STRONGLY q-ADDITIVE FUNCTIONS AND DISTRIBUTIONAL PROPERTIES OF THE LARGEST PRIME FACTOR

M. AMRI, M. MKAOUAR ${ }^{\boxtimes}$ and W. WANNES

(Received 22 June 2015; accepted 15 July 2015; first published online 17 November 2015)

Abstract

Let $P(n)$ denote the largest prime factor of an integer $n \geq 2$. In this paper, we study the distribution of the sequence $\{f(P(n)): n \geq 1\}$ over the set of congruence classes modulo an integer $b \geq 2$, where f is a strongly q-additive integer-valued function (that is, $f\left(a q^{j}+b\right)=f(a)+f(b)$, with $(a, b, j) \in \mathbb{N}^{3}$, $\left.0 \leq b<q^{j}\right)$. We also show that the sequence $\{\alpha P(n): n \geq 1, f(P(n)) \equiv a(\bmod b)\}$ is uniformly distributed modulo 1 if and only if $\alpha \in \mathbb{R} \backslash \mathbb{Q}$.

2010 Mathematics subject classification: primary 11A63; secondary 11L03, 11N05.
Keywords and phrases: largest prime factor, q-additive function, uniform distribution modulo 1 .

1. Introduction

For a positive integer n, let $P(n)$ be the largest prime factor of n, with the usual convention that $P(1)=1$. The distribution of the largest prime factor in congruence classes has been previously considered by Ivic̀ [6] and Oon [13] for a fixed modulus k. Using a similar approach to that of Ivic̀ [6], Banks et al. [1] obtained new bounds that are nontrivial for a wide range of values of the modulus k. In particular, if k is not too large relative to x, they derived the expected asymptotic formula

$$
\sharp\{n \leq x: P(n) \equiv l(\bmod k)\} \sim \frac{x}{\varphi(k)}
$$

with an explicit error term that is independent of l. Moreover, by bounding the exponential sum $\sum_{n \leq x} e(\alpha P(n))$ for a fixed irrational real number α, they deduced that the sequence $\{\alpha P(n): n \geq 1\}$ is uniformly distributed modulo 1 . This result is reminiscent of the classical theorem of Vinogradov [15] that, for a fixed irrational real number α, the sequence $\{\alpha p: p$ prime $\}$ is uniformly distributed modulo 1 .

The main goal of this paper is to give asymptotic expansions for the cardinality of

$$
\mathcal{A}(x, a, b)=\{n \leq x: f(P(n)) \equiv a(\bmod b)\},
$$

[^0]where f is a strongly q-additive function, $b \geq 2$ and $a \in \mathbb{Z}$. In addition, we prove the uniform distribution modulo 1 of $\alpha P(n)$ when $f(P(n)) \equiv a(\bmod b)$. In Section 2, we define the basic notions which are standard in this area (see, for example, [1, 10]) and give some preliminary results. In Section 3, we give an asymptotic formula for the number of elements of $\mathcal{A}(x, a, b)$ and we prove that the sequence $\{\alpha P(n): n \geq 1$, $f(P(n)) \equiv a(\bmod b)\}$ is uniformly distributed modulo 1 .

Throughout this paper, p always denotes a prime number and φ denotes the Euler function. For any real x, we define $e(x)=e^{2 \pi i x}$. The notations (a, b) and $[a, b]$ refer respectively to the greatest common divisor and the least common multiple of a and b. We denote by $|\mathcal{E}|$ the number of elements of a set \mathcal{E}. We recall that the notation $U \ll V$ is equivalent to the statement that $U=O(V)$ for positive functions U and V and the implied constants in the symbols ' O ' and ' $<$ ' are absolute. We also use the symbol ' o ' with its usual meaning, that is, the statement $U=o(V)$ is equivalent to $U / V \rightarrow 0$.

