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The flow instabilities in shock-wave—boundary-layer interactions at Mach 6 are
comprehensively investigated through compression corner and incident shock cases.
The boundary of global stability and the characteristics of globally unstable modes are
determined by global stability analysis. In resolvent analysis, cases are categorized into
flat plate, no separation, small separation and large separation flows. The optimal response
shifts from the first mode in the flat plate case to streaks after the amplification in the
interaction region. The amplification of streaks and the first mode (oblique mode) are both
attributed to the Gortler instability. Meanwhile, the second mode exhibits minimal growth
and higher Mack’s modes appear within the separation bubble. Rounded corner case and
linear stability analysis are utilized to further validate the amplification mechanism of the
oblique mode.
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1. Introduction

Shock-wave—boundary-layer interactions (SWBLIs) are commonly encountered in
practical applications such as transonic wings, inlets of supersonic engines and compressor
blades in turbomachinery (Sabnis & Babinsky 2023). These interactions pose severe
challenges for high-speed vehicles, leading to issues such as aeroheating overload,
structural fatigue and engine inlet unstart. Moreover, SWBLIs significantly impact
flow instability, flow dynamics and transition processes. Consequently, SWBLIs are
of considerable value in both applications of engineering and fundamentals of fluid
mechanics (Dolling 2001; Datta 2015).
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Figure 1. Classification of the instabilities in SWBLIs.

Since first documented in experimental works in the 1940s (Liepmann 1946; Ackeret,
Feldmann & Rott 1947), SWBLIs have received sustained attention and research (Gadd,
Holder & Regan 1954; Reyhner & Fliigge-Lotz 1968; Adamson Jr & Messiter 1980;
Degrez, Boccadoro & Wendt 1987; Stanewsky 1988; Katzer 1989; Settles & Dodson
1991). Most of these studies have been limited to examining the effects of Mach number,
Reynolds number and shock intensity on steady aerodynamic quantities such as surface
pressure, skin friction and aerodynamic heating (Dolling 2001). Since the 1990s, the
importance of investigating the instabilities in laminar high-speed shear layers and
boundary layers was recognized (Fedorov & Khokhlov 1991; Sandham & Reynolds 1991;
Balakumar & Malik 1992; Kachanov 1994; Hanifi, Schmid & Henningson 1996), leading
to a major focus on SWBLI-induced instabilities and transition.

Flow instabilities influenced by SWBLIs can be categorized into modal and non-modal
types, as illustrated in figure 1. Modal instabilities correspond to discrete eigenmodes
of the linearized Navier—Stokes (LNS) operator, typically characterized by exponential
growth or decay in time or space. In contrast, non-modal instability arises from the non-
normality of the linearized operator, which enables transient amplification of disturbances
without unstable eigenvalues. Rather than growing exponentially, non-modal mechanisms
amplify disturbances algebraically, through transfer of energy from the two cross-streams
to the streamwise velocity component, a process known as the lift-up effect (Ellingsen &
Palm 1975; Landahl 1980). Both the modal and non-modal instabilities can trigger the
transition, typically through the breakdown of streaks, which is observed experimentally
(Sandham et al. 2014; Giepman, Schrijer & Van Oudheusden 2015; Willems, Giilhan &
Steelant 2015; Currao et al. 2020; Butler & Laurence 2022; Benitez et al. 2023, 2025;
Mahalingesh, Piponniau & Dupont 2023) and numerically (Novikov 2017; Currao et al.
2020; Fu et al. 2021; Lugrin et al. 2021; Dwivedi, Sidharth & Jovanovi¢ 2022; Cao et al.
2022).

Modal instabilities can be further divided into local (convective) instability and global
instability. Local instability, often referred to as convective instability, is characterized
by spatial amplification of perturbations that are convected downstream. Mack’s modes
(Mack 1984), such as the first and second modes, are representative examples of
convective instability. Linear stability theory (LST) (Malik 1989, 1997; Reed, Saric &
Arnal 1996) is an effective method for capturing Mack’s modes, especially when the flow
is weakly non-parallel. In the eigenvalue spectrum obtained from LST, three primary
branches are typically identified: the fast acoustic branch; the slow acoustic branch;
the entropy—vorticity branch (Fedorov 2011). The fast acoustic branch corresponds to
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acoustic disturbances with phase speeds higher than the free stream velocity and is
mainly associated with pressure fluctuations propagating outside the boundary layer. The
slow acoustic branch represents acoustic waves with lower phase speeds, often localized
near the boundary layer. In contrast, the entropy—vorticity branch is characterized by
disturbances dominated by entropy and vorticity fluctuations, convecting with the mean
flow inside the boundary layer. Combined with the development of direct numerical
simulation (DNS) and large-eddy simulation (LES), the destabilization of Mack’s modes
and their effects on the transition process have been explored in detail. For example, Fasel
et al. (1993) introduced a pair of oblique first modes in a Mach 3 flat plate boundary
layer, demonstrating that oblique breakdown could lead to a fully turbulent boundary
layer. The entire process, from linear, and nonlinear growth, to eventual breakdown,
was investigated numerically using LST, parabolized stability equations (PSE) and DNS.
Chang & Malik (1994) also simulated the oblique breakdown and further discussed the
secondary instability. In the context of SWBLIs, Adams (2001) showed that the second
mode is stable in the separated boundary layer along a compression corner at Mach 5.
Additionally, Balakumar, Zhao & Atkins (2005) performed LST and DNS on a 5.5°
compression corner under Hyper-X wind-tunnel condition, revealing that higher Mack’s
modes appear in the separation region but cannot sustain growth across the entire separated
region. Yao et al. (2007) investigated the impact of Mach number on the most unstable
mode in SWBLIs using LST and PSE.

Gortler instability is another type of convective-type instability. Its growth is caused
by the concave surface in boundary layer flow, manifesting as streamwise-oriented,
counter-rotating vortices (Ginoux 1971; Floryan 1991; Saric 1994). These vortices can
lead to the formation of low- and high-speed streaks. In the flat plate boundary layer
without curvature, streaks are typically associated with component-type instability (Hanifi
et al. 1996; Bugeat et al. 2019), originating from transient growth due to the lift-up
mechanism. In SWBLISs, streaks have been widely observed downstream of reattachment
experimentally (Heffner, Chpoun & Lengrand 1993; de la Chevalerie et al. 1997,
Bleilebens & Olivier 2006; Roghelia et al. 2017; Lugrin et al. 2022), accompanied
with significantly increased peak heating and spanwise variations. The amplification of
streaks in SWBLIs can be attributed to various mechanisms, including baroclinic effects
(Dwivedi et al. 2019), nonlinear interactions (Lugrin er al. 2021) and the saturation of
global instabilities (Cao et al. 2021). Additionally, Gortler instability induced by the
concave curvature formed at the separation and reattachment points is another significant
contributor (Navarro-Martinez & Tutty 2005; Chuvakhov et al. 2017; Roghelia et al.
2017).

