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On the Moduli Space
of a Spherical Polygonal Linkage

Michael Kapovich and John J. Millson

Abstract. We give a “wall-crossing” formula for computing the topology of the moduli space of a closed n-gon
linkage on S2. We do this by determining the Morse theory of the function ρn on the moduli space of n-gon
linkages which is given by the length of the last side—the length of the last side is allowed to vary, the first
(n− 1) side-lengths are fixed. We obtain a Morse function on the (n− 2)-torus with level sets moduli spaces
of n-gon linkages. The critical points of ρn are the linkages which are contained in a great circle. We give a
formula for the signature of the Hessian of ρn at such a linkage in terms of the number of back-tracks and
the winding number. We use our formula to determine the moduli spaces of all regular pentagonal spherical
linkages.

1 Introduction

Our goal in this paper is to give a “wall-crossing” formula for determining the topology of
the moduli space of a closed n-gon linkage on S2. We will give definitions in Section 2. The
definitions of the configuration space and the moduli space M(Λ,X) of a general linkage Λ
in a constant curvature space X are given in [KM3].

Let r = (r1, r2, . . . , rn) be an n-tuple of real numbers satisfying 0 < ri < π. Let
Nr ′ be the moduli space of the free (n − 1)-gon spherical linkage with side-lengths r ′ :=
(r1, . . . , rn−1), so Nr ′ is the quotient by SO(3) of the subspace Ñr ′ ⊂ (S2)n defined by

Ñr ′ = {u = (u1, . . . , un) ∈ (S2)n : d(ui , ui+1) = ri, 1 ≤ i ≤ n− 1}.

Here d is the spherical distance. The points u1, u2, . . . , un are called the vertices of the
linkage T ∈ Ñr ′ . Clearly Nr ′

∼= (S1)n−2. We will study the Morse theory of the function
ρn : Nr ′ → R given by

ρn(u) = d(u1, un).

We will restrict to u’s such that 0 < ρn(u) < π so that ρn is differentiable. Notice that

Mr := ρ−1
n (rn) ⊂ Nr ′

is the moduli space of closed polygonal linkages in S2 with the side-lengths (r1, . . . , rn).
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Definition We define the closed n-gon linkage P = P(T) associated to a free (n − 1)-gon
linkage T to be the linkage obtained by adding the length-minimizing geodesic segment1

(un, u1) = en ⊂ S2 joining un to u1.
Thus rn is the length of the new edge en. Hence, in terms of deformations of the closed

n-gon P in S2, we can obtain Nr ′ by fixing the lengths of the first n− 1 sides and letting the
length of the last side vary.

In order to state the Main Theorem we will need some definitions.

Definition A linkage in S2 is degenerate if it lies in a great circle γ of S2.
Suppose now that P is a degenerate closed n-gon linkage contained in a great circle γ.

We orient γ and define εi ∈ {±1} to be 1 if the orientation of the i-th edge of P agrees with
that of γ and−1 otherwise. We say that the i-th edge of P is a forward-track if εi = 1 and a
back-track otherwise. We let f = f (P) be the number of forward-tracks and b = b(P) be
the number of back-tracks so f + b = n. Define the winding number w = w(P) by

n∑

i=1

εi ri = 2πw.

The numbers b, f and w depend on the orientation of γ. We will deal with this below.
We will see that the critical points of ρn on Nr ′ are the degenerate linkages. If T is a

degenerate free (n − 1)-gon linkage our goal is to give a formula for the signature of the
Hessian D2ρn|T in terms of b(P), f (P) and w(P) where P = P(T) is the associated closed
n-gon linkage (see above). Clearly we must give a rule for orienting the great circle γ ⊃ T.

Definition (orienting γ) Suppose u = (u1, u2, . . . , un) is a closed degenerate linkage con-
tained in a great circle γ. Orient γ so that the arc joining u1 to un is positively directed.
Thus an edge ei is a back-track if it has the same direction as en = (un, u1).

We will prove the following theorem (with b, f and w defined using the above orienta-
tion of γ).

Main Theorem Let T ∈ Nr ′ be a degenerate free (n− 1)-gon linkage and P be the associated
degenerate closed n-gon linkage. Then the signature of D2ρn|T is

(
b(P) + 2w(P)− 1, f (P)− 2w(P)− 1

)
.

Remark The analogue of the Main Theorem for polygonal linkages in the Euclidean plane
was proved in Lemma 11 of [KM1].

