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Abstract Analytical complements have been brought to Moons' lunar libration theory concerning 
tidal effects, direct perturbations due to the Earth's figure, and indirect non periodic perturbations. 
Comparisons to JPL numerical integrations DE245 and DE403 have been performed and the residuals 
treated by frequency analysis, allowing the determination of fitted free libration parameters and 
numerical complements. 

1. Introduction 

Elementary descriptions of lunar librations are given in (Danjon, 1959) or in 
(Hilton, 1992). Since 1975, several precise solutions have been developped in 
connection with the appearance of Lunar Laser Ranging observations. Moons' 
analytical theory (Moons, 1981, 1982, and 1984) includes series for the forced 
libration and series, denoted as "free libration series", which contain pure free 
libration terms and mixed terms depending on free libration and forced libration. 
Forced libration series involve: 

Main problem, in which the Earth is reduced to its mass center, the selenocen-
tric position of the Earth is provided by the main problem of the lunar orbital 
motion, and the position of the Sun with respect to the Earth-Moon barycenter 
is approximated by a pseudo-keplerian motion in the mean ecliptic of date; 

Indirect planetary perturbations, derived from the periodic part of the planetary 
perturbations of the lunar orbital motion; 

Indirect perturbations due to the Earth's figure, derived from the perturbations 
of the lunar orbital motion by the Earth's figure ; 

Direct and indirect perturbations due to the ecliptic motion. 

The coefficients of main problem series are literal with respect to increments to 
nominal values of the parameters f3 = (C - A)/B and 7 = (B - A)/C, and literal 
with respect to the ratio of third and fourth degree harmonic coefficients Cij and 
Sij (i = 3,4, 0 < j < i) to Cjmi,R\. A, B, C are the lunar principal moments 
of intertia, mi, and RL the lunar mass and equatorial radius. The coefficients of 
the indirect planetary perturbation series are literal in a similar way as the main 
problem, while the coefficients of the other perturbation series are numerical. 
The arguments are combinations of Delaunay arguments D, F, I, I', and, for 
perturbations, of planetary longitudes and (, the lunar mean mean longitude referred 
to the mean equinox of date. 
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The coefficients of free libration series are literal with respect to three free 
libration parameters y/2P, \/ZQ, V2R and are otherly similar to the main problem 
series, except that fourth degree harmonics are not taken into account. The argu­
ments are combinations of Delaunay arguments and of three arguments p, q, r of 
the free libration. 

The series yield p\, pz, and r. pi and p2 are the components of the unit vector 
pointing toward the pole of the mean ecliptic of date, in the inertial sense as defined 
by Standish (1981), on the two lunar equatorial principal axes of inertia ; r is the 
libration in longitude referred to the inertial mean ecliptic of date. 

Moons' theory takes into account a rigid body. The perturbations due to the 
deformation of the Moon by the Earth, the Sun and lunar rotation (tidal perturba­
tions) are missing, except those derived from constant perturbations of /3, 7 and 
Cjmi,R\ which may be included. The direct perturbations due to the Earth's figure 
and to the planets are also missing. At last, the indirect perturbations derived from 
the part of the perturbations of the lunar orbital motion which contains the time as 
a factor (Poisson terms), or purely secular terms, have not been computed. 

In Sect. 2 we give analytical expressions of some of those missing perturbations 
for the forced libration only: 

Tidal perturbations in the case of an elastic model and in two examples of an 
anelastic model; 

Direct perturbations due to the Earth's figure ; 

A rough estimate of two Poisson terms among the indirect planetary pertur­
bations of r. They come from Poisson terms of the lunar orbital motion due 
to Venus action and to secular variation of the solar eccentricity. 

Sect. 3 gives a comparison of the so-completed Moons' theory to the numer­
ical integrations DE245 and DE403 of the Jet Propulsion Laboratory (JPL). The 
residuals are analyzed by means of a frequency analysis which puts into evidence 
the "free libration terms" and allows to derive fitted values of the free libration 
parameters. 

The frequency analysis also allows to complete the analytical solution by a 
small number of trigonometric terms whose coefficients, frequencies, and phases 
are purely numerical. Sect. 4 shows the resulting improvements on residuals of 
Lunar laser ranging observations. 