2. Preliminaries

2.1. Digital functions and strongly \boldsymbol{q}-additive functions. Let $q \geq 2$ be an integer. Then we can represent every positive integer n in a unique way as

$$
n=\sum_{0 \leq j \leq v} n_{j} q^{j} \quad \text { and } \quad n_{j} \in\{0, \ldots, q-1\}
$$

This is the q-ary representation of n with q the base and $\{0, \ldots, q-1\}$ the set of digits.
A function $f: \mathbb{N} \rightarrow \mathbb{R}$ given by $f(n)=\sum_{0 \leq k<q} \alpha_{k}|n|_{k}$, with

$$
|n|_{k}=\left|\left\{0 \leq j \leq v: n_{j}=k\right\}\right| \quad \text { and } \quad \alpha_{0}, \ldots, \alpha_{q-1} \in \mathbb{R}
$$

is called a digital function. A function $f: \mathbb{N} \rightarrow \mathbb{R}$ is called strongly q-additive if $f\left(a q^{i}+b\right)=f(a)+f(b)$, where $(a, b, i) \in \mathbb{N}^{3}$ and $0 \leq b<q^{i}$. In particular, $f(0)=0$ and

$$
f(n)=\sum_{0 \leq j \leq v} f\left(n_{j}\right)=\sum_{1 \leq k<q} f(k)|n|_{k} .
$$

A simple example of a strongly q-additive function is the sum of digits function,

$$
s_{q}(n)=\sum_{0 \leq j \leq v} n_{j}=\sum_{1 \leq k<q} k|n|_{k} .
$$

Strongly q-additive functions, particularly their asymptotic distribution, have been extensively discussed in the literature (see, for example, [2, 3, 10-12]).

Let \mathcal{F} be the set of digital functions $f=\sum_{0 \leq k<q} a_{k}|\cdot|_{k}$ such that the real sequence a_{0}, \ldots, a_{q-1} is not an arithmetic progression modulo 1 whose common difference r is an integer multiple of $1 /(q-1)$ (that is, $r(q-1) \notin \mathbb{Z})$ and let \mathcal{F}_{0} be the set of functions $f=\sum_{0 \leq k<q} a_{k}|\cdot|_{k}$ such that the sequence a_{0}, \ldots, a_{q-1} is an arithmetic progression modulo 1. It is easily seen that $s_{q}(\cdot) \in \mathcal{F}_{0}$.

For $f(n)=\sum_{0 \leq k<q} a_{k}|n|_{k} \in \mathcal{F} \cup \mathcal{F}_{0}$, we define real numbers $\lambda_{q}(f)$ by

$$
\lambda_{q}(f)= \begin{cases}c_{1, q} \min _{t \in \mathbb{R}} \sum_{0 \leq j<i<q}\left\|a_{i}-a_{j}-(i-j) t\right\|^{2} & \text { if } f \notin \mathcal{F}_{0}, \tag{2.1}\\ c_{2, q}\left\|(q-1)\left(a_{1}-a_{0}\right)\right\|^{2} & \text { if } f \in \mathcal{F}_{0} \cap \mathcal{F},\end{cases}
$$

where $\|y\|$ denotes the distance from the real number y to the nearest integer, and $c_{1, q}$ and $c_{2, q}$ are constants depending only on q (defined in [10, page 27]). It was established in [10] that $\lambda_{q}(f)>0$ and the theorems of Hadamard-de La Vallée Poussin and Vinogradov (see $[4,5,15]$) were extended to the case of prime numbers satisfying a digital constraint. The method is based on the following estimate of exponential sums.

Theorem 2.1 [10, Théorèmes 1 and 2]. Suppose that $q \geq 2$ and $f \in \mathcal{F} \cup \mathcal{F}_{0}$. Then, for all $x \geq 2$ and $\beta \in \mathbb{R}$,

$$
\sum_{n \leq x} \Lambda(n) e(f(n)+\beta n) \ll x^{1-\lambda_{q}(f)}(\log x)^{4}
$$

where $\lambda_{q}(f)$ is defined in (2.1) and the implied constant depends only on q.
We can see a generalised version of Theorem 2.1 in [12].
Let \mathcal{F}_{q}^{+}be the set of strongly q-additive functions f such that

$$
f=\sum_{1 \leq k<q} a_{k}|\cdot|_{k} \quad \text { with } \quad a_{1}, \ldots, a_{q-1} \in \mathbb{Z} \quad \text { and } \quad \operatorname{gcd}\left(a_{1}, \ldots, a_{q-1}\right)=1
$$

