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Aspects of topoi:

Corrigenda and acknowledgements

Peter Freyd

"Aspects of Topoi" [J] appeared in July 1972 through the Herculean

efforts of Bernard1 Neumann with the able assistance of Tim Brook and Max

Kelly. The original manuscript was written in haste during the last two

weeks of the author's visit to Australia. Somehow just five months later

i t appeared in print. Among the difficulties surmounted was a set of page

proofs which having been sent via slow steamer by the U. of Penn.

administration arrived after the paper was in press.

Tim Brook discovered the nonsense in the original manuscript about

3» and, consequently, the proof therein of Lemma 2.615- As the creator

of that nonsense I didn't see through i t until i t was so late that I was

practically forced to telegraph a patch-up job. Though the page proofs

didn't arrive on time, that did, and amazingly the patch-up got included.

(Note that 2.615 is easy if we already know 3.32. The trick was to avoid

3.32 until after 3.31.)

Bill Mitchell in Chicago pointed out that I neglected to show that the

(i-condition is essentially algebraic. (The fact i s , §2 was written before

I recalled Lawvere telling me years ago that the axioms of categories are

not Just partial algebraic, that they are as I have now termed them,

"essentially algebraic".) The domain of the characteristic map operator,

namely the set of monomorphisms, is equationally defined as those maps

B such that x = y in the pullback J/+ +
A • B

Received ll» August 1972.
1 Correct spelling: Bernhard. Editor.
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468 Peter Freyd

A much easier and be t t e r example than that of 2.71 exists for an

unsolvable topos: l e t T have as objects ordered !+-tuples

(A, 6 , , 8~> a) where A i s a set , s, , s~ automorphisms on A and a

i s a posit ive integer. A map from <A,s1,s2,a> to < B, t , t-, b) i s

any function / : A •* B such that for some positive n ,

commutes for i = 1, 2 . The forgetful functor i s a logical morphism, T

i s 2-valued, boolean, and i t s arithmetic is standard. Let A be

Z v Z , that i s the set obtained by identifying the zero of the cyclic

group of order n with the zero of the in f in i t e cyclic group. Let s_

act as the shi f t operator (m •* m+l) on the inf in i te cyclic pa r t , the

iden t i ty elsewhere. Let s p act as the rotation operator (again

m •*• m+l) on the f in i te cyclic part , the ident i ty elsewhere. Then

U < A , S- , S-, 1> fa i l s to have a maximal well-pointed subobject.

Section 5.6 i s a l l wrong. The error occurs e a r l i e r , namely the stupid

assumption that a colimit of functors, each of which preserves epimorphic

famil ies , does the same. The lines about preserving epimorphic families in

3.«21, through 3.2U should be struck. Fortunately we didn' t use those l ines

u n t i l 5.6 where the resu l t s though false are answers to the right

questions. A replacement for Section 5-6 appears below.

The paper shows a systematic - though unconscious - omission of the

name of Alexander Grothendieck, for which I can only apologize and view

with some wonderment. That I could have wri t ten, for example, an

introduction in which I compared the development of the theories of abelian

categories and topoi , without mentioning Grothendieck's dominating role in

each, must be taken as evidence of an aberration stemming I suspect from a

touch of mathematical chauvinism.
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5.6 Some standard recoveries

There exist bicomplete topoi, even boolean and 2-valued, with no

exact functors into the category of sets. Nothing like a stalk functor.

On the other hand, every countable exact sub-topos of any bicomplete topos

is exactly embeddable in a power of the category of sets. Perhaps nothing

better demonstrates the uti l i ty of the elementary version of topoi. The

way in which one would likely use the existence of enough exact set-valued

functors is to verify elementary assertions. Knowing that the countable

sub-topoi allow enough exact set-valued functors i s , of course, sufficient

for this use.

We shall need the definitions of two special properties on topoi.