2. Analytical Complements to Moons' Theory 
2.1. METHOD 

The method is similar to Eckhardt's (1981). The column matrix X, whose elements 
are pi, p%, r, is given by the differential equation: 

TX = {T- R)X + Y + Y' + ¥ . (1) 

https://doi.org/10.1017/S0252921100072675 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100072675


COMPLEMENTS TO MOONS' LUNAR LIBRATION THEORY 319 

R is a differential operator function of the components w,- of w, referred to the 
lunar principal axes of inertia ; u is the angular rotational velocity vector of the 
Moon with respect to the usual reference frame of the lunar motion (mean ecliptic 
of date and departure point). Y results from the lunar potential and is expressed 
as a function of the selenocentric coordinates of the Earth yi referred to the lunar 
principal axes of inertia. T is a linear differential operator such that (T - R)X + Y 
does not contain any linear term with constant coefficient in p \ , p2, T and their 
derivatives at first order of the small parameters involved. The expressions ofTX, 
RX, and Y used in this paper can be found in (Chapront-Touz6,1990) except that 
e is denoted as 7 in the present paper and uzal must be replaced by Gmx, G being 
the constant of gravitation and my the terrestrial mass. Y' is obtained from Y by 
changing the selenographic coordinates of the Earth y,- to those of the Sun y\ and 
rax to the solar mass ms. ¥ is a vectorial disturbing function. 

The leading effect of *F is to add to the solution XM of the main problem of the 
forced libration the correction AX given by: 

TAX 
_d_ 

dX 
{T - R)X AX + Y + dX' AX + _0_ 

dX 
Y' AX. (2) 

*F and the jacobian matrices [d /dX •••] are computed for XM by disregarding 
the contribution of the free libration. Similarly, the contribution of *F to the free 
libration has been disregarded. Eq. (2) is solved by two iterations, AX being set to 
zero in the right hand member at the first iteration. 

2.2. DIRECT PERTURBATIONS DUE TO TIDAL EFFECTS 

The actions of the Earth, the Sun and lunar rotation induce distortions of the 
lunar surface which, in turn, induce an additional lunar potential (Lambeck, 1980). 
This additional potential is equivalent to time dependent corrections AC4j, ASij 
to the constant harmonic coefficients CtJ, 5,-j of the potential of the rigid Moon. 
Restricting ourselves to harmonics of degree 2 and disregarding the Sun effect, we 
have: 

AC20 

AC21 

AS21 

AC22 

AS22 

*2^4 
mi, r*D 

2/3 - 2^1 
„.*2 

2-2/2 

, rar R\ . , 1 k2Rl 
h ^ 2/32/1 - x ~ 

mi, r*D ^ 

W1W3 
3 Gmi, 

, mr R\ * * 1 &2-Rr * * 
fc2—~ ~£ 2/22/3 - r T M 1 Wj"3 

mi r** 3 Gmi 

\ , ! k2RL (. ,*2 , . 2 9 *2\ 

k,2 mj R?L 

4 mi, r*5 (yf yf) + 
1 k2R\ 
12 GmL 

hrn^Rl _ 1_ k2R\ 
2 mL r*sVxVl 6 GmL 

(3) 

("22 - "f) 
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TABLE I 
Tidal perturbations of the lunar libration for three cases: no time delay, a constant time 

delay of 0.16485 day, a constant lag angle of 2° .1721. The value of the Love number is 
0.02992. The coefficients of cosine and sine terms are given in arcsec. Values between 
parenthesis are derived from (Yoder, 1979) and given for comparison 

Argument 
Variable p\ 
F 

F-l 

0 

2D-F-l 

F -21 

Variable p2 
F 

F-l 

F-21 

0 

Variable r 
0 

IF-21 

I 

2D-21 

2D-I 

l' 

No time delay 
cos sin 

0 

0 

-0.0240 

0 

0 

0.0134 
(0.0129) 

0.0112 
(0.02S4) 

0 

0 
(0.0760) 