Let $f \in \mathcal{F}_{q}^{+}$and let $d=d_{f, b, q} \geq 1$ be the greatest divisor of $(b, q-1)$ such that $(f(1), d)=1$ and, for all integers n,

$$
\begin{equation*}
f(n) \equiv f(1) s_{q}(n) \equiv f(1) n \bmod d . \tag{2.2}
\end{equation*}
$$

By using the result of Martin et al. (see [10, Proposition 5]), we see that for all $j \in J_{2}=\{0 \leq j<b: j$ is not a multiple of $b / d\}$,

$$
\begin{equation*}
\sum_{p \leq N} e\left(\frac{j}{b} f(p)+r p\right) \ll N^{1-\sigma_{f, b, q}}(\log N)^{3}, \tag{2.3}
\end{equation*}
$$

where the implied constant depends only on q.
Let $\pi(x ; l, m)$ denote the number of primes less than or equal to x which are congruent to $l(\bmod m)$ for some real $x>0$ and positive coprime integers l, m. Using elementary means and the above result, Martin et al. [10] proved the following theorem.

Theorem 2.2 [10, Théorème 4]. Let $q, b \geq 2, f \in \mathcal{F}^{+}$and $d=d_{f, b, q}$ be the integer defined in (2.2). Let $c=f^{*}(1)$ be the multiplicative inverse of $f(1)$ modulo d. Then, for every $a \in \mathbb{Z}$,

$$
|\{p \leq x: f(p) \equiv a(\bmod b)\}|= \begin{cases}0 \text { or } 1 & \text { if }(a, d)>1 \\ \frac{d}{b} \pi(x ; a c, d)+O\left((\log x)^{3} x^{1-\sigma_{f, b, q}}\right) & \text { otherwise }\end{cases}
$$

where the implied constant depends only on q.
2.2. Auxiliary estimates. As usual, we say that a positive integer n is y-smooth if $P(n) \leq y$. Let

$$
\psi(x, y)=\mid\{n \leq x: n \text { is } y \text {-smooth }\} \mid .
$$

The following estimate is a simplified version of [14, Theorem 1 of Ch. III.5].
Lemma 2.3. Let $u=\log x / \log y$, where $x \geq y>0$. If $u \geq 1$, then

$$
\begin{equation*}
\psi(x, y) \ll x \exp (-u / 2) \tag{2.4}
\end{equation*}
$$

In what follows, we denote by \mathcal{P} the set of all prime numbers and by $\mathcal{P}[w, x]$ the set of primes p such that $w \leq p \leq x$. Given $x \geq y>0$ and $m \geq 1$, we put

$$
L_{m}=\max \{y, P(m)\}, \quad \mathcal{P}_{m}=\mathcal{P}\left[L_{m}, x / m\right] .
$$

Lemma 2.4 [1, Lemma 3]. Let $x \geq y>0$. For any arithmetical functions h and g satisfying $\max \{|h(k)|,|g(k)|\} \leq 1$ for all positive integers k,

$$
\sum_{n \leq x} h(P(n)) g(n)=\sum_{m \leq x / y} \sum_{p \in \mathcal{P}_{m}} h(p) g(m p)+O(\psi(x, y)) .
$$

3. Main results

Theorem 3.1. Let $q, b \geq 2$ be integers, x a real number, $f \in \mathcal{F}_{q}^{+}$and $d=d_{f, b, q}$ the integer defined in (2.2). Then, for every $a \in \mathbb{Z}$, there exists a constant $K_{0}>0$ such that for any $K<K_{0}$,

$$
|\mathcal{A}(x, a, b)|= \begin{cases}\frac{d x}{b \varphi(d)}+O\left(x \exp \left(-K \log ^{1 / 3} x\right)\right) & \text { if }(a, d)=1 \\ O\left(x \exp \left(-K \log ^{1 / 3} x\right)\right) & \text { otherwise }\end{cases}
$$

Proof. For every positive integer k, we consider the functions $g(k)=1$ and

$$
h(k)= \begin{cases}1 & \text { if } f(k) \equiv a(\bmod b) \\ 0 & \text { otherwise }\end{cases}
$$

