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Semi-simple classes in a variety

satisfying an Andrunakievich Lemma

Tim Anderson and B.J. Gardner

It is shown that in a variety of (not necessarily associative)

algebras which satisfies a variant of Andrunakievich's Lemma, a

class C containing no solvable algebras is the semi-simple

class corresponding to some supernilpotent radical class if and

only if C is hereditary and is closed under extensions and sub-

direct products. Semi-simple classes in general are not

characterized by these properties. If the variety satisfies the

further condition that some proper power of every ideal is an

ideal, then analogous results hold for the semi-simple classes

corresponding to radical classes containing no solvable algebras.

In particular, for algebras over a field in the latter situation,

all semi-simple classes are characterized by the three closure

properties mentioned.

Introducti on

In any universal class of algebras (in which subdirect products can be

formed) semi-simple classes are closed under subdirect products and

extensions. In a 1965 paper of Anderson, Divinsky, and Sulinski [3], it

was shown that for associative or alternative algebras, semi-simple classes

are also hereditary. Recently, Sands [7 7] and van Leeuwen, Roos, and

Wiegandt [72] have proved the converse. A class of algebras in general

which satisfies the three mentioned closure conditions is called a

coradical class (the term seems to have been introduced by Ryabukhin [76]),
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188 T im A n d e r s o n and B . J . G a r d n e r

as this set of properties is essentially dual to a set of properties which

has long been known to characterize radical classes [?] . For associative

and alternative algebras, then, the concepts "coradical class" and "semi-

simple class" coincide.

In the universal class of all (not necessarily associative) algebras,

on the other hand, hereditary semi-simple classes are quite uncommon, being

determined solely by the additive structure of their members [9]; in the

special case of algebras over a field, there are no non-trivial ones at all

[6], [9]. On the other hand, there are coradical classes which are not

semi-simple classes in this universal class [??].

I t is our purpose in this paper to take varieties of algebras

satisfying one or both of a pair of conditions (to be described shortly)

satisfied by the variety of associative algebras, but not by all varieties

of algebras, use these as universal classes, and examine the connections

between semi-simple and coradical classes in the resulting radical theory.

The first of these conditions is that the variety satisfy a variant of

the Andrunakievich Lemma. This lemma [5] for associative rings, asserts

that if I is an ideal of J , J is an ideal of A and I* is the

ideal of A generated by I , then (l*/l) = 0 . We shall call a variety

1/ of algebras an Andminakievioh variety of index n if (I*/I) = 0

for a l l I < J < A € V and if n is the smallest such integer. Here, for

an algebra B , we define B ( 0 ) = B , S( f e + l ) = S(fe)B(k) , and call B

(k)solvable if B = 0 for some k . A variety u1 is called an

s-variety, where 8 is an integer greater than 1 , if for every ideal J

of every algebra A € U , i is also an ideal, where x is the linear

span of the set of products of 8 elements of I .

I t turns out that in an Andrunakievich variety, a class with no

solvable members is semi-simple if and only if i t is coradical, though in

general coradical classes need not be semi-simple and semi-simple classes

need not be coradical. In an s-variety, semi-simple classes need not be

coradical, while the status of the converse implication is not known. In

an Andrunakievich variety which is also an s-variety, the properties

"coradical" and "semi-simple" are equivalent for classes which contain all

the solvable algebras in the variety or none. In particular, in such a
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variety of algebras over a field, coradical classes are always semi-simple,

and conversely.

1 . P re l im inar ies

We shall work throughout with algebras over a commutative associative

ring with identity, on occasion specializing to rings (Z-algebras) or

algebras over a field. The symbol < indicates an ideal. A subalgebra B

of an algebra A is accessible if there exists a finite chain

8 < I, < ... < I < A .
1 n

If I < J < A ,we denote by J* the ideal of A generated by I

(clarifying if there is any ambiguity). All classes of algebras considered

are assumed to include 0 .

The universal classes we shall use will a l l be Andrunakievich

varieties or s-varieties. The possibility of using slightly weaker

conditions, by allowing the n and the s in the definitions of these

variety properties (see Introduction) to vary with the algebras under

consideration, naturally suggests itself. However, the ostensibly weaker

conditions are in fact equivalent to the ones we have used. Before

proceeding, we establish these equivalences.

PROPOSITION 1.1. Let V be a variety of algebras such that for

every I < J < A 6 1/ there is a positive integer n such that
(n)

(I*/I) = 0 . Then V is an Andrunakievich variety.