0 

0 

0 

0 

0 

0 

0 
( -0.0009) 

0.0587 
(0.0625) 

-0.0012 

0 

0 

0 

0 

-0.0103 
(0.0024) 

-0.0059 
(-0.0057) 

0.0004 

-0.0014 
(-0.0015) 

0 

Constant time delay 
cos sin 

0.2733 
(0.2710) 

-0.0153 
(0.0030) 

-0.0240 

-0.0003 

-0.0007 
(-0.0019) 

0.0184 
(0.0129) 

0.0112 
(0.0284) 

0 

-0.0006 
(0.0760) 

0.3971 
(0.3974) 

-0.0475 
(0.0045) 

-0.0011 

-0.0058 
(0.0057) 

-0.0004 

0.0003 

0.0049 
(-0.0009) 

0.0587 
(0.0625) 

-0.0012 

-0.0001 

-0.2718 
(-0.2710) 

0.0196 
(0.0314) 

-0.0008 
(-0.0019) 

-0.0104 
(0.0024) 

-0.0059 
(-0.0057) 

0.0005 

-0.0014 
(-0.0015) 

0 

Constant lag angle 
cos sin 

0.2647 
(0.2710) 

-0.0170 
(0.0015) 

-0.0240 

-0.0004 

-0.0003 
(-0.0017) 

0.0179 
(0.0129) 

0.0111 
(0.0284) 

0 

-0.0005 
(0.0760) 

0.3846 
(0.3974) 

-0.0263 
(0.0192) 

-0.0011 

-0.0047 
(0.0067) 

-0.0004 

0.0092 
(0.0096) 

0.0045 
(-0.0009) 

0.0586 
(0.0625) 

-0.0012 

-0.0001 

-0.2632 
(-0.2710) 

0.0219 
(0.0351) 

-0.0003 
(-0.0017) 

-0.0099 
(0.0024) 

-0.0059 
(-0.0057) 

0.0004 

-0.0014 
(-0.0015) 

0.0001 

r is the Earth-Moon distance, k% is a Love number. The exponent * means that, 
in the computation of ACV, and A5,j at time t, the function must be evaluated at 
time t - t0 ; t0 is a time delay, equal to zero for an elastic model of the Moon, 
and constant for a viscous model. Similarly to (Yoder, 1979) a third model, with 
to inversely proportional to the absolute value of the frequency of each term in 
which it is involved, has also been considered. If the sign of the coefficient of each 
term is determined so that the frequency is always positive, this case corresponds 
to a constant lag angle. The terms due to solar action in Eq. (3) are obtained by 
changing mx to ms, yi to y[, and r to r' (Sun-Moon distance). 
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Corrections ACij induce a time dependent corrective tensor AI to the constant 
tensor of inertia of the rigid Moon / . Assuming that the trace of A/ is zero, elements 
of AJare: 

AJn = mLR\ (\AC20 - 2AC22) A/i2 = -2mLR2
LAS22 

A/22 = mLR2
L (\AC20 + 2AC22) A/23 = -mLR2

LAS2i 

A/33 = - f mLR2
LAC2o A/13 = -mLR2

LAC21. 

A/ induces in Eq. (1) the disturbing function \P whose components are given by: 

IiWi = ~ E;=i faiM + A/.j^] + Ej=i E k i £ijkX 

A/,-* (<4 - ^ y l - ^y£) + A/y (UkUi -
 3-^yiyk - 3-^y'iy'k) 

+AIJJ (ujuk - ^viin, - ^y'jy'k) 

witheijk — -Sjik = -eikj and em = l./n are respectively the principal moments 
of inertia A, B, C. 

Table I gives the perturbations obtained in the three cases mentioned above. 
These perturbations involve the complete direct tidal effects by the Earth and 
the Sun, but the constant contribution of the lunar rotation to AC20 and AC22, 
and consequently to A/,;, has been removed. This contribution is supposed to be 
included in the parameters of the rigid Moon. Table I gives also, for comparison, 
the corresponding quantities derived from Yoder's results (1979) by converting 
his complex variable p to p\ and P2. Coefficients of terms whose amplitudes are 
smaller than 0".001 in both solutions are not given. The greatest difference concerns 
a constant term of 0".0760 in Yoder's results for p2 which is much smaller in ours. 
In the opposite, we have a constant term in pi which does not exist in Yoder's 
results. 