For any real parameters x, y to be chosen later, with $0<y<x$, Lemma 2.4 gives

$$
\begin{align*}
|\mathcal{A}(x, a, b)| & =\sum_{n \leq x} h(P(n)) g(P(n))=\sum_{m \leq x / y} \sum_{p \in \mathcal{P}_{m}} h(p) g(m p)+O(\psi(x, y)) \\
& =\sum_{m \leq x / y} \mathcal{N}(m, a, b)+O(\psi(x, y)) \tag{3.1}
\end{align*}
$$

where $\mathcal{N}(m, a, b)=\left|\left\{p \in \mathcal{P}_{m}: f(p) \equiv a(\bmod b)\right\}\right|$. In view of Theorem 2.2, if $(a, d)>1$,

$$
\sum_{m \leq x / y} \mathcal{N}(m, a, b)=0
$$

In the other case, for any m with $m L_{m} \leq x$,

$$
\mathcal{N}(m, a, b)=\pi_{f}(x / m)-\pi_{f}\left(L_{m}\right)+O(1)
$$

where $\pi_{f}(x)=\sum_{p \leq x, f(p) \equiv a(\bmod b)} 1$, and the sum is empty otherwise. In this case, since $(a, d)=1$, Theorem 2.2 shows that there exists a constant $\sigma_{f, q, b}>0$ such that

$$
\begin{equation*}
\pi_{f}(x)=\frac{d}{b} \pi(x ; a c, d)+O\left(x^{1-\sigma_{f, q, b}}(\log x)^{3}\right) . \tag{3.2}
\end{equation*}
$$

We observe that the error term in (3.2) is an increasing function of x. Thus,

$$
\begin{equation*}
\mathcal{N}(m, a, b)=\frac{d}{b}\left(\pi\left(\frac{x}{m} ; a c, d\right)-\pi\left(L_{m} ; a c, d\right)\right)+O\left(\left(\log \frac{x}{m}\right)^{3}\left(\frac{x}{m}\right)^{1-\sigma_{f, q, b}}\right) \tag{3.3}
\end{equation*}
$$

For any integers u, v such that $(u, v)=1$, the following estimate holds (see [8]):

$$
\begin{equation*}
\pi(x ; u, v)=\frac{1}{\varphi(v)} \operatorname{Li}(x)+O\left(x \exp \left(-c_{1} \sqrt{\log x}\right)\right) \tag{3.4}
\end{equation*}
$$

where c_{1} is a positive constant. We note that an improved version of (3.4) can be found in [9]. So, (3.3) becomes

$$
\begin{aligned}
\mathcal{N}(m, a, b)= & \frac{d}{b \varphi(d)}\left(\operatorname{Li}\left(\frac{x}{m}\right)-\operatorname{Li}\left(L_{m}\right)\right)+O\left(\left(\log \frac{x}{m}\right)^{3}\left(\frac{x}{m}\right)^{1-\sigma_{f, q, b}}\right) \\
& +O\left(\frac{x}{m} \exp \left(-c_{1} \sqrt{\log \frac{x}{m}}\right)\right)
\end{aligned}
$$

Then

$$
|\mathcal{A}(x, a, b)|=\frac{d}{b \varphi(d)} \sum_{m \leq x / y}\left(\operatorname{Li}\left(\frac{x}{m}\right)-\operatorname{Li}\left(L_{m}\right)\right)+O\left(\psi(x, y)+R_{1}+R_{2}\right)
$$

where

$$
R_{1}=\sum_{m \leq x / y}\left(\log \frac{x}{m}\right)^{3}\left(\frac{x}{m}\right)^{1-\sigma_{f, q, b}}, \quad R_{2}=\sum_{m \leq x / y} \frac{x}{m} \exp \left(-c_{1} \sqrt{\log \frac{x}{m}}\right) .
$$

The same arguments as applied in (3.1) with $h(k)=1$ lead to the identity

$$
\lfloor x\rfloor=\sum_{n \leq x} 1=\sum_{m \leq x / y}\left(\operatorname{Li}\left(\frac{x}{m}\right)-\operatorname{Li}\left(L_{m}\right)\right)+O\left(\psi(x, y)+R_{2}\right) .
$$

Hence,

$$
\begin{equation*}
|\mathcal{A}(x, a, b)|=\frac{d x}{b \varphi(d)}+O\left(\psi(x, y)+R_{1}+R_{2}\right) \tag{3.5}
\end{equation*}
$$