Given a reflexive, symmetric relation R c A*A in a topos we may

inductively define i ts powers, R = H ° R , where ° means composition

of relations and R is the diagonal A >• A*A . The countable union

UR" need not exist. But if i t does then i t is an equivalence relation and

the smallest equivalence relation containing R . If for every reflexive

symmetric relation this countable union does exist we'll call the topos

E- standard.

For arbitrary R a A*A we may consider the coequalizer A •* F of

P± P2 E + A
R •+ A*A • A , R •*• A*A • A , and the pullback + + . E c A*A i s ,

A •*• F

of course, an equivalence relation and using only the effectiveness of all

equivalence relations, E is easily seen to be the smallest equivalence

relation containing R . ff-standardness, therefore, says for reflexive

symmetric R , that the just constructed E is the union of the

For any R c A*A we can easily construct i ts "opposite", R P and

define R = R u /fop u A to obtain the smallest reflexive relation

containing i? . In an ^-standard topos, LW" is the smallest equivalence

relation containing R . Note, and note well, that the construction of

each H uses only the predicates of near-exactness:
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where t is the twist map, fl" o R = lm(P <
where

R

Pl -* P2
i s a pullback, / = R •*• A*A • A , g = R->• A*A — ^ * A .

LEMMA 5.61 for topoi. If T is E-standard, T : T •*• V a left-
exact functor that preserves epimorphic families, then T is exact.

Proof. I f T i s l e f t -exac t and preserves epimorphic famil ies , then

i t i s near-exact (c lear ly such implies that T preserves epimorphisms, and

" lby applying to the empty family, preserves 0 ; moreover, A • C ,

U2
B • C display C as A + B iff the pullback of u , u is 0 ,

u., u2 each ironomorphic and jointly epimorphic). We must show that

T preserves coequalizers. Given x, y : B -*• A le t

P l P2the coequalizer of R -*• AxA »• A , R •* AM »• A . L e t A •*• F b e

E •*• A

such, + + a pullback, l e t TA •*• F' be a coequalizer of
A •* F

p p E' ->• TA
TR -»• TAvIA — = * TA , TR -*• TAxTA —=-»• TA , and + + a pullback.

TA ->• F'

TA •*• TF = TA •+ F' i f f TE = E' . E' i s the smallest equivalence relat ion

containing TR . E = Ufl" and near-exactness implies T f̂f") = TIP . If T

preserves epimorphic families then TE = T[\SiP) = Ur[fl") = LffS" , that i s ,

exists and hence i t is the smallest equivalence relation containing

TR . Hence TE = £" . D

We say that a topos is N-standard if i t has a natural numbers object

N and the maps 1 — +̂ N , through the standard natural numbers, form an
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epimorphic family. We will show that ^/-standard implies E-standard and

in the presence of an NNO, ^-standard implies tf-standard.

A countably cocomplete topos i s , of course, both ff-standard and

tf-standard. Note that if T •*• T' is an exact embedding, T' ,

2?-standard, then T must be E-standard. Which two statements provide the.

easy half of

THEOREM 5.62. A small (boolean, 2-valued) topos may be exaotly

embedded in a biaomplete (boolean! 2-valued) topos iff it is E-standard.

•j-op
Proof. Given any small topos T , l e t S be the category of

•j-op
contravariant set-valued functions, T -*• S the representation functor

T°p

A -»• HA . There i s a closure operator j : 52 -»• ft in S which makes

j°P 7«P
T ->• S •* Sh. preserve epimorphic families. Since T ->• S and

3
j

S -»• Sh . are left-exact, Lemma 5.6l says for T , ^-standard, that
3

1 * Sh. is exact.
3

The closure operator is just what i t has to be. Given an i4-crible

{B. •* A) i ts closure in the set of a l l maps C •* A such that the set of

P. ->• C
^

pullbacks + + yields an epimorphic family {P. -»• C} . (The closure
B. ->• A t

^

must be at least th is large because Ulm(flD •* #>) •* Ulm(ff_ -*• A) must

become an isomorphism in Sh . i f T -»• Sh . is to preserve epimorphic
3 3

families.) To verify that we have described a closure operation requires

a number of steps.

