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ALGEBRAIC STRUCTURE OF DEGENERATE SYSTEMS

HENDRIK GRUNDLING

This thesis is concerned with the problem of degenerate systems,

that is, given a theory with nonphysical degrees of freedom, how to find

a canonical method for extracting the physical subtheory from it. The

work falls into two parts. The first part, the classical theory surveys

the existing mathematical work on this problem, and it traces a continuous

line of development from the emergence of degeneracies in the variational

framework, through the local Dirac-Bergman theory of constraints [J], [2],

[3], the problems arising from field theoretical aspects, and culminating

in Gotay, Nester and Hinds' global method [4] on infinite dimensional

manifolds, which allows for curvature. The theory is applied to two

examples; electromagnetism, and the Yang-Mills field.

The second part, quantum theory in a C*-algebra framework comprises

the main thrust of the thesis. After preparing the ground with

mathematical and philosophical discussions of the quantization process, we

argue that degeneracy occurs as supplementary conditions on either the

field algebra itself, or on the set of possible expectation values;

respectively called algebraic and state conditions. The structure of
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these conditions is determined by the underlying physics.

The study of C*-degenerate systems starts with the assumption

of a unital C*-algebra F as the field algebra, within which is

specified two sets of unitaries U, V, denoted state and algebraic

conditions respectively. State conditions are imposed by specifying the

physical states to by the condition u(U) = 1 . This condition is seen

to be equivalent to m(AU) = ut(A) = u(UA) V A e F , U e U , and such

states exist if and only if C*(U - 1) / 1 . Next we find the unique

maximal C*-algebra V annihilated by all physical states, and i ts

multiplier algebra 0 in F is taken as the physical observables, this

choice being justified by showing W c 0 , where the commutant W is

the traditional observable algebra. The physical algebra is defined as

U: = 0/V , and i t is constraint free. A connection with the heuristic

structures is made by showing 0 to be the "weak" commutant of V .

Next, the state spaces of the various algebras and their connections are

investigated, and we show that in the GMS-representation of a physical

state (0 , that v (V)il = 0 , with Q the cyclic state. This condition
(0 0) (0

is similar in form to the usual heuristic state conditions.

To define the physical transformations, we examine the automorphisms

of F which are compatible with the degenerate structure. Automorphisms

which preserve V will define automorphisms on R , and those

automorphisms on F which define the identity on R are taken as the

gauge transformations. We find various reasonable types of gauge

transformations to be in this set.

We argue that the algebraic conditions V should be imposed either

at the point of definition of F , or that it should be done identically

to the state conditions in order to avoid ordering problems.

The general theory finds its application in an example; the Dirac

form of electromagnetism, which was prepared in the classical part. It

turns out that Dirac electromagnetism is the prototype of any linear

boson theory with linear hermitian constraints, and it is nontrivial.

This example takes the C*-algebra of the CCR as defined by Manuceau [5],

for the field algebra F .
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Next we examine the compatibility of the general structures with

various reasonable physical requirements, such as R being simple, and

the physical automorphisms on R being inner, and develop internal

criteria for these.

Finally, since indefinite inner product (.IIP) representations arise

only in the context of degenerate systems, we consider the relation

between these and the algebraic structures above. An important finding

is that the triple \V, 0, F/ relates in a simple and direct fashion to

a triple \H", H', H) which always occur in /IP-representations, where

H is the IIP-representation space, H' is some positive subspace on which

the observables are represented, and H" is its null-space. This

relation is given by the GNS-type representations of non positive-

definite functionals on F , satisfying additional conditions. The use of

HP-representations turns out to be just a device for obtaining a

covariant representation of the physical algebra, which may not be

obtainable from a covariant physical state on F . This theory is applied

as before to a linear boson field with linear hermitian constraints, and

Landau electromagnetism is treated in detail as an example of an algebraic

field theory with an IIP-representation. The latter also serves as an

example of a system which involves both state and algebraic conditions.
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