Resolvent analysis (Ehrenstein & Gallaire 2005; Alizard & Robinet 2007; Monokrousos
et al. 2010), more plainly called input—output analysis (Dwivedi et al. 2019), takes the
component-type non-normality into account, making it capable of investigating both
convective-type and component-type instabilities. Moreover, it is a fully non-parallel
method that does not require any assumption of the base flow. Resolvent analysis has
been applied in various studies to investigate flow instabilities and related mechanisms.
Specifically, Bugeat et al. (2019) utilized it to capture streaks, the first mode and the
second mode in a boundary layer at Mach 4.5. Dwivedi et al. (2019) focused on streaks
exclusively and suggested that the streamwise deceleration and baroclinic effect of the
separation bubble are responsible for the amplification of streaks. Recently, Hao et al.
(2023) conducted resolvent analysis on a Mach 7.7 compression corner and concluded
that the growth of streaks should be attributed to the Gortler instability when the flow is
globally stable.
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Despite these studies, the amplification mechanism of streaks by SWBLIs remains
inconclusive, and limited research has been carried out on the amplification mechanism
of Mack’s modes, particularly the first mode. Dwivedi et al. (2022) conducted resolvent
analysis on a double-wedge configuration and demonstrated that the amplification of
oblique waves arises from the shear layer due to curvature. Benitez et al. (2023) conducted
experiments on a Mach 6 cone—cylinder—flare and identified the second mode and a ‘shear-
layer’ instability in the same frequency band as the first mode. For the same configuration
and Mach number, Caillaud er al. (2023) presented resolvent analysis results of streaks,
the first mode and the second mode. A further investigation by Caillaud ef al. (2025) used
LST and inviscid energy budgets to highlight the characteristics in the low- and high-
frequency responses, corresponding to the first and second modes in nature, respectively.
However, the mechanisms underlying how SWBLIs amplify flow instabilities remain
poorly understood. Although Hao et al. (2023) provided insights into the amplification
streaks and the second mode at Mach 7.7, the first mode was absent due to the relatively
cold wall of T, /Ty =0.18. Consequently, the distinction between the first mode and
the so-called ‘shear-layer’ instability is blurred, leaving its amplification mechanisms
undetermined. The above review highlights one of the main focuses of this paper: revealing
the amplification mechanisms of these instabilities in SWBLIs, including streaks, the
first mode and the second mode. A key aspect is the first mode, where its amplification
mechanism and underlying stability explanation will be thoroughly examined using a
combination of resolvent analysis and LST.

Referring back to the categories in figure 1, as the strength of SWBLI is sufficiently
strong, a larger separation bubble can support global instability. This is an intrinsic
instability of the separation bubble that does not require any external perturbation. In the
incipient stage of global instability, only a stationary unstable mode is present. With a
further increase in SWBLI strength, additional oscillatory modes appear. Robinet (2007)
identified the existence of a stationary three-dimensional (3-D) globally unstable mode in
an incident shock flow at Mach 2.15 through global stability analysis (GSA). Similarly,
Hildebrand et al. (2018) conducted GSA on an oblique SWBLI at Mach 5.92, finding this
stationary global mode and attributing the downstream streaks to the global instability.
Hao et al. (2021) investigated the characteristics of global instability at various angles
and temperatures and established a critical criterion for compression ramp. Song & Hao
(2023) performed GSA and DNS on an oblique SWBLI, establishing a similar critical
criterion for shock incidence and observing unsteadiness originating from a stationary
global mode. Li & Hao (2023) further extended the critical criterion to a hollow cylinder—
flare. Most of the above studies on global instability focus on a single interaction type,
despite the similarities between compression corner and incident shock flows. This paper
aims to compare the global characteristics of compression corner and incident shock flows,
highlighting their commonalities and differences.

Based on the above review, this paper seeks to depict a comprehensive picture of
instabilities in laminar SWBLIs, by means of GSA, resolvent analysis and LST. Given
that the compression corner and incident shock flows are often considered equivalent,
the analysis is conducted for both configurations to identify their commonalities and
differences. The flow conditions are based on the experiment conducted by Willems et al.
(2015), with a Mach number of 6 to cover the spectrum of instabilities, including streaks,
the first mode and the second mode. The remaining content of this paper is organized
as follows: §2 introduces the numerical methods, including the base flow solver and
stability analysis tools; § 3 provides the computational details; § 4 presents results in
detail, corresponding to GSA and resolvent analysis; the main conclusions are summarized
in §5.
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2. Numerical methods
2.1. Base flow solver

The governing equations for base flow simulations are the 3-D compressible Navier—
Stokes equations, expressed in tensor form as

U oF; OF,;

ot 0x; 0x; ’ @D
where
0 ouj 0
U=|pui |, Fj=|puu;j+ps;l, Fyj= Tjj (2.2)
pe (pe + pu; Tjui +q;

are the vectors of conservative variables, inviscid fluxes and viscous fluxes, respectively.
More details about the governing equations are described in Song & Hao (2023). The
base flow simulations are performed using an in-house, multiblock parallel finite-volume
solver called PHAROS (Hao, Wang & Lee 2016; Hao & Wen 2020). The inviscid fluxes
are calculated using the Harten-Lax-van Leer-Contact scheme (Harten, Lax & Leer 1983;
Toro, Spruce & Speares 1994), and the viscous fluxes are discretized by the second-order
central scheme. For time iteration, an implicit line relaxation method (Wright, Candler &
Bose 1998) is employed to accelerate calculations.

2.2. Global stability analysis

In stability analysis, the vector of conservative variables U is decomposed into a two-
dimensional (2-D) steady solution U,_p and a 3-D small amplitude perturbation U’ as

Ux,y,2,0)=Usp(x,y,2,0)+U'(x,y,2,1). (2.3)
Substituting (2.3) into (2.1) and neglecting the high-order terms lead to the LNS equations,
ou’ . oF;  OF'y

=— 24
dt 8x]' 3)Cj @4
in the operator form as
U’
=AU'". (2.5)
ot

Here A is the Jacobian matrix determined by the base flow. When the perturbation is
assumed to be periodic in the spanwise direction, U’ can be expressed in the modal
form as

U'(x,y,z,0)=U(x, y) exp [ifz — i(w, +iw)r] . (2.6)

Here U (x, y) is the 2-D eigenfunction, § is the spanwise wavenumber, w, and w; are the
angular frequency and the growth rate, respectively. Substituting (2.6) into (2.5) turns the
global stability problem into an eigenvalue problem as

AB)U = —i(w, +iw)U. 2.7)

The Jacobian matrix A is constructed from LNS using a second-order scheme.
Specifically, the inviscid Jacobians are computed by the modified Steger—Warming
scheme (MacCormack 2014) near discontinuity and a central scheme in smooth regions.
The viscous Jacobians are evaluated by the second-order central difference scheme.
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The detailed discretization schemes are described in Hao ef al. (2021). The eigenvalues of
A are calculated by the implicit restart Arnoldi method, which is implemented in ARPACK
(Sorensen et al. 1996). The inversion step used in Arnoldi is achieved by the lower—upper
decomposition implemented in SuperLU (Li et al. 1999). Note that a positive growth rate
(w; > 0) indicates a globally unstable flow, while a negative growth rate (w; < 0) signifies
a stable flow.

2.3. Resolvent analysis

When the flow is unable to support a global instability (i.e. w; <0), it can amplify
continuous external forcing to realize the transition process. To describe this amplification
behaviour, a small-amplitude forcing term is added to (2.5),

v’
ot

where B is the matrix that specifies the location and amplitude of the forcing. Assuming
that the forcing is periodic both in time and in the spanwise direction, it also can be
expressed in the modal form as

— AU+ Bf’, 2.8)

A

(e y, 2z, 0= f(x, y) exp(ifz — iwrt). (2.9)

After a sufficiently long time, the forced solution exhibits the same wavenumber 8 and
frequency w, as forcing

U'x,y,z, 1) =Ul(x, y) exp(iBz — iwy1). (2.10)
Substituting (2.9) and (2.10) into (2.8) gives
U=RBf, R=—(A+io )", (2.11)

where [ is the identity matrix and R is the resolvent matrix that determines the relationship
between forcing and its linear response. To quantify the maximum amplification, we define
the optimal gain as the ratio of the energy-based response norm to the energy-based forcing
norm,

U
o%(B, wy) = max ” A”E. (2.12)
P
Chu energy (Chu 1965) is utilized to quantify the energy-based norm as
|0 ,=0"MD, (2.13)

where (-)* denotes complex-conjugate transpose and M is the weight matrix, as detailed
in Bugeat et al. (2019). Since matrix M is invertible, (2.12) is simplified to
B*M 'R*MRBf =02f. (2.14)

The optimization problem is then transformed into an eigenvalue problem where the

optimal gain is the largest eigenvalue and the optimal forcing f is the corresponding
eigenvector. As stated in § 2.2, the eigenvalue is solved using ARPACK (Sorensen et al.
1996).
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Figure 2. Computational domains and schematics of (a) incident shock flow and (b) compression corner flow.