2.3. DIRECT PERTURBATIONS DUE TO THE EARTH'S FIGURE 

In this section we have supposed that the Earth has a rotational symetry around its 
polar axis. Furthermore, in the conversion of terrestrial body fixed coordinates to 
lunar ones we have neglected the libration and the nutation since the corresponding 
quantities should be mutiplied by the Earth's J2. 

By expressing the elements of the Earth's tensor of inertia with respect to the 
lunar principal axes of inertia, and by subtituting the results in the expressions 
given by Schutz (1981), we obtain for the components of the disturbing function 
induced by the Earth's figure in Eq. (1): 

_ 3GmT0tiJ2Rr 
• — 5 

35yjykn2 5yjyk 5 
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TABLE II 
Direct perturbations due to the Earth's figure. The coefficients of cosine and sine terms 
are given in arcsec. Values between parenthesis are reproduced from (PeSek, 1982) and are 
given for comparison 

Argument cos sin 
pi ( 0 -0.0729 (-0.0725) 

F 0 0.0121 (0.0108) 
p2 C -0.0729 (-0.0726) 0 

F 0.0121 (0.0108) 0 
T t-F 0 -0.0099 (-0.0067) 

i,j,k verify £„•* = 1 and D stands for £ii/i + £22/2 + £3J/3- & are the components 
of the unit vector pointing towards the Earth's pole referred to the lunar principal 
axes of inertia (respectively here - sin ( sin e, - cos ( sin e, and cos s, e being the 
mean obliquity of date). a»- stand respectively for a, - /? , and 7. 

Table II gives the resulting perturbations on the forced libration, and, for compar­
ison, the results obtained by PeSek (1982). Coefficients of terms whose amplitudes 
are smaller than 0".001 in both solutions are not given. Our results are in good 
agreement with PeSek's ones for p\ and P2. The difference of 0".003 in r comes 
from our second iteration in the resolution of Eq. (2). 

2.4. NON PERIODIC INDIRECT PERTURBATIONS OF T 

By disregarding all terms of upper orders in Eq. (1), we obtain the following 
separate equation in r : 

f + 3 z / V = 3I / 2T(X - A) (4) 

where L is the lunar longitude, A the mean mean longitude, and v the sidereal mean 
motion. _ 

For the main problem A is a linear function of time t. Secular variations of the 
solar eccentricity and tidal perturbations introduce in L secular terms in t2, fts 
Eq. (4) shows that term Atn in L induces the same term Atn in r. It induces also 
terms at lower powers of t which may be disregarded because their coefficients 
are either zero or quantities much smaller than A for successive divisions by 3i/27 
(about 48 000 rad/cy). The existence of a tz term in r has been mentioned yet by 
Bois et al. (1996). Nevertheless, since r always appears through X + T, e.g. in the 
expression of matrix M transforming ecliptic coordinates «,• to lunar body fixed 
coordinates yi (Chapront-Touz6,1990), it is simpler to consider that secular terms 
Atn are involved in A, constituting the mean mean longitude W\ of the orbital 
motion, and that r contains only periodic and Poisson terms. 

Eq. (4) shows that Poisson term At sin <p in L induces in r the terms A't sin <p + 
B' cos (p with: 

, _ 3v2iA , _ -6v2iA(p 
3 l / 2 7 _ 9 i , 2 ' ( 3 l / 2 7 _ ^ 2 ) 2 
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Hence, the Poisson terms 

AX = 0".25425isin(18V -16T-1 + 114°.565 50) + l".67680*sin/' 

in the lunar longitude (Chapront-Touz6 and Chapront, 1983) induce in r Poisson 
terms which, following Eq. (4), are: 

AT = 0".2543f sin(18V - 16T - I + 114°.5655) - 0".2334*sin/' (5) 

t is the time in century reckoned from J2000.0, V and T are the mean mean 
longitudes of Venus and the Earth respectively, /' is the solar mean anomaly. 
Eq. (5), which is only an approximation, shows the interest of computing Poisson 
terms in the forced libration. 

