J. Austral. Math. Soc. (Series A) 44 (1988), 159-163

ON HOMOMORPHISMS OF AN ORTHOGONALLY DECOMPOSABLE HILBERT SPACE II

S. YAMAMURO

(Received 24 June 1986)

Communicated by R. Vyborny

Abstract

We present two more characterizations of maps which preserve orthogonal decompositions defined on Hilbert spaces ordered by natural cones.

1980 Mathematics subject classification (Amer. Math. Soc.): 46 A 40.

Let M be a von Neumann algebra on a Hilbert space H. We shall assume that there is a cyclic and separating vector $\xi_0 \in H$ for M. Then, by the Tomita-Takesaki theory, there are the conjugation operator J and the modular operator Δ associated with ξ_0 such that

$$H^+ = \overline{\left\{xj(x)\xi_0 : x \in M\right\}} = \overline{\left\{\Delta^{1/4}x\xi_0 : x \in M^+\right\}}$$

defines the "natural" positive cone of H, where j(x) = JxJ and M^+ is the set of all positive elements of M. Then, every element ξ of H such that $\xi = J\xi$ admits a unique orthogonal decomposition: $\xi = \xi^+ - \xi^-$, $\xi^+ \in H^+$, $\xi^- \in H^+$ and $(\xi^+, \xi^-) =$ 0. For the details of these facts, see [1] and [2]. A continuous linear operator ϕ : $H \to H$ is called an o.d. homomorphism if $\phi \xi = \phi \xi^+ - \phi \xi^-$ is also an orthogonal decomposition. This is equivalent to that $\phi(H^+) \subset H^+$ and $(\phi \xi, \phi \eta) = 0$ whenever $\xi \in H^+$, $\eta \in H^+$ and $(\xi, \eta) = 0$. The following fact has been proved in [3].

THEOREM 1. Let ϕ : $H \to H$ be a continuous linear operator. Then, ϕ is an o.d. homomorphism if and only if $\phi(H^+) \subset H^+$ and $\phi^* \phi \in M \cap M'$ (the center of M).

^{© 1988} Australian Mathematical Society 0263-6115/88 \$A2.00 + 0.00

The aim of this note is to add two more characterizations of o.d. homomorphisms.

THEOREM 2. Let ϕ : $H \rightarrow H$ be a continuous linear operator such that $\phi(H^+) \subset H^+$. The following conditions are equivalent.

(1) ϕ is an o.d. homomorphism.

(2) $\phi^* x \phi \in M \cap M'$ for every $x \in M \cap M'$.

PROOF. (1) \Rightarrow (2). Let $x \in (M \cap M')^+$. When $\xi \in H^+$, $\eta \in H^+$ and $(\xi, \eta) = 0$, it follows from the condition (1) that $\phi \xi \in H^+$, $\phi \eta \in H^+$ and $(\phi \xi, \phi \eta) = 0$. Furthermore,

$$\left(x^{1/2}\phi\xi, x^{1/2}\phi\eta\right) = \left(x^{1/2}p_{\phi\xi}\phi\xi, x^{1/2}p_{\phi\eta}\phi\eta\right) = \left(p_{\phi\xi}x^{1/2}\phi\xi, p_{\phi\eta}x^{1/2}\phi\eta\right) = 0,$$

where $p_{\phi\xi} = [M'\phi\xi]$ and $p_{\phi\eta} = [M'\phi\eta]$ are cyclic projections. Since $x^{1/2}(H^+) \subset H^+$, this implies that $x^{1/2}\phi$ is an o.d. homomorphism. Hence, by Theorem 1,

$$\phi^* x \phi = (\phi^* x^{1/2}) (x^{1/2} \phi) = (x^{1/2} \phi)^* (x^{1/2} \phi) \in M \cap M'.$$

(2) \Rightarrow (1). For x = 1, the identity of M, we have $\phi^* \phi \in M \cap M'$. Hence, by Theorem 1, ϕ is an o.d. homomorphism.

COROLLARY 3. Let ϕ : $H \to H$ be a continuous linear operator such that $\phi(H^+) \subset H^+$. Then, if $\phi^*x\phi \in M$ for every $x \in M$, ϕ is an o.d. homomorphism.