2.4. Linear stability analysis

In this paper, LST is used to validate the resolvent analysis. It is a local method and suitable
for weakly non-parallel flows. The small perturbation is assumed to be periodic in normal
and spanwise directions, as well as in time, expressed in the modal form as

d(x, v, 2, 1) = ¢(y) explila, + ie;)x +ifz — iwt]. 2.15)

Here, (/;(y) =, v, p, T. w)T represents the eigenfunction of perturbation, B is the
spanwise wavenumber, o is the angular frequency. Here «, and «; denote the streamwise
wavenumber and the spatial growth rate, respectively. Substituting (2.15) into (2.4) yields
the following ordinary differential equations:

2
(Ald—2 + Bli + C1> o(y)=0. (2.16)
dy dy

The matrices A;, B, and C; are determined by the base flow values, with their specific
forms described by Malik (1990). To incorporate the curvature effect, a coordinate
transformation is applied using a scale factor defined as h; =14 Ky, where K
represents the curvature. This transformation introduces curvature-dependent terms into
the differential operators along the wall-normal direction y. The specific coefficients,
including the curvature effect, are comprehensively documented in the Appendix of Ren &
Fu (2014). The boundary conditions are given by

i=0=T=w=0,y=0; (2.17)
i=0=T=0=0, y— oco. (2.18)
The discretization methods for (2.16) include both global and local approaches. The global
method uses the single-domain Chebyshev spectral collocation technique, which provides
the complete spectrum of eigenvalues, while the local method employs the fourth-order
compact difference scheme to refine the eigenvalues obtained from the global method.

For detailed information on the LST method, see Guo et al. (2020) and Guo, Hao & Wen
(2025).

3. Computational details
3.1. Configurations and flow conditions

The flow conditions are taken from an oblique SWBLI experiment by Willems et al.
(2015): Mo, =6, poo =305 Pa, Too =73 K and Reso =3 X 10® m~—!. The inviscid shock
incident position is at L =240 mm, which is the corner position for the compression
corner case in this paper as well. The computational domains and flow structure schematics
are depicted in figure 2. When the deflection angle 6 or ramp angle « is sufficiently
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large, a separation bubble is generated due to the adverse pressure gradient. Meanwhile,
a separation shock and a reattachment shock are formed as a result of the flow deflection.
It is evident that the flow structures of these two configurations are similar, except for
the shape of the separation bubble and the expansion waves at the apex of the separation
bubble in the incident shock case. The deflection angles # and ramp angles « are chosen
such that they correspond to the same pressure rise. Specifically, the deflection angles for
the incident shock flows are selected first, and the corresponding ramp angles are then
calculated using the oblique shock relations.

3.2. Boundary conditions and grids

The incident shock is generated by segmenting the inflow conditions. On the left-hand
boundary, below the shock position, the inflow condition aligns with the free stream
condition outlined in § 3.1. Above this position and the upper boundary, the flow condition
behind the shock is applied, which is calculated using the oblique shock relations. The
right-hand boundary is set as an outflow condition achieved by simple extrapolation. The
lower boundary is a no-slip and isothermal wall with T,, = 344 K. For the compression
ramp, the left-hand and upper boundaries are set to be the free stream condition as normal.

The grids used for GSA consist of 700 x 300 cells in the streamwise and normal
directions for both incident shock and compression ramp cases. The grid height of the
first layer in the normal direction is 5 x 107% m, resulting in a grid Reynolds number of
the order of 1. In resolvent analysis, it is essential to have sufficiently dense streamwise
points to accurately capture Mack’s second mode. To satisty this requirement, there are
at least 20 grid points per wavelength of Mack’s second mode. The height of the first
normal layer remains 5 x 10~% m. Consequently, the grid for resolvent analysis comprises
1100 x 250 cells in the streamwise and normal directions. Grid independence is verified
in Appendix A.

4. Results
4.1. Base flows

The characteristics of the 2-D base flows are presented in this section. The skin pressure
coefficient C,, and skin friction coefficient Cy, are defined as

Pw Tw

cp=—Pv =T 4.1
P0.5p00u2, 7= 0.5 oot ¢

where p,, and t,, denote the pressure and shear stress on the wall, respectively. Figure 3
depicts the distributions of C, and Cy for incident shock and compression corner flows
at various angles, where 0° represents the flat plate case for comparison. When a shock
incident on the flat plate or generated by the ramp, it induces a pressure rise and imposes
an adverse pressure gradient on the boundary layer. In the 6 =2° incident shock case
and o =4° compression corner case, the adverse pressure gradient is insufficient to
produce a separation bubble. When the shock becomes stronger with increasing angles, the
adverse pressure gradient becomes large enough to cause separation (0 = 4° and o« = 8.1°).
Consequently, separation shock and reattachment shock are induced. Therefore, the single
pressure rise is replaced by two rises around separation and reattachment positions. In
cases of large separation (8 > 4° and « > 8.1°), a pressure plateau appears in the middle
of the separation region. It should be noted that the discussion regarding the relationship
between separation states and angles is specific to the current flow conditions and cannot
be directly generalized.
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Figure 3. Distributions of (a) C, for incident shock flows, (b) C, for compression corner flows, (c) Cy for
incident shock flows and (d) Cr for compression corner flows. Circle symbols, separation and reattachment
locations; horizontal lines, zero skin friction.

Separation point (x /L)

Reattachment point (x /L)

Separation length (Lyep,/L)

CC(ax=38.1°) 0.834 1.194 0.360
SI (0 =4°) 0.771 1.076 0.305
CC (a=10.2°) 0.686 1.298 0.612
SI (0 =5°) 0.640 1.145 0.505
CC (x =12°) 0.537 1.374 0.837
SI (0 =6°) 0.487 1.197 0.710

Table 1. Comparison of the separation between compression corner flows and incident shock flows.

The equivalent ramp angles with the same pressure rise are calculated using oblique
shock relations, which neglect the viscous effect. Nevertheless, the numerical pressure
rises between the two configurations are close. If the pressure rise is quantified as

pr={(p2— p1)/p1, 4.2)

where p; and py represent the pressures before and after the interaction region. The
differences of p, between incident shock and compression corner cases at various angles
are all less than 4 %. Despite nearly identical pressure rise, the separation length of
the incident shock flow is smaller than that of the compression corner flow. A detailed
comparison of the separation points, reattachment positions and separation lengths are
provided in table 1.
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Figure 4. Numerical schlieren of (a) incident shock flow at & = 5° and (b) compression corner flow at
o =10.2°.

The numerical schlieren of incident shock and compression corner flows are presented
in figure 4, where the module of density gradient |V p| is defined as

N 2 90\ 2
|V,0|—\/(a> +<5> . “4.3)

The flow structure of incident shock flow is slightly more complex compared with that
of compression corner flow. In addition to the leading-edge shock, separation shock and
reattachment shock, the incident shock flow features expansion waves at the apex of
the separation bubble. Moreover, shock—shock interactions occur between the leading-
edge shock and incident shock, as well as between the incident shock and the separation
shock. Notably, the actual shock incident position is shifted forward relative to the inviscid
incident position due to the thickening and separation of the boundary layer. As a result,
the separation region of incident shock flow is located upstream compared with the
compression corner flow. This distinction is also listed in table 1.