Proof. For J < J o A 6 V , le t m(I, J, A) = min{n \ (l*/I) = 0}

and l e t F = {m{I, J, A) \l<J<3AiU}. Suppose F i s unbounded.

Then there i s a s t r i c t l y increasing inf in i te sequence m , m^, . . . of

positive integers , together with sequences

I 1 , J 2 , . . . ; J±, J2, ...; Av A2, ...

of a l g e b r a s , wi th J . < J. < A. and m. = m[l., J., A.) for each i .

For s i m p l i c i t y , l e t J . = ~] | I . , J. = | \ J. , A . = ~] f A. for each
3 ito V 3 itg V 3 ito l

3 •

Now for each j , we have
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I. ®1 . < J . ® J . o TJ A. ,
3 3 3 3 i'

so for some integer k we have £[i. © J .} */{l . © J .)! = 0 . Then
3 3 3 3

I*. © J*. < ] f A. , where J*. is the ideal of A . generated by X*. , so
3 3 t 3 3 3

that ( j . © J .) * c I* ® I* . On the other hand, if I . ® I . c M < ]~T A . ,
3 3 3 3 3 3 i*

then M 3 A J ., I A . , [A .1 .)A . , and so on, so I*. c_M . Similarly
3 3 3 3 3 3 3 3

I*, c M . Therefore [i. ® I .)* = I*. ® I*. , and we have
3 3 3 3 3

[l*. © I*./I. © J.] = 0 , and thus [l*./I.) = 0 . But then k > m.
3 3 3 3 3 3 1-

for each i - an impossibility. Thus F has a largest element, m .

If now J <i J < ^ f V , we have (J*/J) = 0 for some n 5 m ,

whence (I*/I) = 0 and f is an Andrunakievich variety of index less

than or equal to m . / /

PROPOSITION 1.2. Let V be a variety of algebras such that for

every I < A € 1/ there is an integer n > 1 such that f1 < A . Then V

is an s-variety.

Proof. For I <J A € V , let n(l, A) = min{k | k > 1, F < A] , and

le t E = {n(l, A) \ I < A € V] . If E is unbounded, there is an infinite

s t r ic t ly increasing sequence n., w_, . . . of integers greater than 1 ,

together with sequences A., A-, . . . ; I . , X?, . . . of f-alget>ras such that

J . < A . and n. = n[l., A .) for each i . Let J . = ~| f I. for each

3 . Then I . ® I . < ] f A. , so there is a positive integer m > 1 such
3 3 i'

that

I t follows that l"! < A - , so that m > w . , for each J . This is
3 3 3

impossible, so E is bounded.

Let s be the largest element of E . Take any K < B € V and

choose L < C € C with w(L, C) = s . We have # © L < B © C and if r

is any integer greater than 1 such that (K ® L) < B @ C , then
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L < C , so r 2 s ; in par t icu la r , taking r = w(.KS£, S@C) , we get

n(K&, B§£) = s . But then (K ® L)S < B © C , whence Xs < B . Since B

and K are a rb i t r a r i ly selected, th is means that V is an s-var ie ty . / /

2. Examples

We present, in this section, some examples of Andrunakievich varieties

and s-varieties of algebras, including some varieties with both

properties; our principal results involve the latter.

As is well known, the variety of associative algebras is an

Andrunakievich variety of index 2 [5] and a 2-variety. The alternative

algebras form a 2-variety, but it is not known (see [70]) whether or not

they form an Andrunakievich variety. The (-1, l)-algebras, those algebras

satisfying the identities

o
yx = (yx)x , (x, y, z) + (y, z, x) + (s, x, y) = 0 ,

where (x, y, z) = (xy)z - x(yz) , form a 2-variety, while the Jordan

algebras form a 3-variety, but not a 2-variety. Further information on

S-varieties can be obtained from [2 ] , [ 4 ] , [75] , [ / « ] , [79].

We shall ca l l an algebra h-permutable i f i t sa t i s f ies the ident i t ies

where the / . ( x , x , x , x j represent the 120 possible products, with

order and bracketing varying, of x , x , x , i , . All commutative

associative algebras are U-permutable, as are a l l nilpotent algebras of

index less than or equal to k . The l a t t e r algebras need not even be

power-associative, as the following example shows.

EXAMPLE 2 . 1 . Let V be the algebra defined on a free module with

basis {u, V, W, t} by the multiplication table
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u

V

w

t

u

w

w

t

0

V

0

t

0

0

w

0

0

0

0

t

0

0

0

0

Let <W, f> denote the subalgebra generated by {u, t} , and so on. Then

V2 c (w, t) , so V*V2 <=_ (w, t)2 = 0 . Also, W2 c V<w, t) = 0 and

Ac

We

, so V3 c <£> , and f i n a l l y , = 0 , and

0 . Thus 7 = 0 and V i s U-permutable. Nov u =w ,

2 2

so MM = uu = 0 , while M w = UM = t , whence V i s not power-

associa t ive .