PROOF. By the Tomita-Takesaki theory, we have $J^* = J$ and M' = j(M). Since $\phi(H^+) \subset H^+$, we have $\phi J = J\phi$. Hence, for any $x' \in M'$, we can take $x \in M$ such that x' = j(x) and

$$\phi^* x' \phi = \phi^* J x J \phi = J(\phi^* x \phi) J \in j(M) = M'.$$

It then follows from the assumption that $\phi^*(M \cap M')\phi \subset M \cap M'$. Hence, ϕ is an o.d. homomorphism by Theorem 2.

The second characterization has its origin in the following lemma which, when ϕ is a unitary operator, is due to [2].

LEMMA 4. Let $\phi: H \to H$ be a continuous linear bijection such that $\phi(H^+) = H^+$. Then, for any cyclic and separating vector $\xi \in H^+$ for M, there is a unital Jordan *-isomorphism $\alpha_{\phi,\xi}$ of M such that

$$\Delta_{\phi\xi}^{1/4}\alpha_{\phi,\xi}(x)\phi\xi = \phi(\Delta_{\xi}^{1/4}x\xi) \quad \text{for all } x \in M,$$

where Δ_{ξ} and $\Delta_{\phi\xi}$ are the modular operators associated with the cyclic and separating vectors ξ and $\phi\xi$ respectively.

(Since ϕ is bijective and $\phi(H^+) = H^+$, $\phi \xi$ is also a cyclic and separating vector for M by [2], Lemma 4.3.)

PROOF. Let $H_{\xi} = \{\eta \in H: -\lambda \xi \leq \eta \leq \lambda \xi \text{ for some } \lambda > 0\}$, $H_{\phi\xi} = \{\eta \in H: -\phi \xi \leq \eta \leq \phi \xi \text{ for some } \lambda > 0\}$ and M^h be the set of all self-adjoint elements of M. Since ϕ is bijective and $\phi(H^+) = H^+$, ϕ maps H_{ξ} onto $H_{\phi\xi}$ bijectively. On the other hand, by [1], Lemma 2.5.40, and [2], Proposition 1.2, there are bijective order isomorphisms

$$b_{\xi} \colon M^h \to H_{\xi}$$
 and $b_{\phi\xi} \colon M^h \to H_{\phi\xi}$

defined by

$$b_{\xi}(x) = \Delta_{\xi}^{1/4} x \xi$$
 and $b_{\phi\xi}(x) = \Delta_{\phi\xi}^{1/4} x \phi \xi$

for all $x \in M^h$. Hence, we can define a bijection $\alpha_{\phi,\xi}$: $M^h \to M^h$ by

$$\Delta_{\phi\xi}^{1/4}\alpha_{\phi,\xi}(x)\phi\xi = \phi\left(\Delta_{\xi}^{1/4}x\xi\right) \quad \text{for all } x \in M^h.$$

By the linearity, $\alpha_{\phi,\xi}(x)$ is defined for all $x \in M$. It satisfies $\alpha_{\phi,\xi}(1) = 1$ and $\alpha_{\phi,\xi}(M^+) = M^+$. Therefore, by a theorem of Kadison [4] (see also [1], Theorem 3.2.3), $\alpha_{\phi,\xi}$ is a Jordan *-isomorphism.

We shall prove that a continuous linear operator $\phi: H \to H$ such that $\phi(H^+) = H^+$ is an o.d. homomorphism if and only if $\alpha_{\phi} = \alpha_{\phi,\xi}$ for every cyclic and separating vector $\xi \in H^+$ for M, where $\alpha_{\phi} = \alpha_{\phi,\xi}$. It is known that the equality $\alpha_{\phi} = \alpha_{\phi,\xi}$ holds for a special class of o.d. homomorphisms. For example, it has been shown in [2], Theorem 3.2 (see also [1], Theorem 3.2.15) that, when u is a unitary operator such that $u(H^+) = H^+$, we have the equality $\alpha_u = \alpha_{u,\xi}$ for every cyclic and separating vector $\xi \in H^+$ for M, and, conversely, for any unital Jordan *-isomorphism $\alpha_{\phi}: M \to M$, there is a unique unitary operator u_{α} such that $u_{\alpha}(H^+) = H^+$ and

$$u_{\alpha}(\Delta_{\xi}^{1/4}x\xi) = \Delta_{u_{\alpha}\xi}^{1/4}\alpha_{\phi}(x)u_{\alpha}\xi \quad \text{for all } x \in M$$

for all cyclic and separating vector $\xi \in H^+$ for *M*. These facts and the symbol u_{α} will be used in the following discussion.