4.2. Global stability analysis

The separation bubble exhibits an intrinsic instability known as global instability when
the strength of SWBLI is sufficiently high. The ramp or deflection angle that determines
the onset of global instability is referred to as the critical angle. Beyond the critical
angle, boundary layer flow becomes globally unstable. As stated by Song & Hao (2023),
for the same pressure rise, incident shock flow exhibits greater stability compared with
the equivalent compression corner flow. This discrepancy in stability boundaries can be
attributed to several factors from the perspective of base flows. Firstly, the length of
separation of incident shock flow is shorter than that of the compression corner flow.
Another factor is the presence of expansion waves in the incident shock case, which
stabilize the flow. Additionally, the upstream shift of the separation bubble in incident
shock flow results in a smaller local Reynolds number, further enhancing stability.

Based on the global stability criteria established by Hao et al. (2021) and Song & Hao
(2023), the critical ramp angle of the compression corner case and critical deflection angle
of incident shock case are o« = 10.4° and 6 =5.8°, respectively. To validate the critical
angles and explore the characteristics of global instability, GSA is conducted at various
angles. The variations of growth rates with spanwise wavenumbers shown in figures 5(a)
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Figure 5. Variations of eigenvalues of the most unstable modes with spanwise wavenumbers for
(a) compression corner flow and (b) incident shock flow. Here S mode, stationary mode; O mode, oscillatory
mode; S-O mode, stationary to oscillatory mode; O-S mode, oscillatory to stationary mode.

and 5(b) indicate that the numerical critical ramp angle « for the compression corner is
between 10.2° and 11°, while for the incident shock flow, the numerical critical deflection
angle 6 is between 5.5° and 6°, validating the accuracy of the established criteria. When
the angle slightly exceeds the critical angle (compression corner (CC) 11° and incident
shock (IS) 6°), only a stationary instability emerges.

As the angle increases further, the separated flow becomes more unstable and contains
more unstable modes. For the compression corner at o« = 12°, an oscillatory but stable
mode appears at large spanwise wavenumbers, referred to as the ‘S-O mode’ in figure 5(a).
The dashed line connecting the ‘S mode’ and ‘S-O mode’ indicates that these two
modes originate from the same mode essentially. Similarly, an additional oscillatory mode
appears in incident shock flow at & = 6.5°. This mode is unstable and does not belong
to the branch of the primary stationary mode. When the spanwise wavenumber reaches
BL =175, a pair of oscillatory conjugate modes transforms into two stationary modes. The
resulting stationary mode with a larger growth rate is shown in figure 5(b), labelled as ‘O-S
mode’. The dashed line connecting ‘O-S mode’ and ‘O mode’ suggests that they originate
from the same family of instabilities.

The eigenfunctions of the most unstable modes are depicted in figure 6. These
eigenfunctions are predominantly concentrated within the separation bubble, with the
signs of spanwise perturbations alternating between positive and negative. Between
figures 6(d) and 6(e), the eigenfunctions remain similar although the unstable mode has
transferred from oscillatory into stationary. The reconstructed 3-D eigenfunctions are
presented in Appendix B. Another notable scenario in figure 5 is the increase in growth
rate as the spanwise wavenumber approaches zero. The eigenfunctions for the o = 10.2°
compression corner flow and 6 = 5.5° incident shock flow at 8L = 0 are shown in figure 7.
These eigenfunctions are primarily located in the shear layer of separation bubble and
extend downstream slightly.

4.3. Resolvent analysis

For globally stable flows, resolvent analyses are conducted to investigate how the
separation bubble amplifies external forcing. Four deflection angles are selected for
incident shock flows: 0° (flat plate), 2° (no separation), 4° (small separation) and 5° (large
separation), respectively. Their compression corner counterparts with the same pressure
rises are considered as well, with ramp angles determined as 0°, 4°, 8.1° and 10.2° using
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Figure 7. Real parts of eigenfunction u’ for the least stable modes at 8L = 0 for (a) 10.2° compression corner
flow and (b) 5.5° incident shock flow. Here black lines are for streamlines at the edge of the boundary layer.

oblique shock relations. The forcing is fixed at x /L = 0.083 for both cases, which extends
from the wall to the free stream. The results of resolvent analysis are not sensitive to the
forcing location, as validated in Appendix C. For simplicity,  is used to denote the angular
frequency, rather than w,.

4.3.1. Optimal gain

The optimal gains in a wide space of spanwise wavenumbers and angular frequencies
for compression corner cases at various ramp angles are depicted in figure 8. In the flat
plate case shown in figure 8(a), the maximum optimal gain is located at BL =96 and
oL /us =24 (f =16.4 kHz), which is supposed to be the oblique first mode. Another
moderate optimal gain is observed in the low-frequency region at L /us, < 2.4 (f < 1.64
kHz), spanning a wide range of spanwise wavenumbers of 50 < SL < 180. It is related to
the streamwise streaks in the form of counterrotating streamwise vortices. In the high-
frequency region, a local optimal gain appears at wL/us =120 (f =81.9 kHz) and
BL =0, corresponding to the second mode. As the ramp angle increases to o = 4°, which
is insufficient to induce separation, the gain contour is shown in figure 8(b). Compared
with the flat plate, streaks, the first mode and the second mode are all amplified, with
streaks exhibiting the most significant enhancement. The peak optimal gain of streaks
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Figure 8. The optimal gain contours for compression corner flows in the space of spanwise wavenumbers and
angular frequencies at (a) « =0°, (b) « =4°, (¢c) « =8.1° and (d) o = 10.2°.

shifts to a larger wavenumber around 8L =200, and the range of wavenumbers broadens
as well. When the ramp angle further increases to o = 8.1°, a small separation is induced.
Figure 8(c) illustrates that streaks continue to experience significant amplification. The first
mode is also amplified in the presence of separation. The gain of the second mode remains
almost unchanged while the frequency increases. These amplification trends persist in
the large separation case at o = 10.2°, as shown in figure 8(d), though the second mode
appears weaker compared with the o = 8.1° case.

The optimal gain contours of incident shock cases are depicted in figure 9. When a
shock wave impinges on the flat plate without causing separation (6 = 2°), the resulting
gain contour is shown in figure 9(b). The first mode is slightly amplified, while the gain of
streaks is weakened. Notably, the second mode experiences an amplification by an order
of magnitude. When the shock wave induces separation, the scenario is similar to that
of compression corner flow. In the small separation case at 8 =4° (see figure 9c¢), both
streaks and the first mode are enhanced, with the most significant amplification in streaks
at larger wavenumber and over a broader range. Conversely, the second mode is diminished
slightly. In the large separation case at 8 = 5° (see figure 9d), the amplification of streaks
intensifies further, with the maximum gain shifting to L = 312. The first mode becomes
increasingly difficult to distinguish due to the expanded range of wavenumbers associated
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Figure 9. The optimal gain contours for incident shock flows in the space of spanwise wavenumbers and
angular frequencies at (a) 0 =0°, (b) 6 =2°, (c) 6 =4° and (d) 6 =5°.

with streaks. Meanwhile, the second mode remains slightly diminished, with its frequency
increasing as the deflection angle grows.

To validate the dominance of optimal responses, suboptimal gains are calculated
for the 10.2° compression corner and 5° incident shock cases. Figure 10 presents the
suboptimal gain along with gain separation contours (the difference between the optimal
and suboptimal gains). It is evident that, in regions of significant amplification, the
suboptimal gains in both cases are at least three orders of magnitude lower than the
optimal gains, confirming the predominance of the optimal response. Additionally, for
the compression corner flow at @ = 10.2°, the first mode is more clearly identifiable in the
gain separation contour (figure 10b), located around SL = 120 and wL /us = 16.8.