First , the closure is a crible. Given C •* A in the closure of

P . ->- C P\ •*• C
^ t

{B. -»• A] le t C' •* C be a rb i t ra ry , + + , + + pullbacks. Then
v B. •+ A P. •* C

^ t
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P'. -»• C

+ + is a pullback each i , and since {P. -* C) is an epimorphic
B. * A %

i

family, so i s {P£ •*• C') (because T/C •* T/C' preserves same). The

closure operation i s clearly inflationary. To see that i t i s idempotent,

l e t {C . •*• 4} be the closure of {B. + A) and D •* A in the closure of
«7 t

{C. -*• A} . We must show t h a t D •*• A i s i n the c losure of {S. •+• A) .Let

P . . •*• C .

4- -I- be a pullback each i, j . For fixed j , {P. . •* C.} is an
B. •*• A T'IO 3
%

P' •*• D P' •* P'
0 i,3 3

epimorphic family. Let + + be a pullback each j , and + + a
C . -*• A P. . •* C .

3 i,3 3

pullback each i , 3 . Because pullbacks of epimorphic families are again

epimorphic, each j , {P'..->• P'.} i s epimorphic, hence {P[ . •*• D}_ T i s

P". •* D
t

epimorphic. Now l e t +• + be pullbacks. We wish to show that iP'l "*" 0}

i s epimorphic. But each P". . •*• D factors through P". •*• 0 regardless of
"V ,3 i*

j , and {P'. • •* D} epimorphic implies {P'l •*• D) epimorphic.

For the naturality of the closure operations let A' •*• A be

B'. -y A'
v

arbitrary, {5. •* A) an 4-crible, + + a pullback each i . First,
v B * AB. •* A

C ->• A'C ->• A'
suppose that C •*• A i s in the closure of {B. -*• A) . Let + + be a

V C * A

pullback. We wish to show that C' •* A' i s in the closure of {B^ •* A) .

P. •* C P\ •* C'
1 %•

I f + + and + + are pullbacks each £ , then we obtain pullbacks
B. •* A g. + C

1 ^
P'. -* C^
+ + and {P. •*• C'} being the pullback of an epimorphic family is
B'. •* A' 1'
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again such that C' •* A' is in the closure of {B1. -»• A'} .

Second, if C' -*• A' is in the closure of {B^ -+A'} that is, from

P'. •* C

the pullbacks + 4- , {P1. •* C'} is epimorphic then quite clearly
B'. + A' %

p\
1

T

+ c

A'

•*• A

is a pullback each i , and C' -*• A is in the closure of {B. •+ A] . Let
Is

Q ->• C

4- 4- be a pullback. Then the original C •*• A' is in the 4'-crible

A' -* A
generated by Q •*• A' , hence in the pullback of the closure of {B. •* A) .

Finally we must show that the closure of an intersection is the

intersection of the closures. Rather clearly the closure operation

preserves order hence i t suffices to prove, symbolically,

B n B ' c B n B' , that i s , i f C ->• A is in the closures of both {B. -»• A}
if

and {B1. •+ A} then i t i s in the closure of {B. •* A) n {B'. •* A} . Let
3 v 3

P . -»• C P'. •*• C B". . •*• B'. P". . •+ P'.
t- 3 1* »3 3 *• >3 3

4- + , + 4- , 4- 4 - , 4- 4- be pul lbacks each i , j . For
B. -*• A B ' . -»• A B. •*• A P. •*• C

% 3 T, ^

fixed j , {P". . •*• P'.} i s epimorphic because {P. •+ C) is and pullbacks
^ *3 3 *

of epimorphic families remain such. Because {P1. •* C) i s epimorphic, the
3

composite {P" . •+ C) i s epimorphic. But for each i , 3 , 4- 4- i s a
1 'J B". . •* A

T-,3

pullback, iB". . -*• A} is the intersection of {B. •* A} and {B*. •+ A)
<- *3 * 3

hence C -*• A i s in the closure of the intersection.