By elementary estimates,

$$
R_{1}=O\left(x(\log x)^{3} y^{-\sigma_{f, q, b}}\right), \quad R_{2}=O\left(x \log x \exp \left(-c_{1} \sqrt{\log y}\right)\right)
$$

From Lemma 2.3, we have $\psi(x, y)=O(x \exp (-\log x /(2 \log y)))$. For positive real numbers x, y, we define the functions θ_{i} with $1 \leq i \leq 3$ as follows:

$$
\left\{\begin{array}{l}
\theta_{1}(x, y)=(\log x)^{3} y^{-\sigma_{f, q, b}} \\
\theta_{2}(x, y)=\log x \exp \left(-c_{1} \sqrt{\log y}\right) \\
\theta_{3}(x, y)=\exp (-\log x /(2 \log y))
\end{array}\right.
$$

For a fixed real number x, sufficiently large, we obtain

$$
\begin{array}{ll}
\theta_{1}(x, y)=\theta_{3}(x, y) & \text { for } y=y_{0}=\exp \left(\frac{6 \log \log x+\sqrt{(6 \log \log x)^{2}+8 \sigma_{f, q, b} \log x}}{4 \sigma_{f, q, b}}\right) \\
\theta_{2}(x, y)=\theta_{3}(x, y) & \text { for } y=y_{1}=\exp \left(C \log ^{2 / 3} x+O\left(\log ^{1 / 3} x \log \log x\right)\right)
\end{array}
$$

with $C=\left(4 c_{1}\right)^{-2 / 3}$, where the constant c_{1} is defined in (3.4). Since $\theta_{3}(x, y)$ is an increasing function on y,

$$
\theta_{1}\left(x, y_{0}\right)=\theta_{3}\left(x, y_{0}\right) \leq \theta_{3}\left(x, y_{1}\right)=\theta_{2}\left(x, y_{1}\right) .
$$

So, by choosing $y=y_{1}$, we have proved that the error term in (3.5) is

$$
O\left(x \log x \exp \left(-K_{0} \log ^{1 / 3} x\right)\right)
$$

where $K_{0}=1 /(2 C)$ is a positive constant. The proof is completed.
Next, we will prove the uniform distribution modulo 1 of $\{\alpha P(n): n \in \mathcal{A}\}$ with $\mathcal{A}=\mathcal{A}(a, b)=\{n \in \mathbb{N} \backslash\{0\}, f(P(n)) \equiv a(\bmod b)\}$. We note that it is shown in [10] that the sequence $\{\alpha p: p$ prime, $f(p) \equiv a(\bmod b)\}$ is uniformly distributed modulo 1 if and only if α is irrational.

Theorem 3.2. Let $q, b \geq 2$ be integers, $f \in \mathcal{F}_{q}^{+}, d=d_{f, b, q}$ the integer defined in (2.2), $a \in \mathbb{Z}$ such that $\operatorname{gcd}(a, d)=1$ and $\alpha \in \mathbb{R}$. Then the sequence $\{\alpha P(n): n \in \mathcal{A}\}$ is uniformly distributed modulo 1 if and only if $\alpha \in \mathbb{R} \backslash \mathbb{Q}$.

Proof. If α is rational, then the sequence $\{\alpha P(n): n \in \mathcal{A}\}$ contains only a finite number of terms modulo 1 and consequently is not uniformly distributed modulo 1 .

Now, let $\alpha \in \mathbb{R} \backslash \mathbb{Q}$. By Weyl's criterion (see [7, Theorem 5.6]), it suffices to prove that for every $h \in \mathbb{Z}^{*}$,

$$
\frac{1}{|\mathcal{A}(x, a, b)|} \sum_{n \in \mathcal{A}(x, a, b)} e(\alpha h P(n))=o(1) \quad \text { as } x \rightarrow \infty .
$$

To estimate the sum, we apply Lemma 2.4 to the functions $g(k)=1$ and

$$
h(k)= \begin{cases}e(\alpha h k) & \text { if } f(k) \equiv a(\bmod b) \\ 0 & \text { otherwise }\end{cases}
$$