PROPOSITION 2 .2 . 2%e k-permutable algebras form an Andrunakievich

variety of index 1 .

Proof. For a pair of subsets S, T of an algebra, we shall find i t

useful in what follows to denote by /(S, T) the submodule generated by

all products st, ts with s € 5 and t £ T ; that i s ,

Y(S, T) = ST + TS .

Le t 4 b e U - p e r m u t a b l e , I < J o A . Then

j + y(i, A) + y ( y ( j , A), A) c j * .

By U - p e r m u t a b i l i t y , we h a v e

* ( j ( j ( j r , x ) , 4 ) , i«] = y ( y ( i , A), A2) c y ( y ( j , 4 ) , 4) ,

whence I + Y(j, A) + Y{Y(I, A), A) < A , SO that

J + y ( J , A) + Y(Y(I, 4 ) , 4) = 1 * . We now examine 1*1* .

F i r s t l y , II* c I , because I* c J . Next, by U-permutabi l i ty ,

y ( j , A ) y ( j , A ) c y ( i , Y[Y{J, A), A)) C I ( I , j ) c j .

Hence

, A)I* = y ( J , 4 ) ( j + y ( J , i i )+y(y( j , A), A)}

c J + Y(I , i4)Y(I, A)

c x ( ) U
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Finally, by U-permutability,

Y{Yd, A), A)l* C Y{l, Y[Yd*, A), A]) C Yd, J) c I .

Thus ( I * ) ( l ) = ( J * ) 2 c J . / /

PROPOSITION 2 .3 . The h-permutable algebras form a 3-variety.

Proof. If I < A , then by U-permutability,

AI3 + I3A c (41)J2 + I2(IA) c J 3 ,

so I 3 < A . 1/

The product U o 1/ of two var ie t ies U and V i s the class

{A | 31 < A with I € U and 4 / 1 € I/} ,

and th is i s a variety [13]. The next resu l t gives a method of building new

Andrunakievich va r i e t i e s . Let 2 denote the variety of zero-algebras, the

algebras in which a l l products are zero.

PROPOSITION 2.4. Let 1/ be an Andrunakievich variety of index n .

Then 2 ° V is an Andrunakievich variety of index less than or equal to

n + 2 .

Proof. If I<J<At.2°\/,l\, may be assumed without loss of
2

generality that J = P* . Now A has an ideal P such that P = 0 and
A IP € V ; furthermore, we have

{P+D/P < (P+J)/P < A/P ,

where (P+J) /P = (P+J*)/P = [(P+D/P]* , so that [(P+I* )/(P+I) ] ( n ) = 0 ;

that is, (P+I*yn^ c P + J . Then

" ^ ] 2 c (P+J)2 c PI + IP + J2 ,

so

(P+J*)(M+2) = [ (P + J*) ( n + l ) ] 2 c [(PI+JPHI2] [(PI+IP)+J2] c J ,

since PI + IP c P n I* and P 2 = 0 . Finally,

COROLLARY 2.5. £e£ A be the class of associative algebras. Then
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Z o A is an Andrunakievich variety. / /

The algebras over the field of two elements in the variety V defined
by the identities

x{yz) = (xy)(xz) , (xy)z = {xz)(yz) ,

are called autodistvibutive (see [7]) . I t was shown in [S] (Corollary 2.5)

that every algebra 4 € P has a unique decomposition 4 = N ®B , where

N3 = 0 and b2 = b for each b € B . Let P denote the variety

{A € P I a = a for every a € 4} .

PROPOSITION 2.6. P i s an Andrunakievich variety of index 0 .

Proof . If J « J < A € t>1 , then for a U , i € J , we have

ai = ai = (a£)(a£) = [(ai)a][(ai)i] € JIc_I , so 4 Jc_J ; similarly

J4 c_ J , so J = J = I* . / /

COROLLARY 2.7 . V is an Andrunakievich variety of index less than or

equal to h .

Proof. By Proposition 2.It, Z o [Z°V ) i s an Andrunakievich variety

of index less than or equal to 0 + 2 + 2 = U . If A € V , then, as

noted, A = N @B , where N = 0 and B € V Since tf = 0 , we have

(tf2) 2 = 0 ; also N2 < A . Now A/N2 3* (ff/ff2) 0 B € Z o p so

i4 € Z o (ZoP 1 . As a subvariety of Z o (ZoP 1 , V i s an Andrunakievich

var ie ty of index less than or equal to h . //

PROPOSITION 2 . 8 . V is a 2-variety.