The Main Theorem reduces the description of the moduli spaces of spherical polygonal
linkages to the combinatorics of the chambers of the polyhedron Dn(S2) (see Section 2).
These computations are manageable for n = 4, 5, 6 but become formidable for n ≥ 7.
In [G] the moduli spaces of all spherical n-gons for n = 4, 5, 6 are determined. In this
paper we illustrate the wall-crossing formula by describing the moduli spaces of regular
spherical pentagons.

1In what follows (a, b) will always denote the shortest geodesic segment connecting non-antipodal points a, b
in S2.

https://doi.org/10.4153/CMB-1999-037-x Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1999-037-x


Spherical polygonal linkages 309

This paper depends on the result of [KM2] that ρn is a Morse function. This result is what
underlies the deformation arguments in Lemma 5.4 and Lemma 5.6. This paper completes
the computation of the signature of D2ρn in Theorem 8.10 of that paper. In the appendix
to this paper we patch up an error in [KM2] which allows us to apply the results of that
paper that we need here.

Acknowledgements We would especially like to thank Amy Galitzer for allowing us to
use the results of her thesis here and for many helpful conversations. We would also like
to thank Robert Bryant who suggested the wall-crossing approach to the moduli spaces of
polygonal linkages when we were working on [KM1].

2 Preliminaries

Definition 2.1 A closed spherical n-gon P = (e1, . . . , en) is an n-tuple of oriented geo-
desic arcs e j (in S2) of lengths between 0 and π (inclusive) such that the end-point of ei−1

is equal to the initial point of ei , 0 ≤ i ≤ n (the indices are taken modulo n).

Definition 2.2 Let Pn(S2) be the space of closed n-gons on S2 with geodesic edges.

We let ri be the length of ei in the spherical metric. The arcs e1, . . . , en will be called the
edges of P. We will use u = (u1, . . . , un) to denote the set of vertices of P, that is, the set of
initial points of the edges ei . We will soon restrict ourselves to n-gons P with the property
that 0 < ri < π, 1 ≤ i ≤ n. In this case P is determined by its vertices u1, . . . , un and we
may write P = u = (u1, . . . , un).

Definition 2.3 Let ρ : Pn(S2) → (R+)n defined by ρ(u) = r = (r1, . . . , rn) be the side
length map. That is, the distances, d(ui , ui+1) in the spherical metric satisfy d(ui, ui+1) = ri

for 1 ≤ i ≤ n where we consider un+1 = u1.

Definition 2.4 Dn(S2) = ρ
(
Pn(S2)

)
is the space of possible side lengths. We let M̃r :=

ρ−1(r) be the configuration space of closed n-gon linkages in S2 with the side-lengths r.

It is immediate that M̃r is the set of real points of the affine variety over R (i.e., M̃r is a
real algebraic set) defined by

ui · ui+1 = cos ri, 1 ≤ i ≤ n,

where~x ·~y denotes the scalar product in R3. The group SO(3) acts on M̃r according to

g(u) = (gu1, . . . , gun), u ∈ M̃r, g ∈ SO(3).

Definition 2.5 The moduli space Mr of n-gon linkages on S2 with side lengths r =
(r1, . . . , rn) is defined to be the quotient space of M̃r by SO(3).

We now prove that Mr has the structure of a real algebraic set—here we assume 0 < ri <
π, 1 ≤ i ≤ n. Let ~ε1, ~ε2, ~ε3 denote the standard basis of R3.
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Lemma 2.6 Define Σr ⊂ M̃r by Σr = {u ∈ M̃r : u1 = ~ε1, un = cos rn~ε1 + sin rn~ε2}. Then
Σr is a cross-section to the orbits of SO(3) on M̃r.

Proof Obvious.
Since the quotient map M̃r → Mr induces a homeomorphism from Σr to Mr and Σr is

a real algebraic set, Mr is a real algebraic set by transport of structure. In what follows we
identify Mr and Σr . Notice that

Mr = ρ
−1
n (rn), ρn : Nr ′ → R, ρn(P) = rn, where r = (r1, . . . , rn).

We let Qn(S2) be the quotient space of Pn(S2) by SO(3) and let π : Qn(S2) → (R+)n be
the map induced by ρ. Hence for r ∈ (R+)n

Mr = π
−1(r).

