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1. Introduction. Given a normed linear space X, let S(X), X', B(X) denote respectively
the unit sphere {x: || x || = 1} of A', the dual space of X, and the algebra of all bounded linear
mappings of X into X. For each xeS(X) and TeB(X), let Dx(x) = { /e l ' : ||/|| =f(x) = 1},
and V{T; x) = {f(Tx):feDx(x)}. The numerical range V(T) is then defined by

V(T) = {J{V{T;x):xeS(X)}. (1)

Similarly, given an element a of a normed algebra A, the numerical range VA(a) is defined by

VM = {j{VA(.a;x):xeS(A)},

where VA(a; x) = {f(ax):feDA(x)}. In words, VA(a) is the numerical range in the sense (1)
of the left regular representation of a on A.

When A' is a Hilbert space, V(T) coincides with the usual numerical range W{T), and it
is a well known theorem of Toeplitz, Hausdorff, and M. H. Stone [8] that W{T) is convex
and that its closure contains the spectrum Sp(!T) of T. With an arbitrary normed linear space
X, V{T) is the union of the numerical ranges W{T) in the sense of Lumer [7] corresponding
to all choices of semi-inner-product on X that yield the given norm of X. The numerical range
W(T) corresponding to a semi-inner-product need not be convex, in fact need not be con-
nected. V(T) need not be convex, but it is proved in [2] that it is connected. Williams
[9] has proved that the closure of V(T) contains Sp(7") if A' is a Banach space over C.

In this note we show that if A is a normed algebra with unit element e and | e | = 1, then
VA(a) has very simple properties. In particular, VA(a) is compact and convex, and it contains
the spectrum Spx(a) of a if A is a complex Banach algebra.

These results are applicable to a bounded linear operator Te B(X) by taking any subalgebra
31 of B(X) such that /, Te 51. We show that Vm{T) is then the closed convex hull of V(T).

2. Normed algebras. Let F denote R or C, and let (A, [| . ||) be a normed algebra over F;
i.e. A is a linear associative algebra over F and | . || is an algebra-norm on A (a norm on the
linear space A such that ||xy | ^ || x \\. \\ y || (x,yeA)). Suppose also that A has a unit element
e and that | e | = 1.

LEMMA. VA(a) = VA{a ;e)(aeA).

Proof. Given x0 e S(A) and / 0 e DA(x0), let / be defined by

f(x)=fo(xxo) (xeA).

Then feDJe), and sofQ(ax0)eVA(a; e). This proves that VA(a) c VA(a; e), and the opposite
inclusion is obvious.
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THEOREM 1. For each as A, VA(a) is a compact convex subset o/F.

Proof. Since DA(e) = {feA': \\f\\ ^ 1 and f(e) = 1}, DA(e) is a weak* compact convex
set. Since VA(a; e) is the image of DA{e) under the weak* continuous linear mapping/-*/(a),
it follows that VA(a; e), and therefore VA(a), is a compact convex subset of F.

THEOREM 2. Let B be a subalgebra of A such that eeB. Then, for each beB,

VJLb) = VA(b).

Proof. By the Hahn-Banach theorem, the restriction mapping

f-*f\s

maps DA{e) onto DB(e). Therefore VB{b; e) = VA{b; e), and the lemma completes the proof.
Remark. No such simple invariance holds for V(T) or W(T) with respect to linear sub-

spaces.

THEOREM 3. Let A be complete and F = C. Then, for each aeA,

Sp» <=

Proof. Let XeSpA(a). Then Xe—a has no inverse in A. Suppose that it has no right
inverse. Then {Xe—a)A is a proper right ideal J of A. Since A is complete, it follows that

| x - e | | £ l (xeJ),

and therefore, by the Hahn-Banach theorem, there exists feA' such that/(e) = ||/|| = 1 and
f(J) = 0. Thus feDA(e) and f(Xe—d) = 0, from which X =f(a)e VA(a\ e). A similar proof
is available if Xe—a has no left inverse.

An alternative proof, suggested by the referee, applies Theorem 2 to a closed com-
mutative subalgebra B of A containing a and e, and uses the fact that the non-zero multi-
plicative linear functionals on B belong to DB(e).

Let N denote the set of all algebra-norms p on A equivalent to the given algebra-norm
||. || and with/>(e) = 1. For each peN, let VAp(a) denote the numerical range VA(a) computed
in terms of p in place of | . ||. Let co(£) denote the convex hull of E.

THEOREM 4. Let Abe complete and"F =C. Then, for each as A,

Proof. It is immediate from Theorems 1 and 3 that

co(SpA(a))c=f]{VAtt>(ay.peN}.