For $0<y<x$,

$$
\begin{align*}
\sum_{n \in \mathcal{A}(x, a, b)} e(\alpha h P(n)) & =\sum_{m \leq x / y} \sum_{p \in \mathcal{P}_{m}} h(p) g(m p)+O(\psi(x, y)) \\
& =\sum_{m \leq x / y} \sum_{\substack{p \in \mathcal{P}_{m} \\
f(p) \equiv a(\bmod b)}} e(\alpha h p)+O(\psi(x, y)) . \tag{3.6}
\end{align*}
$$

By the orthogonality formula,

$$
\begin{equation*}
\sum_{\substack{p \in \mathcal{P}_{m} \\ f(p)=a(\bmod b)}} e(\alpha h p)=\frac{1}{b} \sum_{j=0}^{b-1} \sum_{p \in \mathcal{P}_{m}} e\left(\frac{j}{b}(f(p)-a)+\alpha h p\right) . \tag{3.7}
\end{equation*}
$$

We split the summation (3.7) over j into two parts according as $j \in J_{1}$ and $j \in J_{2}$, where $J_{1}=\{0 \leq j<b: j$ is a multiple of $b / d\}$ and $J_{2}=\{0, \ldots, b-1\} \backslash J_{1}$. We write

$$
S_{i}=\frac{1}{b} \sum_{m \leq x / y} \sum_{j \in J_{i}} \sum_{p \in \mathcal{P}_{m}} e\left(\frac{j}{b}(f(p)-a)+\alpha h p\right)
$$

Estimation of S_{1}. For all $j \in J_{1}$, we can write $j=u b / d$ with $0 \leq u<d$. From (2.2),

$$
\sum_{p \leq x} e\left(\frac{j}{b} f(p)+\alpha h p\right)=\sum_{p \leq x} e\left(p\left(\frac{u f(1)}{d}+\alpha h\right)\right) .
$$

Since α is irrational, so is $(u / d) f(1)+\alpha h$. Thanks to [15], $(((u / d) f(1)+\alpha h) p)_{p \in \mathcal{P}}$ is uniformly distributed modulo 1 . We deduce from Weyl's criterion that

$$
\sum_{p \leq x} e\left(p\left(\frac{u f(1)}{d}+\alpha h\right)\right)=o(\pi(x)) \quad \text { as } x \rightarrow \infty
$$

which gives, as $x \rightarrow \infty$,

$$
\begin{equation*}
\frac{1}{b} \sum_{m \leq x / y} \sum_{j \in J_{1}}\left|\sum_{p \in \mathcal{P}_{m}} e\left(\frac{j}{b} f(p)+\alpha h p\right)\right|=o\left(\sum_{m \leq x / y} \pi\left(\frac{x}{m}\right)\right)=o\left(\frac{x \log (x / y)}{\log y}\right) . \tag{3.8}
\end{equation*}
$$

Estimation of S_{2}. For all $j \in J_{2}$, we have from (2.3) that

$$
\sum_{p \leq x} e\left(\frac{j}{b} f(p)+\alpha h p\right) \ll x^{1-\sigma_{f, q, b}}(\log x)^{3}
$$

The same arguments as in the proof of Theorem 3.1 give

$$
\begin{equation*}
S_{2}=O\left(x y^{-\sigma_{f, q, b}}(\log x)^{3}\right) \tag{3.9}
\end{equation*}
$$

Assembling (3.6)-(3.9) and (2.4) yields

$$
\left|\sum_{n \in \mathcal{A}(x, a, b)} e(\alpha h P(n))\right| \ll x\left(y^{-\sigma_{f, q, b}}(\log x)^{3}+\frac{\log (x / y)}{\log y}+\exp \left(-\frac{\log x}{2 \log y}\right)\right) .
$$

Now, from Theorem 3.1,

$$
|\mathcal{A}(x, a, b)| \sim \frac{d x}{b \varphi(d)} \quad \text { as } x \rightarrow \infty
$$

and, by choosing $y=\exp \left((\log x)^{2 / 3}\right)$, we complete the proof.
Corollary 3.3. For $f \in \mathcal{F}$, the sequence $(\alpha f(P(n)))_{n \in \mathbb{N}}$ is uniformly distributed modulo 1 if and only if $\alpha \in \mathbb{R} \backslash \mathbb{Q}$.