Our strategy is to study how the fibers of π vary as r varies in Dn(S2).
We have

Lemma 2.7

(i) The Zariski tangent space Tu(M̃r) is given by

Tu(M̃r) = ker dρ|u.

(ii) The Zariski tangent space Tu(Mr) is given by

Tu(Mr) = ker dπ|u.

Corollary 2.8 The variety M̃r (resp. Mr) is smooth if and only if r is a regular value of ρ
(resp. π).

From [KM2], Theorem 1.1 we deduce

Theorem 2.9 Let P ∈ Pn(S2) (resp. Qn(S2)). Then P is a critical point of ρ (resp. π) if and
only if P is degenerate.

3 The Results of A. Galitzer

In [G], A. Galitzer has described Dn(S2). We will need some notation to describe her results.
If I ⊂ {1, 2, . . . , n} we let Ī denote the complement of I, |I| be the cardinality of I and
rI =

∑
i∈I ri . Define a polyhedron Kn ⊂ Rn by the system of inequalities

0 ≤ ri ≤ π, 1 ≤ i ≤ n, and

rI ≤ rĪ + (|I| − 1)π, I ⊂ {1, 2, . . . , n}, with |I| odd.

Then Galitzer proves
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Theorem 3.1 Kn = Dn(S2).

In addition she proves that the codimension 1 faces of Dn(S2) are given by the inter-
sections of the hyperplanes corresponding to the above inequalities with Kn, i.e., the above
representation of Kn is irredundant.

The space Qn is difficult to work with since the mapping π is not differentiable. To
remedy this we let P0

n denote the open subset of Pn corresponding to those n-gons such
that successive vertices ui , ui+1 (i ∈ Z/n) do not coincide and are not antipodal. We let Q0

n

denote the quotient of P0
n by SO(3). Then Q0

n is naturally a smooth manifold of dimension
2n − 3. Indeed, Q0

n is naturally diffeomorphic to the submanifold Σ ⊂ P0
n consisting of

those n-gons with the vertex set u = (u1, . . . , un) satisfying

u1 = ~ε1, un · ~ε3 = 0, un · ~ε2 > 0 and 0 < d(ui, ui+1) < π, 1 ≤ i ≤ n.

Recall ~ε1, ~ε2, ~ε3 is the standard basis of R3.
Note that Σr = Mr ∩ S (see Lemma 2.6) and that K0

n ⊂ π(Q0
n), where K0

n is the interior
of Kn. We will henceforth replace π by its restriction to Q0

n.
We shall see shortly (Theorem 3.3) that the set of critical values of π inside K0

n is the
union of certain hyperplane sections of K0

n . We call these hyperplane sections walls of
Kn. Connected components in K0

n of the complement of the union of the walls are called
chambers. In [G], Galitzer determines the walls of Kn. We again summarize her results.

Let I ⊂ {1, . . . , n} be any non-empty subset. For each nonnegative integer w let HI,w

denote the hyperplane in Rn defined by the equation

rI − rĪ = 2πw.

The intersection of such a hyperplane with K0
n is called a wall.

We then have the following lemma of Galitzer

Lemma 3.2 HI,w ∩ K0
n 6= ∅⇔ |I| ≥ 2w + 2.

Proof Suppose r∗ ∈ HI,w ∩ K0
n . Since r∗ ∈ HI,w we have

r∗I − r∗Ī = 2πw.

Assume first that |I| is odd. Since r∗ ∈ K0
n we also have

r∗I − r∗Ī < (|I| − 1)π.

Hence 2πw < (|I| − 1)π and
|I| > 2w + 1.

Now assume that |I| is even. We have the trivial inequality

r∗I − r∗Ī < |I|π.

Since r∗I − r∗Ī = 2πw we obtain 2πw < |I|π and |I| > 2w. Hence |I| ≥ 2w + 1, but |I| is
even, so we obtain |I| ≥ 2w + 2.
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To prove the converse we first note that there exists a cross-section sI,w : HI,w∩(0, π)n →
Q0

n to the restriction of π to π−1(HI,w) defined inductively as follows. Let r∗ ∈ HI,w∩(0, π)n.
The vertices u1 and un are determined by the condition that the image of sI,w belongs toΣr∗

(see Lemma 2.6). Place the vertex un−1 on the equator so that en−1 is a forward track (and
d(un−1, un) = r∗n−1) if n − 1 ∈ I and on the other side of un if n − 1 ∈ Ī. Continue
inductively. The resulting degenerate linkage closes up because r∗I − r∗Ī = 2πw.

