A CONVERGENCE THEOREM FOR CERTAIN RIEMANN SUMS

Charles K. Chui

For a Riemann integrable function f on the interval [0,1], let

$$I = \int_{0}^{1} f$$

and consider the Riemann sums

$$R_n(f;a) = \frac{1}{n} \sum_{k=1}^n f(\frac{k-a}{n}), \quad 0 \le a \le 1.$$

THEOREM. If f is absolutely continuous on [0,1], then

(1)
$$R_n(f; \frac{1}{2}) - I = o(\frac{1}{n})$$
.

This theorem gives some asymptotic information for certain finite sums. For example, taking $f(t)=t^{b}$, $b\geq 0$, we obtain

and if we consider $f(t) = \sin \pi t$, we get

$$\sum_{k=1}^{n} \sin \frac{(k-\frac{1}{2})\pi}{n} - \frac{2n}{\pi} \rightarrow 0.$$

However, it is interesting to note that the theorem no longer holds if we replace $R_n(f;\frac{1}{2})$ by $R_n(f;a)$ with $a\neq\frac{1}{2}$, $0\leq a\leq 1$. This is obvious by taking f(t)=t, which gives

$$R_n(f;a) - I = (\frac{1}{2} - a)/n$$
.

On the other hand, we have the following result.

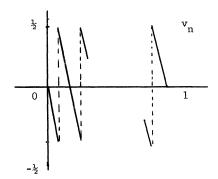
COROLLARY. If f is absolutely continuous on [0,1] such that f(0) = f(1), then

(2)
$$R_n(f;a) - I = o(\frac{1}{n}), \quad 0 \le a \le 1.$$

Proof of the above results. Consider the step functions

$$s_{n}(t) = \begin{cases} 0, & 0 \leq t < \frac{1}{2}n, \\ k, & (k - \frac{1}{2})/n \leq t < (k + \frac{1}{2})/n, k = 1, ..., n - 1, \\ n, & (n - \frac{1}{2})/n \leq t \leq 1; \end{cases}$$

and set $v_n(t) = s_n(t)$ - nt. Note that $v_n(0) = v_n(1) = 0$, v_n lies between $-\frac{1}{2}$ and $\frac{1}{2}$, and is linear with an exception of n unit jumps at $(k-\frac{1}{2})/n$, $k=1,\ldots,n$.



By a proof similar to that of the Riemann-Lebesgue Theorem, it can be seen that if g is a Lebesgue integrable function on [0,1], then $\int_0^1 g \, v_n \to 0$. Now, let h = f - I, where f is the given absolutely continuous function.

Then

$$\int_{0}^{1} h = \int_{0}^{1} f - I = 0;$$

and being absolutely continuous, h is an indefinite integral of some Lebesgue integrable function g on [0,1]. Hence,

$$\int_{0}^{1} h \ dv_{n} = [h \ v_{n}]_{0}^{1} - \int_{0}^{1} g \ v_{n} = - \int_{0}^{1} g \ v_{n} \rightarrow 0 .$$

On the other hand,

$$\int_{0}^{1} h \, dv_{n} = \int_{0}^{1} h \, ds_{n} - n \int_{0}^{1} h = \sum_{k=1}^{n} h(\frac{k-\frac{1}{2}}{n})$$

$$= \sum_{k=1}^{n} f(\frac{k-\frac{1}{2}}{n}) - nI = n \{R_{n}(f; \frac{1}{2}) - I\}.$$

Combining these two relations, we obtain (1). To prove the corollary, we observe that if f(0) = f(1), then h(0) = h(1). Extend v periodically to the real line and let

$$\tilde{v}_n(t) = v_n(t + \frac{a - \frac{1}{2}}{n}) .$$

Note that $\tilde{v}_n(0) = \tilde{v}_n(1)$. Hence, using \tilde{v}_n in place of v_n in the above proof, we obtain (2).

State University of New York at Buffalo