By definition, an o.d. isomorphism is a continuous linear bijection $\phi: H \to H$ such that ϕ and ϕ^{-1} are both o.d. homomorphisms. It has been proved in [3], (3.1), that bijective o.d. homomorphisms are o.d. isomorphisms. Obviously, a unitary operator u is an o.d. isomorphism if and only if $u(H^+) = H^+$.

THEOREM 5. Let ϕ : $H \rightarrow H$ be a continuous linear bijection such that $\phi(H^+) = H^+$. The following conditions are equivalent.

- (1) ϕ is an o.d. isomorphism.
- (2) For the polar decomposition $\phi = u|\phi|$,

S. Yamamuro

(i) $|\phi|$ is an o.d. isomorphism and $\alpha_{|\phi|,\xi} = 1$ for all cyclic and separating vector $\xi \in H^+$ for M.

(ii) u is an o.d. isomorphism, $\alpha_{\phi} = a_u$ and $u = u_{\alpha}$. (3) $\alpha_{\phi} = \alpha_{\phi,\xi}$ for every cyclic and separating vector $\xi \in H^+$. (4) $\|\phi^{-1}\|^{-1}u_{\alpha}\xi \leq \phi\xi \leq \|\phi\|u_{\alpha}\xi$ for all $\xi \in H^+$.

PROOF. (1) \Rightarrow (2). (i). Since $|\phi| \in (M \cap M')^+$ by Theorem 1, we have $|\phi|(H^+) = |\phi|^{1/2} j(|\phi|^{1/2})(H^+) \subset H^+$. Hence, it follows from Theorem 1 that $|\phi|$ is an o.d. homomorphism. Since it is bijective, it is, in fact, an o.d. isomorphism. Now, let $\xi \in H^+$ be a cyclic and separating vector for M. Then, $|\phi|\xi$ is also a cyclic and separating vector in H^+ and, since $|\phi|$ is an invertible element of $(M \cap M')^+$, we have $\Delta_{|\phi|\xi}^{1/4} = \Delta_{\xi}^{1/4}$. Hence,

$$(\#) \qquad |\phi| \left(\Delta_{\xi}^{1/4} x \xi \right) = \Delta_{|\phi|\xi}^{1/4} x |\phi| \xi \quad \text{for all } x \in M.$$

This is equivalent to $\alpha_{|\phi|,\xi}(x) = x$ for all $x \in M$. To prove (ii), we first note that $u = \phi |\phi|^{-1}$ is an o.d. isomorphism because ϕ and $|\phi|^{-1}$ are. Then, by (#),

$$\Delta_{\phi\xi_0}^{1/4}\alpha_{\phi}(x)\phi\xi_0 = \phi\left(\Delta_{\xi_0}^{1/4}x\xi_0\right) = u|\phi|\left(\Delta_{\xi_0}^{1/4}x\xi_0\right)$$
$$= u\left(\Delta_{|\phi|\xi_0}^{1/4}x|\phi|\xi_0\right) = \Delta_{\phi\xi_0}^{1/4}\alpha_u(x)\phi\xi_0$$

for all $x \in M$. Therefore, $\alpha_{\phi} = \alpha_{\mu}$. Furthermore, for every $x \in M$,

$$u_{\alpha}\left(\Delta_{\xi_{0}}^{1/4}x\xi_{0}\right) = \Delta_{u_{\alpha}\xi_{0}}^{1/4}\alpha_{\phi}(x)u_{\alpha}\xi_{0} = \Delta_{u_{\alpha}\xi_{0}}^{1/4}\alpha_{u}(x)u_{\alpha}\xi_{0}$$
$$= u\left(\Delta_{u^{*}u_{\alpha}\xi_{0}}^{1/4}xu^{*}u_{\alpha}\xi_{0}\right),$$