We claim that HI,w ∩ (0, π)n 6= ∅ if and only if |I| ≥ 2w + 1. Necessity is easy, if r∗ is in
the intersection then

r∗I − r∗Ī = 2πw⇒ 2πw < r∗I < π|I|.

We prove sufficiency by constructing r∗ in the intersection so that r∗i = ρ, i ∈ I and r∗i =
δ, i ∈ Ī. Hence ρ and δ must satisfy |I|ρ − |Ī|δ = 2πw. Suppose first that δ = 0. Then
ρ := 2πw/|I| < π. Now choose ε > 0 such that ε/|I| < π − ρ and ε/|Ī| < π. Change ρ to
ρ + ε/|I| and δ to ε/|Ī|. Then r∗ is in the intersection and the claim follows.

We now observe that the existence of the cross-section sI,w constructed above implies

HI,w ∩ (0, π)n = HI,w ∩ Kn.

Put∆ := HI,w ∩ (0, π)n. Then∆ is the interior of a polyhedron of dimension n− 1. Hence
∆ cannot be contained in the (n− 2)-skeleton of Kn. Thus∆ is either a face of dimension
n − 1 of Kn or else HI,w ∩ K0

n is nonempty. But if HI,w ∩ Kn is a face of dimension n− 1 it
must be the face given by

rI − rĪ = (|I| − 1)π.

Consequently 2w = |I| − 1 and |I| = 2w + 1. Thus |I| ≥ 2w + 2 implies that HI,w ∩ K0
n is

nonempty.
The set of critical values of π is then determined by

Theorem 3.3 Let r ∈ K0
n . Then r is a critical value of π if and only if r ∈ HI,w for some

I,w ≥ 0 with |I| ≥ 2w + 2.

Proof Clearly there exists a degenerate u ∈ π−1(r) if and only if r satisfies an equation of
the form rI − rĪ = 2πw. Now apply Theorem 2.9.

Remark 3.4 Since π is proper it is a fibration over each chamber and the topology of the
fibers does not change within a chamber.

4 Recuttings and Flips of Spherical n-Gons

In this section we construct two groups acting on the space of spherical n-gons.
We first construct the group R of recuttings. Let D ′n(S2) = {r ∈ Dn(S2): all components

of r are distinct}. Let P ′n(S2) = ρ−1
(
D ′n(S2)

)
∩P0

n(S2). The permutation group Sn operates
naturally on D ′n(S2). We will construct a group R acting on P ′n(S2) and an epimorphism
φ : R→ Sn so that the projection ρ is φ-equivariant:

ρ(gP) = φ(g)ρ(P) P ∈ P ′n, g ∈ R.
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We will call elements g ∈ R recuttings. Adler [A] defined recuttings for the Euclidean
plane. Here we define the recuttings for the spherical case.

We define the basic recuttings Ri : P ′n(S2) → P ′n(S2), 1 ≤ i ≤ n as follows. Let u ∈
P ′n(S2) with u = (u1, u2, . . . , un). Take any geodesic arc connecting the points ui−1 and
ui+1, and look at its perpendicular bisector. The bisector is unique because ri−1 6= ri .
Reflect the point ui through this perpendicular line to exchange ri−1 and ri . Leave all other
vertices fixed. This is what we will call the basic recutting Ri at the i-th vertex.

The equation for the basic recutting at the i-th vertex is as follows. Set Ri(u) = (w1,w2,
. . . ,wn). Then we have

wi = ui − 2
ui · (ui+1 − ui−1)

‖ui+1 − ui−1‖2
(ui+1 − ui−1)

and
w j = u j , j 6= i.

Then the basic recuttings are well defined on the space P ′n(S2). We let R be the group
generated by the basic recuttings. Since the generators act on P ′n(S2), so does R. Notice
that the action of R preserves the subset of degenerate polygons and their winding numbers
and the orientation of their edges.

We next define the basic flips Fi , 1 ≤ i ≤ n. We define Fi : P0
n(S2)→ P0

n(S2), 1 ≤ i ≤ n,
by

Fi(u1, . . . , un) = (u1, . . . ,−ui , . . . , un).

We note that Fi induces the map F̄i : Dn(S2)→ Dn(S2) given by

F̄i(r1, . . . , rn) = (r1, . . . , π − ri−1, π − ri, . . . , rn).