We have therefore defined a closure operation. We must show that

T -*• S •*• Sh . preserves epimorphic families. Given (B. •+ A] epimorphic
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in T we wish t o show that ]#„ -»• B. J- when reflected in Sh. i s

epimorphic, equivalently, that Ulm S_ •*• H.\ -+H. becomes an isomorphism.

But Ulm\Hj. •*• H. corresponds to an i4-crible whose closure i s a l l of H.
I ai R) A

and that is precisely the condition that a subobject of H. becomes, upon

reflection, the entire subobject.

T •+• Sh . is faithful, because being exact i t suffices to show that
0

for A ' •* A not an isomorphism in T , t h a t H., •* H. does not become an

isomorphism i n Sh . . I f i t were t o do s o , then A' -*• A must be i n t h e
0

closure of the /4-crible generated by A' •*• A , which i t clearly i s not.

Note tha t given B •** C >* A tha t C •* A i s in the closure of the

,d-crible generated by B -*• A and hence any closed X-crible i s the closure

of a family of monomorphisms. Given {B. >•• A} C' -*• C i s in the closure

i f f C' = U(B.nC') . We may thus identify the closed /1-cribles with the

ideals in Sub(i4) closed under arbitrary union. If Sub(-4) i s boolean

then any such ideal i s closed under double negation and we see that i f T

is boolean then so i s Sh . . •
3

COROLLARY 5.63 for topoi with NNO. E-standard implies N-standard.

Proof. If T i s ^-standard with NNO we may exactly embed i t in a

bicomplete topos. Bicompleteness, indeed Just countable cocompleteness,

implies ff-standardness. The invariance of NNO's under exact functors thus

implies that T i s ^-standard. O

The c r i t i c a l lemma for much that follows:

LEMMA 5.64. A countable N-etandard boolean topos may be logically

mapped to a 2-valued N-standard boolean topos.

Proof. Let 8 be a countable ff-standard boolean topos. We seek an

u l t r a - f i l t e r F c 8 ( 1 , ft) so that B/F is s t i l l ff-standard. In a

2-valued boolean topos , Af-standardness i s equivalent to the fact that for

every B c N , B i- 0 there exists a natural n and a map 1 •* B such
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that 1 -• B •+ N = l - ^ * N . For any f i l t e r , T : 8 ->• 8/F is S-full, that

i s , for any A € 8 , Siib(i4) •*• Sub(I4) i s onto. Hence we seek an u l t ra -

f i l t e r , F , such that for any Be N in B ei ther there exists U €-F

such that U x B = 0 , or there exists natural n such that in the

P •* 1

pullback + +w , i t is the case that P £ F .
B -" N

Let ^ n ^ n = 1 *>e a n enumeration of the subobjects of N . We

construct a descending chain of subobjects of 1 as follows:

given Un i f Pn x SM+1 = 0 then set U^ = ^ , i f ^ x 2

l e t m be the f i r s t natural number such that in the pullback

P - 1
+ +m , P * 0 , and set U . n = P .

We note in the case U x B * 0 that £/ ~* U
n * Bn+i * Un* X = Un '

hence ^ n + 1
 c y • Hence there exists an ultra-fil ter F containing all

U , and that ultra-fil ter clearly has the desired property. (In fact, the

set F = {V c 1 | 3 , V c V} is already an ultra-fi l ter.) D

THEOREM 5.65. Every countable N-standard (boolean) topos is exactly

(logically) embeddable in a product of N-standard well-pointed topoi.

Proof. Theorem 2.65 is correct, namely every small topos may be

exactly embedded in a boolean topos and the embedding can preserve

epimorphic families. Hence an //-standard topos can be exactly embedded in

an ^-standard boolean topos. If the given topos i s furthermore countable

then we may take a countable sub-model of the range to contain the image of

the embedding, and we reduce the theorem to the boolean case.