Proof. I f I < A € V , then J = J @ J g , 4 = 4 0 4 where

J = 0 , 4 = 0 , and J p , 4p € 0 . In par t icu lar , J and 4 are

associa t ive , so J^ < 4̂ ^ . Also J2, = J 2 < 4 g , so i"2 = I2 Q j | < 4 . / /

3. Examples

We begin by looking at semi-simple classes in an Andrunakievich

variety.

https://doi.org/10.1017/S0004972700008005 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700008005


Semi-simple classes 195

THEOREM 3 . 1 . Let V be an Andrunakievich variety. of algebras, C a

eoradical class in V containing no solvable algebras. Then C is a

semi-simple class in V .

Proof. Consider the upper radical class R defined by C . Take any

A € V and l e t K = (]{I < A | A/I € C} . Since C i s closed under sub-

direct products, we have A/K € C , and thus R(A/K) = 0 . Suppose

K If R . Then K has an ideal T such that 0 # K/T € C . Now

T < K < A , so for some integer m , we have (T*/T) = 0 . But

T*IT < KIT 6 C , so T*/T i s in C , as well as being solvable. Thus

T*/T = 0 ; tha t i s , T < A . Hence there i s an exact sequence

0 •*• K/T •*• A/T •* A/K •* 0

whose end terms are in C . But then A/T € C , so K c_T , contradicting

our assumption. We conclude that K € R . Since R(A/K) = 0 , i t follows

that K = R(A) . In particular, RU) = 0 if and only if K = 0 ; that

i s , A € C , so C is a semi-simple class. / /

THEOREM 3.2. Let R be a radical class, containing all solvable

algebras, in an Andrunakievich variety V . Then R has a hereditary

semi-simple class.

Proof. If RU) = 0 and I < A , then R(I) < I < A , so R(J)*/R(J)

is solvable, and thus belongs to R . Since R(J) € R , R(J)* is an

R-ideal of A , so 0 = R(I)* = R(J) . / /

These two theorems have as a joint consequence:

COROLLARY 3.3. Let C be a subclass, containing no solvable

algebras, of an Andrunakievich variety V . Then C is a semi-simple

class if and only if it is a eoradical class. //

These results cannot be extended to cover arbitrary eoradical and

semi-simple classes, however. As before, in the next theorem Z is the

variety of zero-algebras. A the variety of associative algebras.

THEOREM 3.4. Over any field, the CAndrunakievichJ variety Z ° A

contains

(i) a non-semi-simple eoradical class containing all solvable

algebras, and
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(ii) a hereditary radical class with a non-hereditary semi-

simple class containing all solvable algebras.

Proof. Let A be the algebra with basis {u, V, w] and

multiplication table

u

V

w

u

0

0

u

V

0

V

u

w

u

u

0

Let (u, v) denote the subalgebra generated by {u, v} , and so on.

Calculation shows that the ideals of A are

0 , <u>, (u, v), <u, w), A .

Let C = {i? | R has no non-zero accessible idempotent subalgebras} .

Then C is a coradical class containing al l solvable algebras. Examining

the non-zero ideals of A , we see that <M> € C ,

< M , V)/<U, V)d = <M, U > / < U > ^ <M> € C ,

= ' y ) € C, w > 2 =

a n d

A/<u, V> ^ C ,

so every non-zero ideal of A has a non-zero homomorphic image in C .

But <U> < <M, v) < A and <u> = <l>> , so A $ C . Consequently, C is

not a semi-simple class.

Now le t H be the class of hereditarily idempotent algebras, the

algebras with every accessible subalgebra idempotent. Then H is a

hereditary radical class. Returning to our example A , we see that
o

<M> = 0 and <u> i s an ideal of every non-zero ideal of A , so t ha t

H(A) = 0 . But <U> i s isomorphic to the f ie ld of sca lars , and

<U> < <w, U> , so H((u, U>) # 0 and H does not have a hereditary semi-

simple class. / /

If we impose a further restriction, that our universal class be an

s-variety, as well as an Andrunakievich variety, things improve somewhat.
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We precede our f irst theorem for such a variety with a result which we

shall use subsequently, and which is of some independent interest.

PROPOSITION 3.5. Let V be an s-variety and an Andrunakievich
o

variety of index n . I f I < J < A d V and I = I , then I < A .