Note that flips Fi preserve the set of degenerate n-gons but change b and w by±1.

5 The Morse Theory of ρn

In this section we will prove the Main Theorem. We begin by discussing what we proved
along these lines in [KM2]. Suppose r∗ ∈ K0

n lies on the intersection of the walls

HI1,w1 ,HH2,w2 , . . . ,HIp ,wp .

Choose a degenerate linkage u∗ with π(u∗) = r∗. Let γ be the great circle containing u∗.

Definition 5.1 The vertical line segment L through r∗ will be the line segment defined by

ri = r∗i , 1 ≤ i ≤ n− 1 and r∗n − δ ≤ rn ≤ r∗n + δ.

We assume that δ is chosen so that L does not intersect any wall except at r∗. Let XL =
π−1(L).

Lemma 5.2 XL is a smooth submanifold of Qn diffeomorphic to the (n− 2)-torus. Moreover
XL
∼= Nr ′ , where r ′ := (r∗1 , . . . , r

∗
n−1) (see Section 1).
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Proof We first observe that ρ−1(L) is diffeomorphic to S2 × (S1)n−1. Indeed a point in
ρ−1(L) is a closed n-gon where the lengths of the first (n − 1)-sides are prescribed to be
r∗1 , r

∗
2 , . . . , r

∗
n−1 but the length of the n-th side is not determined. The operation of for-

getting the n-th side gives an isomorphism to the moduli space of the free linkage with
(n−1)-edges. The S2 factor comes from the position of the first vertex u1, the circle factors
come from the angles between successive edges. The quotient π−1(L) = ρ−1(L)/ SO(3)
can be obtained by fixing the position of the first edge. Clearly XL

∼= Nr ′ .
In [KM2], Theorem 8.10, we proved

Theorem 5.3 ρn|XL is a Morse function with a finite collection of critical points u∗(1) ∪ · · · ∪
u∗(p), all located on the critical fiber Mr∗ . Each critical point u∗(i) corresponds to a degener-
ate n-gon linkage in Mr∗ with fi forward-tracks, bi back-tracks and the winding number wi

contained in a great circle γi . Then the signature of the Hessian of ρn|XL at u∗(i) is either
( fi − 2wi − 1, bi + 2wi − 1) or (bi + 2wi − 1, fi − 2wi − 1) depending on the orientations of
γi , 1 ≤ i ≤ p.

We now concentrate on a single critical point u∗ = T∗ of ρn contained in a great circle
γ with the associated closed polygon P∗ which has f forward-tracks and winding number
w. We orient γ as described in Section 2 (i.e., in the direction of rotation from u1 to un).
Let L∗ be a vertical segment through ρ(u∗).

We begin the proof of the Main Theorem with

Lemma 5.4 There exists a vertical line segment L# ⊂ Dn(S2) and a degenerate free (n− 1)-
gon linkage T# with π(T#) = r# ∈ L# such that

(i) The forward-tracks of the associated closed linkage P(T#) are the first f edges of T#.
(ii) w(T#) = w(T∗), f

(
P(T#)

)
= f .

(iii) signature D2(ρn|XL# )|T# = signature D2(ρn|XL∗)|T∗ .
(iv) r# belongs to exactly one wall in Dn(S2) and does not belong to any minor wall.

Proof The hyperplanes ri = r j intersect the hyperplane rI− rĪ = 2πw transversally. Hence
HI,w ∩ D ′n(S2) is the complement of a union of hyperplane sections of HI,w and hence is
dense. Thus there exists r̄ ∈ HI,w close to r∗ such that components of r̄ are distinct. We let
L̄ be the vertical segment passing through r̄, XL̄ = π

−1(L̄) and ū = sI,w(r̄) (see Lemma 3.3).
We claim

signature D2(ρn|XL̄)|ū = signature D2(ρn|XL∗)|u∗.

To see this let B be the line segment in HI,w joining r̄ to r∗. For b ∈ B, let Lb be the vertical
segment through b and ub = sI,w(b) . We obtain the curve D2(ρn|XLb )|ub which joins the two
Hessians above. By Theorem 5.3 these quadratic forms are nondegenerate and the claim
follows. The same argument proves that we can choose r̄ which belongs to exactly one wall.