3. Comparisons with JPL Numerical Integrations 

Several kinds of comparisons with JPL numerical integrations DE245 and DE403 
have been performed. Two time spans At have been chosen to cover the periods 
of comparison which are of 300 and 600 years in the case of DE245 and DE403 
respectively. We have used two different JPL integrations as reference models 
to insure the numerical consistency of our analysis and provide several sets of 
libration parameters depending on the model. The general scheme of our analysis 
is the following: Euler angles in JPL integrations are transformed into the libration 
variables p\, p% and r. The analytical solution (A) is computed using a set of 
parameters consistent with the JPL numerical integration (N). We compute the 
differences S = (N) - (A) and perform a frequency analysis of the "residuals" 6. 
Once we have determined the significant frequencies u>; of the spectrum, a least 
square fit of the residuals is done in order to obtain an approximate "solution" for 
6 on the time interval At: 

S = ^A,sin(o;tit + ^ ) 
i 

6 stands for any of the three residuals among the variables p\, p2 and r ; t is the 
time reckoned from J2000 ; A, and fa are the quantities provided by the least 
square fit. The quality of the frequency analysis strongly depends on the choice 
of the filtering. We have used a method proposed by (Laskar et al., 1993) which 
has been already successfully applied in the case of the construction of planetary 
ephemerides (Chapront, 1995). 

Table III gives the values of the lunar physical parameters substituted in Moons' 
series for the comparisons, except for the values of the harmonic coefficients of 
degree 4 which are those of (Ferrari et al., 1980). The values of 0, 7, C8J and Sij 
are the one used in the numerical integrations. The values of Cjmi,R\ are derived 
from the values of C22 used in the numerical integrations by means of the relation 
for a rigid body C/TULR^ = 4C22/7. /?> 7> Clmi,R\, and C22 are assumed to 
involve the constant tidal perturbation due to the lunar rotation. 
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TABLE III 
Physical parameters adopted for the comparison to DE245 and DE403 (from numerical 

integrations except for C/miE^L). Units of 10~4 

DE245 DE403 
£ = 6.31619133 £ = 6.31610707 
7 = 2.278 859 80 7 = 2.278 64190 
C3o =-0 .086802 C30 = -0.086474 
C31 = 0.307083 fti = 0.046115 C31 = 0.307083 S31 = 0.044875 
C32 = 0.048737 532 = 0.016975 C32 = 0.048727 532 = 0.016962 
C33 = 0.017161 533 = -0.002844 C33 = 0.017655 533 = -0.002744 
C/mLR\ = 3948.72400 C/mLR2

L = 3950.29692 

A first type of analysis has been done to test the improvements due to the ana­
lytical complements described in Sect. 2 (solution SOL2) with respect to Moons' 
original solution (SOLI). The tidal perturbations introduced in SOL2 correspond to 
a constant time delay. Missing arguments in SOLI were detected in the frequency 
analysis, and compared with those of Tables I and II. These comparisons show a 
good agreement between numerical A,-, fa and w,- and the analytical ones for all the 
arguments of Table I, in particular for the constant terms of pi and pz which differ 
from those of Yoder (1979). This agreement verifies the validity of our spectral 
analysis. The error is estimated to less than 0".005 on amplitudes A, and less than 
10~6 radian per day on frequencies w,. The agreement is not so good for the terms 
with argument C, in p\ and p%, and ( — Finr (Table II). The discrepancy amounts to 
0".08 for p\ and P2 and 0".03 for r, but it may be due to the indirect perturbations 
by the Earth's figure. 