Proof. We have I < I* < A , so J = Is c (I*)S < A . But then

J* c (I*)S , so I* is idempotent. Hence (l*yn' = I* , so

I*II = (I*/I)M = 0 ; that i s , I < A . //

THEOREM 3.6. Let U be an s-variety and an Andrunakievich variety.

If C is a aoradioal class, containing all solvable algebras, in V , then

C is a semi-simple class.

Proof. Let R be the upper radical class defined by C . Take .̂an

algebra A and l e t K = n{J < A | A/I € C} . Then A/K € C , so

R(A/K) = 0 . Also, Xs < A and K/K8 (. C , so from the exact sequence

A/if •* A/K+ 0 ,

we see that A /XT E C , whence K c_ jr and K is idempotent. Now le t

K± = n{J < K | X/J 6 C} . Then J^ « tf < 4 . As above, K± is

idempotent, so by Proposition 3.5, K. < A . But from the exact sequence

0 -*• K/Kx •+ A/K1 •* A/K -• 0 ,

whose end terms are in C , we see that A/K € C . This means that

K - K , so K has no non-zero homomorphie images in C ; that i s ,

K € R . Since R(A/K) = 0 , i t follows that K = R(A) . In particular,

R(A) = 0 if and only i f K = 0 ; that i s , A € C . / /

THEOREM 3.7. Let 1/ 2>e on s-variety and an Andrunakievich variety.

Let R be a radical class, containing only idempotent algebras, in V .

Then R has a hereditary semi-simple class.

Proof. (Note that the hypothesis implies that al l solvable algebras

are R-semi-simple.) If R(A) = 0 and I < A , we have R(J) < I < A ,

with R(J) idempotent. By Proposition 3.5, R(X) < A , so R(J) = 0 . / /

The following result is a consequence of Theorems 3.6 and 3.7.
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COROLLARY 3.8. Let V be an s-variety and an Andrunakievich

variety. A subclass C of V , containing all solvable algebras, is a

semi-simple class if and only if it is a coradical class.

Proof. We need only observe that if C is a semi-simple class

containing all solvable algebras, then the corresponding radical class

consists of idempotent algebras. / /

For algebras over a field, Corollaries 3.3 and 3.8 can be combined as

follows.

THEOREM 3.9. Let V be an s-variety and an Andrunakievich variety

of algebras over a field. A subclass C of V is a semi-simple class in

V if and only if it is a coradical class in V .

Proof. Let K be the field, K the one-dimensional X-zero-algebra.

If a radical class R in 1/ contains K , i t contains the zeroalgebras

and hence all solvable algebras. If K° $ R , then R(#°) = 0 . If now

2 0
A € R > then A = A , since otherwise K , as a non-zero homomorphic image

of A , would be in R . This means that all solvable algebras are

R-semi-simple. I t follows that a semi-simple class in V must contain all

the solvable algebras or none of them, according as i t contains or does not

contain K

Furthermore, if a coradical class C contains a solvable algebra not

equal to 0 , i t contains each A for each of i ts members A , being

hereditary, and hence i t contains K . Closure under direct sums then

ensures that C contains a l l zero-algebras and closure under extensions

guarantees that all solvable algebras are in C .

The result now follows from Corollaries 3.3 and 3.8. / /

We have seen that in an Andrunakievich variety which is not an

s-variety, semi-simple classes need not be coradical, and conversely. The

corresponding questions naturally arise for s-varieties without the

Andrunakievich property. The most we know here is that sometimes semi-

simple classes are not hereditary.

THEOREM 3.10 (Miheev [ 7 4 ] ) . In the 2-varieties of ( - 1 , l)-rings

and of (-1, l)-a~lgebras over a field of characteristic 2 } the nil
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radical class has a non-hereditary semi-simple class.

Proof. Miheev [74] has given an example of a (-1, l)-alget>ra over an

arbitrary field of characteristic 2 which is nil semi-simple but has a
2

non-zero accessible subalgebra S with S = 0 . This algebra for the

prime field provides the proof for rings. / /

This investigation suggests the following problems.

(1) Do the concepts "semi-simple class" and "coradical class"

coincide in a variety of rings which is both an e-variety and an

Andrunakievich variety?

(2) Does "coradical" imply "semi-simple" in all s-varieties?

(3) Do all radical classes without solvable members (or, equivalently,

all radical classes with only idempotent members) in an s-variety have

hereditary semi-simple classes?

In connection with (3), we note that in [9] i t was shown that the

(radical) class of all idempotent rings always has a hereditary semi-simple

class in an s-variety.
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