We now choose a permutation σ of the set {1, 2, . . . , n} which fixes n and sends I :=
{i1, . . . , i f } to {1, 2, . . . , f }. Choose a recutting R in the subgroup of R generated by
{R2, . . . ,Rn−2} such that φ(R) = σ. Put r# = σ(r̄) and u# = R(ū). The line segment
L̄ through r̄ is carried by σ to the line segment L# through r#. Hence the corresponding
manifold XL̄ is carried to XL# by R. We claim

signature D2(ρn|XL# )|u# = signature D2(ρn|XL ′)|ū.
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Indeed since ρn|XL# = ρn ◦ R|XL̄
we find that

dRū : Tū(XL̄) −→ Tu# (XL# )

is an isometry of the quadratic form on the right-hand side to that on the left-hand side.
We can now reduce to the case w = 0.

Lemma 5.5 There exists a flip F such that T̃ = F(T#) satisfies

(i) b(T̃) = b(T#) + 2w(T#)
(ii) w(T̃) = 0
(iii) signature D2(ρn|XL̃)|T̃ = signature D2(ρn|XL# )|T# .

Here L̃ = F̄(L#).

Proof We consider the case w > 0 (the case when w < 0 is treated similarly, just instead of
flipping forward-tracks we flip back-tracks). We let F be the product of flips given by

F = F2 ◦ F4 ◦ · · · ◦ F2w.

We note that since f ≥ 2w + 2 > 2w all the edges that are flipped are forward-tracks (and
they become back-tracks after flipping). Thus (i) and (ii) are clear. The statement (iii) is
proved in the same fashion as (iii) in the previous lemma.

We let K be the set of forward tracks of T̃ (or the associated closed n-gon linkage P̃).
Hence r̃ = π(P̃) is on the wall HK,0.

We next deform r̃ along the wall HK,0 to r̂ such that r̂1 + r̂2 + · · · + r̂n < 2π. The
corresponding degenerate closed n-gon linkage sK,0(r̂) = û will have perimeter less than
2π. To accomplish this let A ⊂ Dn(S2) ∩HK,0 be the line segment

A = {λr̃ : ε < λ < 1 + ε}.

Choose λ0 such that
∑n

i=1 λ0r̃i < 2π. Let r̂ = λ0r̃ and L̂ be the vertical segment through r̂.
Put û = sK,0(r̂).

Lemma 5.6 The signature of D2(ρn|XL̂)|û is equal to the signature of D2(ρn|XL̃)|ũ.

Proof For a ∈ A define La and ua as in the proof of Lemma 5.4. We obtain the curve
D2(ρn|XLa )|ua and the proof goes as in Lemma 5.4.

Let f̂ (resp. b̂) be the number of forward-tracks (resp. back-tracks) of û. By Lemma 5.5,
f̂ = f (P)− 2w(P) and b̂ = b(P) + 2w(P).

We complete the proof of the Main Theorem by

Proposition 5.7 The signature of D2(ρn|XL̂)|û is (b̂− 1, f̂ − 1).
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The proposition will be a consequence of the next three lemmas. In what follows let
P̂ = û = (û1, û2, . . . , ûn) be a degenerate closed n-gon linkage of perimeter less that 2π.
We assume that π(P̂) belongs to exactly one wall. Then any vertex ui is connected to u1 by
a unique geodesic segment (u1, ui) which does not degenerate to a point.

Following [KK] we introduce local coordinates ψ2, ψ3, . . . , ψn−1 on XL̂ by defining ψi

to be the signed angle at ui between the oriented segment (u1, ui) and the oriented edge ei .
For instance if ui = ~ε2, ui+1 = −~ε1 then ψi = 0. If ui+1 = (~ε1 + ~ε2)/

√
2 then ψi = π. We

then have

Lemma 5.8 ψ2, ψ3, . . . , ψn−1 are local coordinates near û.

Proof See [KK, Section 3].

Remark 5.9 In [KK] the authors study free linkages in S3. Our coordinates are obtained
from theirs by dropping their vector field Y . Thus we use an orthonormal frame (X,Z)
where Z is the radial field.

We now have the clever observation of [KK], the reason for choosing the above coordi-
nates.