An exact functor between boolean topoi i s faithful i f f i t k i l l s no

objects. Given countable TV-standard boolean B and A € B then E/A i s

again countable //-standard and boolean. If B' i s well-pointed,

B/A •+ B1 exact then B ->• B/A •*• B' does not k i l l A . Hence i t suffices

to show that every countable //-standard boolean topos may be logically
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mapped to an iV-standard well-pointed topos. Lemma 5>64 says we may

further reduce to the two-valued case. That i s , we wish to show that any

countable 2-valued ^-standard boolean topos may be logically embedded

into a iV-standard well-pointed topos.

We will say that an object A is pointed i f there exists 1 -*• A . We

recal l that a boolean topos is well-pointed iff each non-zero object is

pointed. Given any A € 8 , A ? 0 , 8 •*• B/A moves A to a pointed

object. If 8 were ^-standard and boolean then so is B/A . If

moreover, 8 is countable, then we can apply Lemma 5-61* to obtain a

2-valued iV-standard and boolean 81 and a logical map B/A -*• B' .

Clearly 8' can be cut down to a countable elementary submodel. If

further, B is 2-valued then the composite 8 -»• B' being exact is

faithful.

Hence given any countable 2-valued ^-standard boolean topos 8 and

a non-zero A € 8 there exists a countable 2-valued iV-standard boolean

8 and a logical embedding 8 -»• 8' so that A becomes pointed in B1 .

Let {A } be an enumeration of the non-zero objects of 8 and

using the las t paragraph define inductively, a sequence of countable

2-valued tf-standard boolean topoi {8 } _. , and logical embeddings

8 -»• 8 +. , with BQ = B , and such that A becomes pointed in $n+-, •

Let H be the colimit of the B^'s . We obtain a logical embedding B -»• B

and every non-zero object in B becomes pointed in 8 .

H is ^/-standard as follows: given f,g:N + B in 8 , f / g ,

there exists n so that B •+ 8 maps onto / , g . Let f,g:N+B in

B be ancestors. Because B is iV-standard there exists 1 • W in
n n

B s o t h a t 1 - ^ N-£+ B * 1 - ^ N -2->- B . B e c a u s e 8 , + B i s f a i t h f u l
n o

(8 i s 2-valued and 8 -»• B is exact] we retain the inequality in B .

We now i t e r a t e again to obtain a sequence {8 } , of 2-valued

tf-standard boolean topoi , 8 = 8 , logical embeddings 8^ -»• B̂  which

carry every non-zero object in 8̂  to a poi ited object in 8^ . Again
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we take the colimLt to obtain B , again 8, is /^/-standard and 1(0016811.
W W

But now B is well-pointed. Any non-zero A £ B must have an ancestor

A in some B , and A becomes pointed in 8 , hence remains so in

B . a
w

COROLLARY 5.66. N-standard implies E-standard.

Proof. As observed in 5-5 an ^/-standard well-pointed topos is
E-standard. Hence every countable subtopos of an ^-standard topos is
embeddable in an E-standard topos , and such is clearly enough to imply
E-standardness. •

THEOREM 5.67. A countable topos is exactly embeddable in a power of
the category of sets iff it is E-standard.

Proof. By Lemma 5.6l a well-pointed topos is embeddable into sets by
the function ( l , -) . We note that Theorem 5.62 implies that any
E-standard topos is exactly embeddable in an W-standard topos. Hence any
E-standard topos can be embedded in a product of W-standard well-pointed
topol, each in turn embeddable into sets. •

THEOREM 5.68. An E-standard topos is exactly embeddable in a
product of ultrapowers of the category of sets.