The suboptimal results confirm that the analysis of optimal responses is sufficient for
the present cases. By comparing the optimal gains of compression corner and incident
shock flows, several common characteristics emerge in the amplification of external
forcing by SWBLISs. Firstly, streaks undergo the most significant amplification, with the
peak gain shifting to larger wavenumbers and the range of wavenumbers being widened.
Secondly, the first mode is enhanced as well, though not as strongly as the streaks, and
its frequency and wavenumber remain almost unchanged. Regarding the second mode,
it is amplified when the shock wave is insufficient to cause separation while exhibiting
insignificant growth in the presence of separation. Additionally, the frequency of the
second mode increases slightly with the shock strength. The main difference between the
two configurations is that, the amplifications in compression corner flows are generally
stronger than those in incident shock flows, which can be attributed to the stabilizing effect
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for @ =10.2° compression corner flow; (c¢) suboptimal gain and (b) gain separation between optimal and
suboptimal gains for 8 = 5° incident shock flow.

of expansion waves in incident shock flows. It is worth noting that in the 8 = 2° incident
shock case, streaks are not amplified and the range of wavenumbers shrinks. The reason
for this abnormal phenomenon will be explained later.

4.3.2. Amplification of streaks

Figures 11 and 12 present the optimal responses of streaks with the maximum gain for
compression corner and incident shock flows at various angles. Figures 11(a—d) and
12(a—d) and figures 11 (e—h) and 12 (e—h) correspond to the spanwise velocity and
temperature distributions, respectively. The frequency is fixed at f = 1.6 Hz and the
results are consistent at lower frequencies. Within the boundary layer, spanwise velocity
disturbances of streaks alternate between positive and negative signs in the wall-normal
direction, manifesting as streamwise vortices in 3-D flows. In the flat plate boundary layer,
the spanwise velocity of streaks undergoes rapid transient growth near the forcing location
and gradually decays downstream, whereas the temperature response continues to increase.
In compression corner flows, streaks begin to grow at the corner when no separation
occurs (figure 11b,f); whereas in the presence of separation (figure 11c¢,d,g,h), streaks
grow around separation and reattachment points, accelerating notably after reattachment.
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Figure 11. Optimal responses of streaks with maximum gain for compression corner flows at (a,e) o =0°,
(b,f) x=4°, (c,g) « =8.1° and (d,h) « = 10.2°; (a—d) spanwise velocity, (e—h) temperature. Here open circles
are for separation and reattachment points.

The above patterns also hold in incident shock flows. The crucial difference between
the optimal responses of these two configurations lies in the presence of expansion
waves. Specifically, in the case without separation (figure 12b,f), streaks are disrupted by
expansion waves, which explains the diminishment of streaks in the weak incident shock
case as observed in figure 9(b). This effect will be further observed quantitatively through
Chu energy distributions. Additionally, the sign of the spanwise disturbance changes
after shock incidence, and the disturbance is radiated outwards by the expansion waves
(figures 12b—d). Similar to compression corner flows, the streaks in incident shock flows
are significantly amplified after reattachment.

To investigate the growth mechanism, Chu energy is integrated along the wall-normal
direction. Figure 13 shows the distributions of Chu energy along the x direction for streaks
with maximum gain at various angles, together with the flat plate results for comparison.
As stated by Hao et al. (2023), the amplification of streaks in SWBLIs is attributed to the
Gortler mechanism. To further explore this, the curvatures of streamlines at the edge of
the boundary layers are also plotted in figure 13. The curvature based on the streamline
coordinates is calculated using the following equation:

d2y/dx2
(14 (dy/dx)?)**

As mentioned earlier, streaks originate from transient growth near the leading edge. In
compression corner flows (figure 13a—c), streaks are amplified in regions of significant
concave curvatures. For example, in the absence of separation, the large curvatures
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Figure 12. Optimal responses of streaks with maximum gain for incident shock flows at (a,e) 6 =0°, (b,f)
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are found at the corner; in the presence of separation, the large curvatures arise from
the separation and reattachment points. The amplification of streaks accompanies these
regions of large curvatures. In the middle of the separation, the growth of streaks slows
down due to the small curvature of the relatively flat shear layer, which is particularly
evident in large separation case at o« = 10.2° (figure 13c¢).

The distributions of Chu energy for the corresponding incident shock flows are shown in
figure 13(d—f). Unlike in compression corner flows, the curvature distributions in incident
shock flows exhibit three distinct peaks. The first and third peaks are associated with the
separation and reattachment, respectively. A large negative curvature occurs at the apex
of separation bubble or the shock incident position, representing the convex curvature
(cannot be seen in figure 13). The second peak appears just after the apex of the separation
bubble, which can be observed in the streamlines shown in figure 6(c—e) and figure 7(b).
This peak is presumed to result from the combined effects of the incident shock and the
expansion waves, which cause the streamlines to deflect and create a concave curvature
region. Notably, this intermediate peak does not appear at Mach 2.15 (Song & Hao 2023),
suggesting that it is not a universal feature of all incident shock flows. Further investigation
is required to fully understand the specific conditions that lead to the formation of this
second curvature peak. In incident shock flows, Chu energy is amplified around the
separation point but is interrupted by expansion waves, leading to a drop in energy. After
the second peak, rather than around the third peak at reattachment, the energy grows
dramatically again, driven by the large curvature in this region.

The blue dashed lines in figure 13 represent the growth rates of the most
unstable stationary Gortler mode calculated by LST considering the curvature effect.
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Figure 13. Distributions of integrated Chu energy for the most amplified streaks at various angles with the
curvatures of streamlines at the edge of the boundary layers: (a—c), compression corner flow; (d—f), incident
shock flow. Here dash—dotted lines, integrated Chu energy of the flat plate case; vertical dashed lines, separation
and reattachment locations; blue dashed lines, growth rates of LST.

For compression corner flows, there is excellent agreement between the growth rates
obtained from LST and the slopes of Chu energy derived from resolvent analysis.
This consistency confirms the convective-type nature of the streaks’ growth at large
curvatures. Figure 14 lists the eigenfunctions for o = 10.2° compression corner flow
(strong interaction case) at various streamwise locations, corresponding to the locations
of three growth rates in figure 13(c). The eigenfunctions obtained from resolvent analysis
are extracted at the same streamwise locations. The horizontal and vertical axes represent
the normalized disturbance amplitude and wall-normal coordinates, respectively. The wall-
normal shapes of the eigenfunction from resolvent analysis and LST are almost identical,
especially for the density disturbance. The peaks of disturbances are located near the edge
of the shear layer. Discrepancies observed outside the boundary layer in figure 14(a,c) are
caused by the influence of separation and reattachment shocks. The discrepancy in velocity
near the wall in figure 14(b) can be attributed to non-parallelism and component-type
instability.

For incident shock flows (figure 13d-f), there is generally good agreement in the
growth rates, except in regions following the expansion waves. In these regions, LST
underestimates the growth rates for separation cases compared with resolvent analysis.
Eigenfunctions for a weak interaction case of # =4° incident shock flow are plotted in
figure 15. Same with figure 14, the subfigures correspond to different streamwise locations
of growth rates shown in figure 13(e). The eigenfunctions in figure 15(a,c) show good
alignment. However, the discrepancy appears after expansion waves, shown in figure 15(b).
Itis observed that significant density disturbances emerge after expansion waves (indicated
by the horizontal dashed line) in resolvent analysis results, which are not captured by LST.
This observation likely explains why the growth rates obtained from LST are smaller than
those in resolvent analysis after expansion waves.

Therefore, for streaks, the amplification is attributed to the Gortler mechanism induced
by large concave curvatures, aligning with the conclusion drawn for Mach 7.7 compression
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Figure 15. Comparison of eigenfunctions of streaks for 6 =4° incident shock flow with BL =288 at
(a) x/L=0.8, (b) x/L =1 and (c) x/L =1.2. Here horizontal dashed lines are for positions of separation
and reattachment shocks in (a) and (¢); position of expansion waves in (b).

corner flow by Hao et al. (2023). The LST further validates the results of resolvent analysis
but tends to underestimate the growth rates for incident shock flows near expansion waves.
The overall amplification of streaks in incident shock flows is less than that in compression
corner flows, primarily due to the interruption caused by the expansion waves.