A second type of analysis has been done to estimate the accuracy of the free 
libration series in Moons' solution, and also to determine the numerical values 
of the free libration parameters \flP, \/2Q and V2R. The general procedure is 
the following: we compute the residuals 6 with SOL2 but without free libration 
series. Three terms of importance appear in the spectrum whose related frequencies 
are close to the libration frequencies u>q, u>p and u)p+r in Moons' solution. The 
dominant terms ofthe residuals are A\p2] sin.(ojqt+fa)mp2,ajidB[T] sin(u>pt+4>p) 
in T. The argument F + r appears in pi (and P2) through C\p\) sm(uF+rt + 4>F+T ) 
with smaller amplitude. Moons' solution provides an analytical form for the free 
libration series which allows to compute the free libration parameters, \/2P, y/2Q 
and y/lR from the coefficients ofthe above arguments, respectively B[T], A\p2] 
and C\p\]. The phases <j>p, 4>q, 4>F+r give the values po, qo, r0 ofthe free libration 
fundamental arguments p, q, r in J2000.0. The "observed" frequencies up and u>q 

replace the computed ones. ur is poorly determined by frequency analysis through 
the combination F + r. The theoretical computed value is retained. 

The free libration parameters obtained repectively from the two integrations, 
as well as the main terms mentioned above, are gathered in Table IV. A com­
plete numerical evaluation of coefficients of Moons' free libration series is given 
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TABLE IV 
Determination of free libration parameters. The three fundamental libration arguments are: 
p = wpt +po ,q — wqt + qo, r = urt + ro. t is reckoned from J2000.0. The frequencies 
are in radian per day 

Wp 
w« 
U>F+r 

DE245 
B[T] = 1".8235 
A\p2] = 8".1557 
C[p{\ = 0".0208 
VtF = 0.2933 
,/2Q= 5.1924 
y/lR = 0.0208 

Computed 
0.0060467320 
0.0002281306 
0.2301836354 

<j>p = 224°.303 
0 , = 251°.651 
<£r = 217°.678 
po = 224°.303 
go = 161°.640 
ro = 124°.394 

"Observed" 
0.0059492451 
0.0002304932 
0.2301811833 

DE403 
B[T] = 1".8122 
A\p2) = 8". 1825 
C\p{\ = 0".0218 
V2P = 0.2915 
yJlJQ = 5.2095 
V2R = 0.0218 

Computed 
0.0060466648 
0.0002281236 
0.2301836363 

4>p = 224°.310 
4>q = 251°.777 
<j>T = 202°. 965 
po = 224°.310 
go=161°.766 
r0 = 109°.681 

"Observed" 
0.0059492451 
0.0002304970 
0.2301820813 

in (Chapront and Chapront-Touz6, 1997) with free libration parameters fitted to 
DE245. We mention only here that, after substitution of the values of y/2P, yf2JQ, 
V2R, 4>p, (f>g, 4>r, up, and u>q quoted in Table IV in Moons' free libration series, 
all the terms are in good agreement with the terms of same frequencies (within the 
estimated error) in the development of S provided by the frequency analysis. 

In the following comparisons, the free libration parameters of Table IV and 
lunar physical constants of Table III in agreement with (N) have been introduced 
in SOLI and SOL2, to render the residuals 6 independent of the model as much as 
possible. 

To illustrate the improvements due to our analytical complements, we show on 
Fig. 1-a a comparison of SOLI to DE245 for the variable r (Ai = 300 years): 
6 = (DE245) - (SOLI). On the contemporary period the main difference is a 
constant (0".4) due to tidal effects and oscillations whose maximum amplitudes are 
about 0".2. In the past the Poisson terms due to planetary perturbations dominate, 
and the total differences reach 1 ."6. On Fig 1-b, we show the differences evaluated 
with the improved analytical solution SOL2: 6 = (DE245) - (SOL2). It remains 
now oscillations whose total amplitudes are less than 0".15 on the whole time 
span. Fig. 2-a and 2-b illustrate the same comparisons for variable p\. The gain 
of precision between SOLI and SOL2 is not so good in the past because Poisson 
terms have not yet been introduced in SOL2 for p\ and p2. and the beating effect 
in Fig. 2-b shows clearly this lack. 