Proof. First embed T via Theorem 5.62 into an tf-standard topos.
Second, for any x, y : A + B , x £ y specialize to an iV-standard
boolean topos so that z, y are separated. Any elementary structure is
embedded in an ultraproduct of i ts countable submodels. Each of those can
be exactly mapped to the category of sets. Hence for each x + y we
obtain an exact functor to an ultrapower of sets that separates x, y . D

THEOREM 5.69. There exists a boolean 2-valued n-standard topos of
the power of the continuum with no exact functors to the category of sets.

There exists a boolean 2-valued bicomplete topos with no exact
functors to the category of sets.

Proof. Given a two-valued boolean topos B and an object A € B
we'll say that A is measurable if there exists an ultra-fil ter
F c Sub(j4) closed under countable intersections. Suppose B is
bicomplete, S : B -+• B1 exact, 8' well-pointed and ff-standard. Then
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every object A in 8 is measurable as follows: choose 1 •+ SA and

define F c Sub U) as the set of subobjects A' •*• A such that 1 •+ SA

factors through SA' •*• SA . F is easily seen to be an ultra-fi l ter . That

an ultra-fi l ter in a complete boolean algebra is closed under countable

intersection is equivalent to the more often cited property that any

countable partition of unity meets the ultra-fi l ter , that i s , given a

sequence ^A
n^n=n of pair-wise disjoint subobjects of A such that

UAn = A we must show that An € F for some n . Because A = J A there

A • A

n
exists A •*• N such that for each n , + + is a pullback. The

chosen 1 •* SA yields a natural number m such that

1 -• SA -f SN = 1 - ^ * N in 8' . And hence Am € F .

To show that a given bicomplete 2-valued boolean topos 8 has no

exact set-valued function i t suffices to show that 8 has an object not

measurable.

If a boolean algebra is separable, that is if i t has a countable dense

subset, a subset being dense if below every non-zero element there is a

non-zero element in the subset, then any ultra-fil ter closed under

countable intersection is easily seen to be principal, thus an atomless

separable boolean algebra has no such ultra-fil ter. We first construct a

2-valued tf-standard boolean topos which yields an atomless boolean

algebra.

For any group G and strictly descending sequence of subgroups {G }

G
the topos lim 5 i s an example of such. We can be more explici t by

->-
taking G to be the group of integers and instead of a sequence, taking

the directed set of non-zero subgroups. The result ing category B may be

di rec t ly described as having ordered t r ip l e s (A, 8, a) as objects , where

A i s a s e t , s i s an automorphism on A and a is a positive integer.

A map from (A, 8, a> to <S, t, b) is a function / : A -*• A' such that

for some positive integer n ,
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snb
A ' ^ A

+/ +/ commutes. The forgetful functor to sets is a logical
B • B

morphism, which fact te l l s one how to prove that 8 is a topos. The

object <Z, s , 1> , Z the group of integers, s(x) = x + 1 , contains no

atoms.

Let B_ ^e a countable elementary submodel of 8 . The existence of

an object without atoms is elementary, hence let A € 8. be such that

Sub(d) has no atoms. Using Theorem 5.62 le t B- be a bicomplete topos,

T : Bp -»• 8 an exact functor that preserves epimorphic families , the

second condition insuring that T embeds Sub [A) as a dense subalgebra of

Sub(2M) . Sub(IVl) is therefore atomless and separable and 8 can have

no set-valued exact functors.

To get down to the power of the continuum we note f irst that every

subobject of TA is a union of subobjects coming from Bp , hence Sub(2i4)

is of the power of the continuum. Any map TA •*• H is distinguished by the

P • 271
n

sequence of subobjects P •*• TA obtained from the pullbacks + + ,
71 1 • N

n

hence 8(271, N) is of the power of the continuum. Let Oi be an

elementary submodel of 8 such that BA.TA, N) = BATA, N) and such that

8, is of the power of the continuum. The existence of exact S : 8, •* B'

where 8' is well-pointed and iV-standard s t i l l implies that TA is

measurable (for the proof we used only the existence of enough maps from

271 to N , namely one to describe every countable part i t ion). Sub(271) is

s t i l l separable and atomless, hence there is no such S . D
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