4.3.3. Amplification of the first mode

The optimal responses of the first mode with maximum gain are illustrated in figure 16.
The first mode is primarily concentrated in the shear layer. Similar to streaks, the first mode
undergoes amplification around the separation and reattachment points, and experiences
attenuation at the apex of the separation bubble in incident shock flow due to the influence
of expansion waves.

Figure 17 plots the distributions of integrated Chu energy for the first mode with the
most significant amplification. In the flat plate case (depicted by dash—dotted lines), the
first mode undergoes transient growth, while in regions with large curvatures induced by
SWBLLI, it exhibits almost linear growth. In flows with separation (figure 17b,c), the linear
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BL =120 and wL/ux =16.8 at (a) x/L =0.7, (b)x/L =1.05 and (c) x/L = 1.2. Here horizontal dashed
lines are for positions of separation and reattachment shocks.
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Figure 19. Comparison of eigenfunctions of the first mode for & = 4° incident shock flow with BL =96 and
wL/uso=24at(a) x/L=0.8,(b) x/L =1 and (c) x/L = 1.2. Here horizontal dashed lines are for positions
of separation and reattachment shocks in (a) and (c); position of expansion waves in (b).

growth slows down in the middle of the separating bubble in compression corner flow;
whereas in incident shock flow, the growth is interrupted by expansion waves and restores
near reattachment points. The amplification pattern of the first mode closely resembles
that of streaks, indicating a potential connection to the Gortler mechanism as well. This
hypothesis will be further investigated in the subsequent section.

Additionally, LST is performed to facilitate a comparison with resolvent analysis
results, with the growth rates shown by blue dashed lines in figure 17. The eigenfunction
comparisons for o« = 10.2° compression corner flow and 6 =4° incident shock flow are
provided in figures 18 and 19, respectively. For compression corner flows, the similarity of
growth rates and eigenfunctions between resolvent analysis and LST confirms that the
amplification of the first mode in the separation region is also driven by convective-
type instability. For incident shock flows, the growth rates from LST agree well with
that of resolvent analysis when away from expansion waves. In contrast, discrepancies
appear near expansion waves shown in figure 17(e,f). Reflected in the eigenfunctions,
when there is no interference from expansion waves, the eigenfunctions obtained by LST
and resolvent analysis are highly consistent, as shown in figure 19(a). With the effects of

1019 A28-21


https://doi.org/10.1017/jfm.2025.10597

https://doi.org/10.1017/jfm.2025.10597 Published online by Cambridge University Press

Z. Song and J. Hao

(@) (e)
02 f I 0.2 Furjuy=120 1
i~ f P —0303 P —0303
§ 0.1 E J 0.1
P PO I T T YT T TT 1T 7T 0 Bsbssssssssssssssssssspsssil
0.6 0.8 1.0 1.2 1.4 0.6 0.8 1.0 1.2 14
) f
02 yrju-120 I 0.2 F =120 I
~ [ P 0404 P 0404
}\ 0.1 [ )}A 0.1 Le =
ol gad sl l 0 : Y £ TSI I T T)
0.6 0.8 1.0 1.2 1.4 0.6 0.8 1.0 1.2 1.4
@ )
0.2 Fol/u,=168 I 0.2 £ =96, wLju_,=24 I
~ [ P 0505 75 -0.50.5
}\ 0.1 | 0.1
0 f L 4 il O B ‘ 0 9 Qr 4855225585 ridang s Sbdsecnnsassnnd 2
0.6 0.8 1.0 1.2 1.4 0.6 0.8 1.0 1.2 1.4
(d) (1)
0.2 CwL/u., =168 | | 0.2 [ wL/ug,=168 [J
~ A
b P 0606
}\ 0.1 0.1 L
0 LannspkEBasIALS 0 o BT L 7 - 2 T P T LS T
0.6 0.8 0.6 0.8 1.0 1.2 1.4

x/L

Figure 20. Optimal responses of the second mode with maximum gain for compression corner flows at
(@) x =0°, (b) a =4°, (¢) « =8.1° and (d) @ = 10.2°; and for incident shock flows at (¢) 6 =0°, (f) 6 =2°,
(g) 6 =4° and (h) 8 = 5°. Here open circles are for separation and reattachment points.

expansion waves (figure 19b,c), the density disturbances from the resolvent analysis exhibit
oscillations, which are not captured by LST. This observation is consistent with the effect
of expansion waves on streaks discussed in § 4.3.2.

Therefore, the amplification of the first mode, similar to the streaks, is driven by
large curvatures. The agreement between LST and resolvent analysis results confirms that
this amplification originates from convective-type instability. However, in incident shock
flows, expansion waves suppress the growth of the first mode and impact the accuracy of
LST predictions for the growth rate.

4.3.4. Amplification of the second mode

The optimal responses of the second mode with the maximum gain at various angles
are presented in figure 20. In the flat plate case, the second mode grows gradually and
exhibits the typical ‘two-cell’ structure within the boundary layer. In compression corner
flow without separation, the second mode does not experience dramatic amplification at
the corner and the disturbances are radiated along the shock. Interestingly, in flows with
separation, higher Mack’s modes appear within the separation bubble, as indicated by
additional peaks in pressure disturbances. This phenomenon has also been observed by
Balakumar et al. (2005) using LST. The optimal responses in resolvent analysis provide
a more intuitive visualization of these higher Mack’s modes. Specifically, in figure 20(c),
the third mode appears and alternates with the second mode. In the large separation case
shown in figure 20(d), even the fourth and fifth modes appear. These different Mack’s
modes are separated by regions of attenuation, with only the second mode persisting
downstream of the separation. The characteristics of Mack’s modes for incident shock
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Figure 21. Distributions of integrated Chu energy for the most amplified Mack’s modes at various angles
with the curvatures of streamlines at the edge of the boundary layers: (a—c), compression corner flow; (d—f),
incident shock flow. Here dash—dotted lines, Chu energy of the flat plate case; vertical dashed lines, separation
and reattachment locations; blue dashed lines, growth rates of LST.

flows in figure 20(e—f) are similar, with more evident radiation caused by the shock and
expansion waves.

The integrated Chu energy shown in figure 21 reveals that within the separation
bubble, the second mode cannot sustain continuous growth and instead exhibits oscillatory
development. In some cases, the boundary layer downstream of reattachment supports the
continuous growth of the second mode. This downstream growth can be attributed to a
preferred boundary layer thickness of the second mode, which is approximately half of
its streamwise wavelength. Therefore, the second mode thrives in a boundary layer with
a matching thickness downstream of reattachment while demonstrating minimal growth
within the separation bubble. Higher Mack’s modes, which appear within the separation
bubble, exhibit unsustainable growth and do not persist downstream.

A comparison between resolvent analysis and LST is also conducted, with the slopes of
blue dashed lines in figure 21 indicating the growth rates from LST, and eigenfunctions
shown in figures 22 and 23. Outside the separation, the growth rates are accurately
captured by LST. The pressure disturbances exhibit a typical second mode pattern,
characterized by a first peak at the wall and a second peak near the boundary layer edge
(figures 22a and 23a). Within the separation bubble, the growth rates obtained by LST
differ from the slopes of Chu energy in resolvent analysis. Nevertheless, the eigenfunctions
near the wall from LST closely resemble those from resolvent analysis. Additionally,
the third and fourth peaks of LST eigenfunctions within the separation (figures 225 and
23b) validate the presence of higher Mack’s modes observed in optimal responses from
resolvent analysis.