4. Numerical Complements to the Analytical Libration Series 

The solution SOL2 contains now free libration series and again we analyze the 
residuals 6. The spectrum of 8 is very clean. This means that, at the level of 
accuracy of 0."005, few terms are lacking in the analytical series and that the 
residuals can be represented by complementary series with a small number of 
sensible components. In Table V we have listed the complementary series as 
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u) TAU: Comparison with DE245 (3 centuries) 

(0 

0 10000 20000 30000 40000 50000 S0000 70000 80000 90000 100000 
day 

Fig. 1. Residuals on the variable r from 1750 to 2050. 1-a : (DE245) - (SOLI). 1-b : 
(DE245) - (SOL2). 1-c : (DE245) - (SOL3) 

Fig. 2. Residuals on the variable pi from 1750 to 2050. 2-a : (DE245) - (SOLI). 2-b : 
(DE245) - (SOL2). 2-c : (DE245) - (SOL3) 

they come from the frequency analysis on the residuals S = (DE245) - (SOL2). 
Fig. 1-c and 2-c illustrate the final results of solution SOL3 (SOL2 + numerical 
complements of Table V) compared with the source DE245. Residuals are below 
0".03 on the whole time span. The results of the comparison is the same when 
SOL3 is compared to DE403 over the same time span of three centuries, using 
constants of DE403 and the free libration series with values listed in Table IV for 
DE403. Note that numerical complements of Table V are valid only over the time 
span 1750 - 2050. Outside this time span, residuals slowly diverge because of 
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0 - C (CERGA) : Solution SOLI 
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Fig. 3.0-C for the distance Observer-Reflector (Feb. 1997 - March 1998). Reflectors are: 

Apollo 11 (x), Apollo 14 (Q), Apollo 15 (+), and Lunakhod 2 (A) 

missing secular and Poisson terms. 
As a final test, the solutions SOLI, SOL2 and SOL3 have been compared directly 

to lunar-laser observations themselves. In the three cases a large set of parameters, 
including reflector coordinates, has been fitted to the observations as described in 
(Chapront et al., 1998). We see on Fig. 3, over a time span of 400 days, the residuals 
O-C (Observation minus Computation) on the one-way range observer-reflector in 
centimeter, for CERGA observations. The most frequently observed reflector is 
Apollo 15, that is represented with a sign (+) on the graph; this reflector contributes 
mainly to the fit of parameters. We observe that the introduction of the analytical 
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TABLE V 
Numerical complements. Series of the differences 6 = (DE245) - (SOL2). Units: 10~4 

arcsec for A, degree for <j>, and rad/day for w 

Variable pi Variable P2 Variable r 
A 
73 
295 
935 
821 
183 
688 
164 
52 

<t> 
106.98 
7.48 

252.19 
75.97 
226.15 
268.26 
64.93 

252.04 

u 
0.22987004 
0.22990957 
0.22994149 
0.22996514 
0.23001653 
0.23089745 
0.23092684 
0.24813066 

A 
52 
54 
46 
150 
385 
760 
508 
252 
691 
123 
48 
49 

4> 
274.41 
331.96 
144.16 
313.56 
218.42 
66.54 
290.12 
172.79 
5.12 

198.97 
32.81 
226.21 

w 
0.00567265 
0.00580103 
0.22969520 
0.22986707 
0.22991443 
0.22994551 
0.23001560 
0.23004927 
0.23089738 
0.23094800 
0.24807360 
0.24809876 

A 
137 
46 
349 
61 
66 
48 
134 
89 
218 
637 
146 
51 

<t> 
155.61 
223.41 
70.79 

336.73 
262.58 
88.57 
73.84 
176.59 
271.48 
287.48 
241.37 
195.68 

LO 

0.00008575 
0.00089398 
0.00092222 
0.00094330 
0.00432017 
0.00436703 
0.00572887 
0.00585279 
0.00589170 
0.00596264 
0.00601362 
0.01720365 

complements of this paper in Moons' solution (SOL2 instead of SOLI) produces a 
significant decrease of the O-C. The introduction of SOL3 instead of SOL2 makes 
the dispersion of the O-C with the reflectors smaller. 

5. Conclusion 

This study shows the good quality of Moons' libration theory. Nevertheless it needs 
to be completed by few missing perturbations. Two kinds of complements are given 
in this paper. Some futher complements should be achieved in the case of direct 
planetary perturbations and Poisson term contributions. 
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