Lemma 5.10
∂2ρn

∂ψi∂ψ j

∣∣∣
û
= 0, i 6= j

Proof Assume i < j. Then by [KK, p. 84] we find that the restriction

∂ρn

∂ψ j

∣∣∣
ψk=ψ̂k, k6=i

of the partial derivative to the curve

Γk := {ψk = ψ̂k, k 6= i}

is identically zero as a function of ψi , this implies the lemma. Below we sketch a proof
of vanishing of this derivative. We give the picture (Figure 1) in the Euclidean case with
ψ j = 0. We draw only the vertices u1, ui , u j and un.

Pick a point u on the curve Γk. Then the points u1, u j , un belong to a common geodesic
circle in S2. As ψ j varies the line segment (u j , un) rotates around u j . Clearly the vertex un

moves along a (small) circle tangent at ψ j = 0 to the bigger circle which is the level set of ρn

for the fixed values of ψi and ψk = ψ̂k, k 6= i. Hence ∂ρn

∂ψ j
|Γk is identically zero as a function

of ψi .

Lemma 5.11

(i) If êi is a back-track then ∂2ρn

∂ψ2
i
|û > 0.

(ii) If êi is a forward-track then ∂2ρn

∂ψ2
i
|û < 0.
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u1

rn

ui

u j

Ψi

un

Figure 1: Vanishing of the derivative.

Proof We prove (i) and leave (ii) to the reader. We let ψi be a value close to ψ̂i = π and
consider the curve ψ j = ψ̂ j , j 6= i. We obtain the picture described on Figure 2 (again we
have drawn the Euclidean case).
Here we have omitted all vertices except u1, ui , ui+1, un−1 and un and assumed (in the Fig-
ure 2) that ψ̂i+1 = 0 and ψ̂n−1 = π.

We set d(u1, ui) = a, d(ui+1, un) = b. From the spherical “law of cosines” (see [B,
Proposition 18.6.8]) we have

cos(rn + b) = cos a cos ri + sin a sin ri cos(π − ψi).

Differentiating implicitly we obtain

∂2ρn

∂ψ2
i

∣∣∣
û
=

sin a sin r̂i

sin(r̂n + b)
.

Since the perimeter of û is less than 2π we have a < π, r̂n + b < π and (i) follows.
With this, Proposition 5.7 and the Main Theorem are proved.

6 The Wall-Crossing Formula and Regular Spherical Pentagons

In this section we explain how the Main Theorem can be used to describe how the moduli
spaces Mr change as we cross a wall. As an illustration of our technique we describe the
moduli spaces of regular spherical pentagons.
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u1

rn

ui+1

un

ui

Ψi

un−1

Figure 2: The sign of the second derivative.

We first claim that any wall-crossing can be effected by a vertical segment. Indeed as we
have seen the walls are given by rI − rĪ = 2wπ with |I| ≥ 2w + 2. Let nI be a normal vector
to the above wall. Recall that the vector νn = (0, 0, . . . , 0, 1) is parallel to a vertical segment
through this wall. Since νn ·nI 6= 0 any vertical segment is transverse to a wall and the claim
follows.

From the Main Theorem we obtain

Theorem 6.1 (The wall-crossing formula) Suppose we cross the wall HI,w at rn = r∗n along
a vertical segment L with r∗n − δ ≤ rn ≤ r∗n + δ. Then

(i) Mr∗+δ is obtained from Mr∗−δ by attaching an ( f − 2w − 1)-handle.
(ii) Mr∗−δ is obtained from Mr∗+δ by attaching some (b + 2w− 1)-handle.

We now apply our formula to describe the moduli spaces of regular spherical pentagons
Mr with r = (a, a, a, a, a). The description of the moduli space Mr for 2π

5 < a < 2π
3 was

first done in [G] by a different method. Assume first that 0 < a < 2π
5 . Since the perimeter

of P is less than 2π the moduli space Mr = Mr(S2) is diffeomorphic to the corresponding
Euclidean moduli space Mr = Mr(R2) by [S]. Hence by [KM1, Theorem 2], Mr is the genus
four surface, 0 < a < 2π

5 .
Now as a goes from 2π

5 − δ to 2π
5 + δ we pass through the wall r1 + r2 + r3 + r4 + r5 = 2π.

We now describe what happens as we cross this wall using Theorem 6.1. Set r1 = r2 = r3 =
r4 =

2π
5 and let r5 go from 2π

5 − δ to 2π
5 + δ. The critical point T ∈ Nr corresponding to the

critical value r5 =
2π
5 is represented by the degenerate free 4-gon linkage with P = P(T)

obtained by dividing the equator γ into 5 equal parts proceeding anticlockwise around the
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equator and taking the first four segments. Our orientation rule requires us to orient the
equator so that the positive direction is clockwise hence

b(P) = 5, f (P) = 0, w(P) = −1.