4.3.5. Rounded compression corner

To validate whether the amplification of streaks and the first mode is motivated by the
Gortler mechanism, rather than the inherent properties of separation bubble, the sharp
compression corner with a ramp angle of o = 10.2° is modified by rounding the corner to
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Figure 22. Comparison of eigenfunctions of the second mode for o = 10.2° compression corner flow with
wL/us =168 at (a) x/L =0.55, (b) x/L =1.2 and (¢) x/L = 1.45. Here horizontal dashed lines are for
positions of reattachment shocks.
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Figure 23. Comparison of eigenfunctions of the second mode for 6 = 4° incident shock flow with wL /ux, =
168 at (a) x/L =0.6, (b) x/L =0.85 and (c¢) x/L = 1.2. Here horizontal dashed lines are for positions of
separation and reattachment shocks.

prevent separation, with a radius of /L =4.2. A comparison of skin pressure coefficient
C, and skin friction coefficient Cy between rounded and sharp corner cases is presented in
figure 24. The results indicate that the rounded corner case achieves an equivalent pressure
rise to that of the sharp corner case while effectively eliminating the separation.
Resolvent analysis is performed on the rounded corner case, with the resulting optimal
gain contour depicted in figure 25(a). The optimal streaks occur within a low-frequency
region around a spanwise wavenumber of BL =288, which is larger than L =240
observed in the sharp corner case (refer to figure 8d). A clear peak at wL /us = 144
signifies the presence of the second mode, which exhibits a stronger amplification
compared with the sharp corner case. As in the sharp corner scenario, the identification
of the first mode is challenging due to the dominant amplification of streaks. Figure 25(b)
illustrates the suboptimal gain contour, which is significantly weaker than the optimal
gain and can thus be neglected. Nevertheless, the gain separation between optimal and
suboptimal gains, as shown in figure 25(c), effectively highlights the first mode by
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Figure 24. Distributions of (a) skin pressure coefficient and (b) skin friction coefficient for sharp corner and
rounded corner cases. Here open circles, separation and reattachment points of sharp corner case; solid circles,
tangency points of rounded corner case.
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Figure 25. The gain contours for rounded compression corner in the space of spanwise wavenumber and
angular frequency of (a) optimal gain, (b) suboptimal gain and (c) gain separation.
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Figure 26. Optimal responses with maximum gain for rounded compression corner case: (a) streaks; () first
mode; (c) second mode. Here open circles are for tangency points.
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Figure 27. Distributions of integrated Chu energy for the most amplified (a) streaks, (b) the first mode and
(c) the second mode for rounded compression corner flow with the curvature of streamline at the edge of the
boundary layers. Here dash—dotted lines, Chu energy of the flat plate case; vertical dashed lines, tangency
points of rounded corner case; blue dashed lines, growth rates of LST.

eliminating the influence of dominant streaks. Specifically, the first mode is located at
BL =144 and wL /us = 12.

Figure 26 presents the optimal responses for rounded compression corner flow, with the
corresponding development of Chu energy illustrated in figure 27. In the rounded corner
case, both streaks and the first mode exhibit nearly exponential growth along the circular
arc. The elimination of the separation bubble leads to the disappearance of higher Mack’s
modes. Chu energy for the remaining second mode undergoes continuous growth along
the circular arc due to the constant boundary layer thickness, and then shows oscillation
downstream.

4.3.6. Discussion of the curvature-amplified first mode

The similar amplification trends observed between streaks and the first mode in
the rounded corner case further verify the hypothesis proposed in §4.3.3, that the
amplification of the first mode in SWBLIs may also be driven by the Gortler mechanism.
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Figure 28. Eigenvalue trajectory at wL /u~, = 12 and SL = 144 with decreasing curvature for rounded corner
flowatx/L =1.

To delve deeper into the underlying motivation, a detailed analysis is conducted for the first
mode of rounded corner case using LST. The angular frequency and spanwise wavenumber
are consistent with that of the first mode exhibiting optimal gain captured by resolvent
analysis. The position where LST is performed is fixed at x/L =1, unless otherwise
specified.

Firstly, the curvature is reduced artificially with a scale ratio, which is incorporated into
the LST framework by modifying the parameter K as mentioned in § 2.4. The eigenvalue
trajectory with decreasing curvatures is shown in figure 28. The growth rate «; of the
discrete unstable mode decreases continuously with the curvature K. When the curvature
is close to zero, «; is less than zero, indicating that the mode is stable. The continuous
decrease in growth rate demonstrates that this unstable mode is curvature-amplified.

Furthermore, to explore the origin of this curvature-amplified first mode, LST without
the curvature effect is carried out. As shown in figure 29(a), when the angular frequency
decreases from wL/ux =12 to wL/ux =0, this discrete mode gradually approaches
the entropy—vorticity spectrum. This observation complements the receptivity studies of
Ma & Zhong (2003) and Fedorov (2011), which suggested that the first mode in supersonic
flows originates from the acoustic spectrum. This discrepancy is presumed to be due to
the difference between oblique waves and planar waves. Hence, the eigenvalue trajectory
is examined with decreasing spanwise wavenumbers, as depicted in figure 29(b). Initially,
as the spanwise wavenumber decreases, the growth rate of the discrete mode increases.
This trend arises because the most unstable oblique mode at wL /us, = 12 shifts to a
smaller wavenumber as the curvature effect diminishes in the disturbance equations. When
the spanwise wavenumber reaches SL =0, the planar waves are observed to originate
from the slow acoustic spectrum, consistent with Ma & Zhong (2003). The above results
suggest a potential distinction between the oblique and planar first modes: while the planar
first mode originates from the acoustic spectrum, the oblique first mode may arise from
the entropy—vorticity spectrum, consistent with the understanding that the first mode is the
compressible counterpart of Tollmien—Schlichting mode.

Additionally, as observed in figure 29(a), a discrete unstable mode still persists at zero
frequency. This occurs because the curvature effect remains embedded in the base flow
profile, despite being reduced to zero in the disturbance equations of LST. It is supposed
that this discrete mode can fully emerge into the entropy—vorticity spectrum only when the
curvature effect in the base flow is also eliminated. Therefore, the receptivity process is
repeated at x/L =0.55, a location on upstream flat plate. As shown in the eigenvalue
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Figure 29. Eigenvalue trajectory of the first mode at (@) 8L = 144 and 0 < wL /uoo < 12 and
(b) wL/uso =12 and 0 < BL < 144 for rounded corner flow at x /L = 1.
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Figure 30. Eigenvalue trajectory of the first mode at (a) BL = 144 and 0 < wL /u, < 12 and
(b) wL/ux =12 and 0 < BL < 144 for rounded corner flow at x /L = 0.55.

trajectory in figure 30(a), the discrete mode completely progressively merges into the
entropy—vorticity spectrum as the frequency decreases. In fact, when wL/uy < 2.4, the
discrete mode becomes nearly indistinguishable from the entropy—vorticity spectrum. The
eigenvalue trajectory with respect to spanwise wavenumber at x/L = 0.55 is plotted in
figure 30(b). Same with the case at x/L =1, the discrete mode originates from the
slow acoustic spectrum as BL approaches zero. The LST results for x/L = 0.55 further
validate the classification between oblique and planar waves. Based on this clarification,
referring to these oblique waves as the ‘first mode’ may not be entirely precise because
they originate from the entropy—vorticity spectrum. In the subsequent discussion, we use
the term ‘oblique mode’ to describe what was previously referred to as the ‘first mode’.
Some representative conditions are selected to compare the eigenfunctions, shown in
figures 31 and 32. Specifically, at x/L =1, the following five conditions are selected:
(1) BL=144 and wL/ux =12 with K; (ii) BL =144 and wL/us =12 with 0K;
(iii) BL=72 and wL/us =12 with 0K; (iv) L =144 and wL/ux =0 with K;
(v) BL=0and wL /ux = 12 with 0K . The eigenfunctions at SL = 144 and wL /ucc = 12
remain extremely similar regardless of the presence of curvature. As the spanwise
wavenumber decreases to SL = 72, where the largest growth rate appears in figure 29(b),
the eigenfunction maintains its shape. Furthermore, the eigenfunction associated with
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Figure 31. Eigenfunctions of typical conditions at x /L = 0.55: (a) density and (b) streamwise velocity.
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Figure 32. Eigenfunctions of typical conditions at x /L = 0.55: (a) density and (b) streamwise velocity.

the stationary Gortler instability (K, BL =144, wL/us =0) still exhibits a strong
resemblance to the first three conditions. However, when BL =0, the eigenfunction
develops a pronounced free stream signature, likely due to its proximity to the slow
acoustic spectrum. This noticeable transformation of eigenfunctions with decreasing
spanwise wavenumber may indicate a shift in the underlying instability mechanism. For
x/L =0.55, the representative conditions for eigenfunction comparison are as follows:
(i) BL=144 and wL/us =12 with 0K; (ii) BL =48 and wL/us =12 with 0K
(corresponding to the largest growth rate in figure 30b); (iii) SL =0 and oL /ucc =12
with OK. Again, The eigenfunctions of the oblique modes exhibit strong similarity,
whereas differ significantly from that of the planar mode.