To prove the opposite inclusion, it is enough, since SpA(a) is compact, to prove that every open
circular disc containing Sp,,(a) also contains VAtP(a) for some peN. Suppose then that

| A - « | < r
Then

p(a-ae)<r,
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where p(x) denotes the spectral radius of x. It is proved in [6] that, for each xeA,

p(x) = inf{p(x):peJV}.

Therefore there existspeN such that

p{a—ae) < r.

But then it follows that

|A-a|<r (XeVAJa)).

Remark. If A is complete and F =R, Theorems 3 and 4 remain valid provided that Sp(o)
is replaced by Sp^(a)nR.

Some important applications of the numerical range to normed algebras depend on an
inequality relating the norm to the numerical radius sup {| A |: Ae VA(a)}. Such an inequality
was proved for complex Banach algebras by Bohnenblust and Karlin [1, p. 219], and for
complex semi-inner-product spaces by Lumer [7]. We give an elementary proof of the
inequality, for complex normed algebras, which is in part derived from Lumer's proof.

THEOREM 5. Let F = C. Then, for all as A,

Proof. By Theorem 2, we may suppose that A is complete, for replacement of A by its
completion does not alter Vja). Let a e A and sup {| A |: A e VA(a)} S M < 1 • Given x e S(A),
there exists fsDA(x), and we have, for all complex numbers A with | A| ^ 1,

Therefore

|| {e-Xa)x || £ il-ii) I x || (xeA,\X\£l). (1)

By Theorem 3, Spyl(a) cz VA(a), and so p{a) ^ n< 1, and e—Ao is therefore invertible when-
ever | A | ^ 1. Therefore (1) gives

Wie-Xay'W^il-^-1 (|A|^1). (2)
With <Bl f . . . , con denoting the «th roots of unity, we have

and so, by (2),

Waie-ar'Htt-nr
Since p(a)< 1, e—d1 -> e as n ->oo, and therefore

(3)

Given arbitrary be A and 5 > s\ip{\A\:XeVA(b)}, (3) holds with a = (1/2(5)6 and /J = i ,
and gives \\\\
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Remarks, (i) The constant 4 is not best possible. Bohnenblust and Karlin established
the inequality with exp(l) in place of 4, and Glickfeld [5] has proved that this is best possible.
An elaboration of the present proof also gives the sharp inequality.

(ii) Theorem 5 is false for algebras over R, for which it is possible to have VA(a) = {0}
with a ^ 0. However, it is proved in [3] for Banach algebras A over R, that a = 0 whenever
^ ( a ) = ^A(Q2) — {0}- Theorem 2 now shows that this holds for all normed algebras over R.

3. Linear operators. The results of §2 are applicable to the algebra B{X) with the operator
norm \T\ = sup{|| Tx\: ||JC| ^ 1}, and to subalgebras of B(X) that contain the identity
operator /. Let 81 be any such subalgebra of B(X). Given T e 81, we then have two numerical
ranges available for T, V(T) computed in terms of X, and Vm(T) computed in terms of 81.
By Theorem 2, Vn(T) is independent of the choice of 91. We consider briefly the relationship
between V(T) and Vm{J).

LetP = {(x,f):xeS(X),feDx(x)}, and, given (x,f)eP, let <t(Xi/) be the functional
defined on 81 by

«W)(T) =f(Tx) (Te8l).

It is clear that O(Xj/)e £>„(/), and so V(T) c Vm(T).

THEOREM 6. Vm(T) is the closed convex hull of V(T).

Proof. By a lemma proved for W(T) by Lumer [7, Lemma 12], we have

| | | j (4)
Since Ie 91, we have

| | | | | | (Te8t).

Therefore, by (4) applied to the left regular representation of T on 91,

j (5)

It follows from (4) and (5) that V(T) and Vm(T) have the same closed convex hull, and so
Theorem 1 completes the proof.

Remarks, (i) Let II ={O(JC>/):(x,/)ei>}. The above proof also shows that D^{T) is
the weak* closed convex hull of n , which is essentially Lumer's Theorem 11 in [7].

(ii) It is proved in [2] that P is connected in the norm x weak* topology, i.e. the product
of the norm topology on X and the weak* topology on X'. It is easy to prove that the mapping
(x,f) -* <D(JCij) is continuous from P with the norm x weak* topology into 91' with the weak*
topology. Therefore II is a weak* connected subset of 91'. It is also easy to prove that P
is a closed subset of X x X' in the norm x weak* topology, and so the question arises whether
II is closed in 81'. Duncan [4] has proved that II is norm closed provided that X is complete
and that the algebra 81 is not too small, but that it need not be weak* closed.
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