dimensional probability distribution for the normalised polarisation χ defined
as (u/s, v/s) can be derived starting from the three-dimensional probability distribution
for the Stokes parameters.

First of all we transform the distribution pu,v ,s(u, v, s) into p(χ1 , χ2 , s) by a change of
variable and then we marginalise over s

pχ(χ1 , χ2) =
∫ ∞

−∞
dss2pu,v ,s(χ1s, χ2s, s) ; (2.4)

this is the form of a two dimensional quotient distribution. The result of this integration
is the so-called Marsaglia-Tin distribution. It has an analytical (even though not simple)
expression, that interested readers can find in Section 3.1 of Viola, Kitching, Joachimi
(2014).

The probability of measuring a χ polarisation can be transformed into the probability
of measuring an ε-ellipticity using Equation 2.3.

We note here that in the case of uncorrelated variables which are gaussian distributed
with zero-mean the Marsaglia-Tin distribution reduces to the Cauchy distribution.

2.2. Properties of the Marsaglia-Tin distribution

We summarise here the main properties of the Marsaglia-Tin distribution:
• Only the amplitude of the ellipticity is generally biased, while the angle

(1/2) tan−1(χ2/χ2) is always unbiased Wardle & Kronberg (1974);
• In the case an ‘optimal’ weighting function (i.e. matching exactly the radial profile,

ellipticity and size of the object) and χ is used as a definition for the ellipticity, both the
mean and the maximum of the Marsaglia-Tin distribution are biased, while in the case
that ε is used only the maximum is biased while the mean is unbiased independent of
the signal-to-noise level;
• Truncation of the ε-ellipticity distribution, for example by removing very elliptical

objects, introduces a bias in the measurements of the mean ε even in the ideal case of a
weighting function that perfectly matches the galaxy profile;
• In the case where a circular weighting is employed in the moment measurements,

the correlation between the Stokes parameters deviates from the true one. The larger
this deviation, the larger is the bias;
• For a fixed value of signal-to-noise, the amplitude of the bias is determined by two

factors: the correlation between the Stokes parameters, and the signal-to-noise on the
quadrupole moments (or the ellipticity of the object);
• If the size of the object becomes comparable to the size of the PSF then the prob-

ability distribution of the convolved ellipticity is the convolution of the Marsaglia-Tin
distribution with the probability distribution of the ratio of the size of the galaxy and the
size of the PSF (the so-called resolution): the lower the resolution, the larger the bias.

The probability distribution of the absolute value of the ε-ellipticity is shown in left
panel of Figure 1 for different choices of the weighting function.
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Figure 1. Left panel: Probability distribution of the absolute value of the ε-ellipticity given a
true galaxy ellipticity of ε = (0.4, 0.0) and zero PSF ellipticity. The cyan line corresponds to the
case of using a weighting function which is matched perfectly to the galaxy profile and no PSF
convolution, the red line to the case of using a circular weighting function with size 1.2 times the
galaxy semi-major axis and a resolution of R = 5.0, the green line to a resolution of 2.5 and the
blue line to a resolution of 1.2. Note that in all cases we removed objects having an unphysical
combination of second-order moments (Q20Q02 − Q2

11 < 0). Right panel: Shear multiplicative
Marsaglia bias as a function of signal-to-noise. The three curves represent the case of galaxies
with intrinsic ellipticities following a Rayleigh distribution with σε = 0.27 (blue), σε = 0.3
(green) and σε = 0.33 (red). The width of the weighting function has been chosen to be 1.2
times the object semi-major axis. This plot highlights the importance of knowing the ellipticity
distribution in order to calibrate the shear bias. These figures are adapted from Viola, Kitching
& Joachimi 2014.

3. Implication for current and future surveys
If we assume that the galaxy profile is known (i.e. we neglect the so-called model bias),

the amplitude of the multiplicative bias in the shear measurements depends essentially on
the galaxy resolution, the intrinsic ellipticity distribution (since the bias in the ellipticity
measurements is a function of the ellipticity) and on the object signal-to-noise and it
can be numerically computed starting from the Marsaglia-Tin distribution (for details
we refer to Section 3 of Viola, Kitching & Joachimi.)

Therefore any attempt to characterise and calibrate the noise-bias by means of image
simulations requires knowledge of these three quantities.

How well those three quantities need to be known depends on the statistical power of
a survey (given by its area and its depth) which sets requirements on the knowledge of
the shear multiplicative bias σm.

For a surveys like CFHTLenS this number is of order σm � 10−2 , for current surveys
like KiDS, DES, HSC, σm � 3 × 10−3 , and for a Euclid-like survey σm � 5 × 10−4 .

Hence the requirements on the knowledge of a quantity �x = (σε, ν,R, ..) can be com-
puted as:

σ�xi 0
= σm

[∣∣∣∣∣∂m
∂ �xi

∣∣∣∣∣
�xi 0

]−1

(3.1)

from which it is clear that the requirements on the knowlege of the intrinsic ellipticity
distribution, noise level and resolution are driven by the steepness of the multiplicative-
bias as a function of this quantity and not by its amplitude.

In other words among methods with similar amplitude of the multiplicative bias, it is
preferred, in the sense that it is more calibratable, the one with the shallower derivative
of m as a function of �x
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The effect of the intrnsic ellipticity distribution on the shear multiplicative bias as a
function of signal to noise is shown in the right panel of Figure 1.

In Viola, Kitching & Joachimi we investigated the requirements on the knowledge of
the intrinsic ellipticity distribution and we found that it has to be known with a precision
of ∼ 5% in order to properly calibrate shear estimates for current surveys, for upcoming
surveys with a precision of ∼ 1% and for future surveys with a precision of ∼ 0.3%.

4. Conclusions
We showed in this work how the bias in shear measurements, affecting all methods

applied to data so far, can be understood studying the properties of the Marsaglia-Tin
distribution (which the probability distribution of measuring an ellipticity in presence of
noise).

In particular we show how the amplitude of the multiplicative shear bias strongly
depends on the intrinsic ellipticity distribution, the resolution and the signal-to-noise of
the objects.

Hence these properties of galaxies need to be known with great precision and accuracy
in order to calibrate the bias using image simulation.

One way to avoid the noise-bias in shear measurements would be using avoiding taking
ratios, for example using the un-normalised stokes parameters (i.e. not normalised by the
galaxy flux). However, it has been shown (Viola, Kitching & Joachimi), that the price
paid for this is an increased variance in the shear estimate. This can be understood by
the fact that no information about the object flux is used.
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Hoekstra, H., et al. 2013, MNRAS, p. 735
Kitching, T. D., Balan, S. T., Bridle, S., Cantale, N., Courbin, F., Eifler, T., Gentile, M., Gill,

M. S. S., Harmeling, S., Heymans, C., et al. 2012, MNRAS, 423, 3163
Marsaglia, G., 1965, j-J-AM-STAT-ASSOC, 60, 193
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