that is,

$$u^*u_{\alpha}\left(\Delta_{\xi_0}^{1/4}x\xi_0\right)=\Delta_{u^*u_{\alpha}\xi_0}^{1/4}xu^*u_{\alpha}\xi_0,$$

where u^*u_{α} is a unitary operator such that $u^*u_{\alpha}(H^+) = H^+$. This equation shows that the unital Jordan *-isomorphism determined by u^*u_{α} is the identity map. Hence, $u^*u_{\alpha} = 1$, or, $u = u_{\alpha}$.

(2) \Rightarrow (3). Let $\xi \in H^+$ be a cyclic and separating vector for *M*. Then, since $\alpha_{|\phi|,\xi} = 1$,

$$\Delta^{1/4}_{\phi\xi}\alpha_{\phi,\xi}(x)\phi\xi = \phi\left(\Delta^{1/4}_{\xi}x\xi\right) = u|\phi|\left(\Delta^{1/4}_{\xi}x\xi\right)$$
$$= u\left(\Delta^{1/4}_{|\phi|\xi}x|\phi|\xi\right) = \Delta^{1/4}_{\phi\xi}\alpha_{u}(x)\phi\xi$$

for all $x \in M$. This implies $\alpha_{\phi,\xi} = \alpha_{\mu} = \alpha_{\phi}$.

(3) \Rightarrow (4). For any cyclic and separating vector $\xi \in H^+$,

$$\phi\left(\Delta_{\xi}^{1/4}x\xi\right) = \Delta_{\phi\xi}^{1/4}\alpha_{\phi}(x)\phi\xi = u_{\alpha}\left(\Delta_{u_{\alpha}\phi\xi}^{1/4}xu_{\alpha}^{*}\phi\xi\right)$$

for every $x \in M$. Therefore,

$$\left\|\Delta_{u_{\alpha}^{*}\phi\xi}^{1/4} x u_{\alpha}^{*}\phi\xi\right\| \leq \|\phi\| \left\|\Delta_{\xi}^{1/4} x\xi\right\| \quad \text{for every } x \in M.$$

By [2], Lemma 3.13, this inequality is equivalent to

$$u_a^* \phi \xi \leq \|\phi\| \xi.$$

Since this inequality holds for every cyclic and separating vector $\xi \in H^+$ and such vectors are dense in H^+ , we have

$$u_{\alpha}^* \phi \xi \leq \|\phi\| \xi$$
 for every $\xi \in H^+$.

Since $u_{\alpha}(H^+) = H^+$, this is equivalent to

$$\phi \xi \leq \|\phi\| u_{\alpha} \xi$$
 for every $\xi \in H^+$.

Starting with ϕ^{-1} instead of ϕ , we arrive at

 $\phi^{-1}\xi \leq \|\phi^{-1}\| u_{\alpha}^*\xi$ for every $\xi \in H^+$.

(4) \Rightarrow (1). We only need to show that $(\phi\xi, \phi\eta) = 0$ whenever $\xi \in H^+$, $\eta \in H^+$ and $(\xi, \eta) = 0$. However, this is obvious because u_{α} satisfies this condition.

References

- [1] O. Bratteli and D. W. Robinson, Operator algebras and quantum statistical mechanics. I (Springer-Verlag, Berlin-Heidelberg-New York, 1979).
- [2] A. Connes, 'Caractérsation des espaces vectoriels ordonnés sous-jacents aux algèbres de von Neumann', Ann. Inst. Fourier (Grenoble) 24 (1974), 121-155.
- [3] T. B. Dang and S. Yamamuro, 'On homomorphisms of an orthogonally decomposable Hilbert space', J. Functional Analysis, to appear.
- [4] R. V. Kadison, 'Isometries of operator algebras', Ann. of Math. (2) 54 (1951), 325-338.

Department of Mathematics Institute of Advanced Studies Australian National University Canberra, A.C.T. Australia