According to the main theorem the signature of D2ρ5|L is (2, 1). Since ρ5 increases as we
cross the wall we obtain Theorem 6.1 of [G]:

Mr is the genus five surface, if
2π

5
< a <

2π

3
.

The point r = ( 2π
3 ,

2π
3 ,

2π
3 ,

2π
3 ,

2π
3 ) lies on the intersection of five walls of the form

ri + r j + rk + rl − rm = 2π.

There are two cases to consider, m = 5 and m 6= 5. We will analyse the first case and leave
the second to the reader.

We will identify the equator of S2 with the unit circle on the complex plane. Let T be
the degenerate free 4-gon linkage with vertices (1, ω, ω2, 1, ω) where ω = exp(2πi/3). By
our orientation convention the unit circle has the usual (i.e., counterclockwise) orientation
and

b(P) = 1, f (P) = 4, w(P) = 1.

Hence D2ρ5|T has signature (2, 1). The equation of the wall we are considering is r1 + r2 +
r3 + r4 − r5 = 2π. Let α(r1, r2, r3, r4, r5) = r1 + r2 + r3 + r4 − r5. As a increases from 2π

3 − δ
to 2π

3 + δ we pass from the half-space α < 2π to α > 2π. Now to apply the Theorem we
set r1 = r2 = r3 = r4 =

2π
3 . To cross from α < 2π to α > 2π we see that r5 must decrease

from 2π
3 + δ to 2π

3 − δ. Thus we attach the “positive” or “ascending” disk of ρ5 (i.e., the unit
disk in a maximal subspace of the tangent space at T on which the quadratic form D2ρ5|T is
positive-definite) as we pass through the critical point r5 =

2π
3 . Hence we attach a 2-handle.

We attach 2-handles at the other 4 critical points of ρ5 corresponding to the critical value
r5 =

2π
3 and we obtain

Mr ≈ S2, if
2π

3
< a <

4π

5
.

We cross no more walls of D5(S2) until we reach the face given by r1 +r2 +r3 +r4 +r5 = 4π
when a = 4π

5 . The critical value r5 =
4π
5 corresponds to the single critical point u =

(1, ζ2, ζ4, ζ6, ζ8) where ζ = exp(2πi/5). We have u5 = exp(−4πi/5). Hence γ is oriented
n the clockwise direction. We obtain

b(P) = 5, f (P) = 0, w(P) = −2

and accordingly the signature of D2ρ5|T is (0, 3). Hence P is locally rigid.
We can in fact determine the moduli space Mr as follows. Apply the flips F1 and F3 to

change r to r∗ with r∗1 = r∗2 = r∗3 = r∗4 =
π
5 , r∗5 =

4π
5 . This is a standard “Euclidean” rigid

linkage and Mr∗ = a point, as was to be expected since r is on a face.
Of course for a > 4π

5 , Mr is empty since we are outside D5(S2).
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7 Appendix

The statement in Section 6 of [KM2] that A•(2)(M, adP) is a differential graded Lie al-
gebra is false since the L2-condition is not closed under bracket. Hence our proof that
B•(M,U ; adP) is formal as a differential graded Lie algebra is not correct. However we can
salvage all the results of [KM2] except the result that B•(M,U ; adP) is formal by the fol-
lowing “quick fix”. First we apply the results of Section 5 of our paper [KM3] to deduce
that the germ (Mr, [P0]) is given by a single quadratic equation corresponding to the cup
product: q : H1

(
B•(M,U ; adP)

)
→ H2

(
B•(M,U ; adP)

)
= R.

Now we claim that the results of Section 7 of [KM2] do in fact compute q above. To see
this we note first that the inclusion B•(M,U , adP)→ A•(2)(M, adP) is a quasi-isomorphism
of complexes. The bracket of two elements of A1

(2)(M, adP) is integrable (but not necessarily
square integrable) whence the integration pairing (using the trace on adP) is well-defined
on A1

(2)(M, adP). By [Ga] it descends to cohomology and consequently agrees with q.

Remark 7.1 Formality of B•(M,U ; adP) follows from the recent result of P. Foth [F].
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