Proof. If α is rational, then the sequence $(\alpha f(P(n)))_{n \in \mathbb{N}}$ contains only a finite number of terms modulo 1 and is not uniformly distributed modulo 1 . Conversely, by Weyl's criterion (see [7, Theorem 5.6]), it suffices to prove that for every $h \in \mathbb{Z}^{*}$,

$$
\frac{1}{x} \sum_{n \leq x} e(\alpha h f(P(n)))=o(1) \quad \text { as } x \rightarrow \infty
$$

By Lemma 2.4, as in (3.6), we write

$$
\sum_{n \leq x} e(\alpha h f(P(n)))=\sum_{m \leq x / y}\left(\sum_{p \in \mathcal{P}_{m}} e(\alpha h f(p))\right)+O(\psi(x, y)) .
$$

Now, we use [10, Théorème 3], which asserts that for every irrational α and $f \in \mathcal{F}$, the sequence $(\alpha f(p))_{p \in \mathcal{P}}$ is uniformly distributed modulo 1 . So,

$$
\begin{equation*}
\sum_{p \leq x} e(\alpha h f(p))=o(\pi(x)) \quad \text { as } x \rightarrow \infty \tag{3.10}
\end{equation*}
$$

Applying (3.10) in (3.11) and using (2.4),

$$
\begin{equation*}
\sum_{n \leq x} e(\alpha h f(P(n))) \ll x\left(\frac{\log (x / y)}{\log y}+\exp \left(-\frac{\log x}{2 \log y}\right)\right) \tag{3.11}
\end{equation*}
$$

By choosing $y=\exp \left((\log x)^{2 / 3}\right)$, we complete the proof.

References

[1] W. Banks, G. Harman and I. E. Shparlinski, 'Distributional properties of the largest prime factor', Michigan Math. J. 53 (2005), 665-681.
[2] R. Bellman and H. N. Shapiro, 'A problem in additive number theory', Ann. of Math. (2) 49 (1948), 333-340.
[3] J. Coquet, 'Sur les fonctions Q-multiplicatives et Q-additives', Thèse 3ème cycle, Orsay, 1975.
[4] C. J. de La Vallée Poussin, 'Recherches analytiques sur la théorie des nombres premiers', Ann. Soc. Sci. Bruxelles 21 (1896), 183-256 and 281-397.
[5] J. Hadamard, 'Sur la distribution des zéros de la fonction $\zeta(s)$ et ses conséquences arithmétiques', Bull. Soc. Math. France 24 (1896), 199-220.
[6] A. Ivić, 'On sums involving reciprocals of the largest prime factor of an integer II', Acta. Arith. 75 (1995), 229-251.
[7] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences (John Wiley, New York, 1974).
[8] E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen (Teubner, Leipzig, 1909).
[9] E. Landau, 'Über die ζ-function und die L-funktionen', Math. Z. 20 (1924), 105-125.
[10] B. Martin, C. Mauduit and J. Rivat, 'Théorème des nombres premiers pour les fonctions digitales', Acta. Arith. 165 (2014), 11-45.
[11] C. Mauduit and A. Sárközy, 'On the arithmetic structure of sets characterized by sum of digits properties', J. Number Theory 61 (1996), 25-38.
[12] M. Mkaouar, N. Ouled Azaiz and J. Thuswaldner, 'Sur les chiffres des nombres premiers translatés', Funct. Approx. Comment. Math. 51 (2014), 237-267.
[13] S. M. Oon, 'Pseudorandom properties of prime factors', Period. Math. Hungar. 49 (2004), 45-63.
[14] G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory (Cambridge University Press, Cambridge, 1995).
[15] I. M. Vinogradov, The Method of Trigonometrical Sums in the Theory of Numbers (Dover, Mineola, NY, 2004).
M. AMRI, Faculté des Sciences de Sfax, BP 1171, Sfax 3000, Tunisie e-mail: m.amri@fss.rnu.tn
M. MKAOUAR, Faculté des Sciences de Sfax, BP 1171, Sfax 3000, Tunisie e-mail: mohamed.mkaouar@fss.rnu.tn
W. WANNES, Faculté des Sciences de Sfax, BP 1171, Sfax 3000, Tunisie e-mail: w.wannes@fss.rnu.tn

[^0]: (c) 2015 Australian Mathematical Publishing Association Inc. 0004-9727/2015 \$16.00