To further examine the hypothesis regarding the distinction between oblique and planar
waves, figure 33 presents the variations of phase speed with spanwise wavenumber at
x/L =1 and x/L =0.55, along with the phase speed of slow acoustic waves obtained
from the eigenvalue spectrum of LST. For small spanwise wavenumbers, the phase
speed of the oblique mode closely follows the trend of slow acoustic waves. As the
spanwise wavenumber increases, the phase speed reaches a minimum value in the range
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Figure 33. The variation of phase speed with spanwise wavenumber.

of 0.7~0.8u. With a further increase in wavenumber, the phase speed gradually rises
and approaches u o, aligning with the phase speed of the entropy—vorticity spectrum. This
trend may indicate a transfer in instability mechanisms, potentially shifting from acoustic
waves to Gortler instability.

Therefore, the oblique mode observed in the present study appears to be essentially
equivalent to unsteady Gortler instability, both of which originate from the entropy—
vorticity waves. This explains why the oblique mode undergoes significant amplification
in the presence of concave curvatures, exhibiting nearly linear growth as streaks.

It should be noted that this classification is derived from the present case, which requires
further investigations across more cases to validate this conclusion. Moreover, in 3-D
flows, the flow modulation in spanwise direction can alter the amplification mechanism
of the first mode. Therefore, in the future work, 2-D LST and 3-D PSE will be conducted
on a 3-D baseflow distorted by streaks under the weakly nonlinear framework, and how
the first mode and streaks interact with each other will be examined through nonlinear
resolvent analysis.

5. Conclusions

This paper provides a comprehensive investigation of instabilities in SWBLIs at Mach 6,
with a main focus on the amplification mechanisms revealed by resolvent analysis and
LST. Additionally, it explores the characteristics of global instability. Both compression
corner and shock incidence are examined to identify the commonalities and differences
between these two configurations.

First, the global stability boundary is determined using GSA. For compression corner
flow, this boundary lies between ramp angles of 10.2° and 11°, while for incident shock
flow, it is between deflection angles of 5.5° and 6°. The ranges confirm the accuracy of
the critical criteria proposed by Hao et al. (2021) and Song & Hao (2023). Beyond these
boundaries, a stationary unstable mode appears. In the 12° compression corner flow, the
stationary unstable mode transitions into an oscillatory mode but remains stable at large
wavenumbers. In the 6.5° incident shock flow, an additional oscillatory mode emerges,
which switches to stationary at large wavenumbers.

Under the global stability boundary, resolvent analysis is conducted to explore the
instabilities associated with upstream perturbation amplification. Four distinct flow
conditions are considered: flat plate, no separation, small separation and large separation.
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Figure 35. The eigenvalue spectra from GSA of different grids for (@) 6° incident shock flow at 5L =33.6
and (b) 12° compression ramp flow at L = 21.6.

Equivalent cases between the incident shock and the compression corner flows share
the same pressure rise. The resolvent analysis results demonstrate that streaks are the
most amplified instability, followed by the oblique mode. While the second mode
exhibits insignificant growth and higher Mack’s modes are observed in the presence
of the separation bubble. The main difference in incident shock flows compared with
compression corner flows is that expansion waves suppress the growth of the instability,
resulting in a slightly lower optimal gain for the incident shock flow.

The amplification of streaks is attributed to the Gortler instability, which exhibits
linear growth at large concave curvatures. The growth pattern of the oblique mode is
similar to that of streaks, indicating that the oblique mode is also driven by the Gortler
instability. The second mode shows no obvious growth within the separation bubble, while
experiences amplification after reattachment if the boundary layer thickness matches. In
the rounded compression corner case, it is validated that the growth of both streaks and the
oblique mode is independent of separation. Receptivity analysis and phase speed variation
using LST further suggest that the oblique mode may originate from the entropy—vorticity
mode, reinforcing the conclusion that the oblique mode’s amplification is driven by the
Gortler instability.

Therefore, this paper has revealed the complete instability characteristics of SWBLIs at
Mach 6. Future work will focus on the transition process in SWBLIs, with attention to how
various instabilities and their interactions contribute to the onset of transition.
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Figure 36. The optimal gains from resolvent analysis of different grids for (a) 5° incident shock flow and
(b) 10.2° compression ramp flow at different frequencies. Here symbols are for fine grid.
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Figure 37. Tsosurfaces of the real parts of eigenfunctions u’ for 10.2° compression ramp flow at (a) L =22
(S mode) and (b) BL = 58 (S-O mode), and for 6.5° incident shock flow at (¢) BL = 34 (S mode), (d) BL =72
(O mode) and (e) BL =79 (O-S mode).

1019 A28-32


https://doi.org/10.1017/jfm.2025.10597

https://doi.org/10.1017/jfm.2025.10597 Published online by Cambridge University Press

Journal of Fluid Mechanics

10"
x/L=0.083 wL/u, =0.0024
ook - X/L=0.05 L /1,0 =0.0024
g X/L=0.083 wL/u,, = 16.8
S X/L =005 wL/u_, ~16.8
10°F X/L=0.083 wL/u,,= 168

————— x/L=0.05 wL/u,,=168

E 1 1 n 1 1 1
0 100 200 300 400 500 600
BL

Figure 38. The optimal gains as a function of spanwise wavenumber with different forcing locations for
a = 8.1° compression corner case.
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Appendix A. Grid independent verification

The gird cells used in this paper are detailed in § 3.2, with 700 x 300 cells for GSA and
1100 x 250 for resolvent analysis. For gird independent verification, fine grids consisting
of 1000 x 400 cells are used for GSA and 1300 x 350 cells for resolvent analysis. The
6° incident shock and 12° compression corner cases are examined for GSA, while
grid independence for resolvent analysis is verified by the 5° incident shock and 10.2°
compression corner cases. The skin friction coefficients of the base flows are shown in
figure 34, demonstrating that the grids have achieved convergence for the base flows.
The eigenvalue spectra of different grids at the wavenumber with the maximum growth
rate are presented in figure 35. The growth rates are very close, particularly for the most
unstable modes. Resolvent analysis is performed on fine grids at the frequencies and
wavenumbers corresponding to streaks, the first mode and the second mode. The optimal
gains compared in figure 36 indicate that the grid resolution is sufficiently accurate, with
only minor deviations for the high-frequency, which are within reasonable limits.

Appendix B. The 3-D eigenfunctions of GSA

Figure 37 presents the reconstructed 3-D eigenfunctions of GSA, corresponding to the 2-D
eigenfunctions shown in figure 6.

Appendix C. Forcing location validation

The comparison of optimal gains with different forcing locations for & = 8.1° compression
corner case is shown in figure 38. In this test case, the forcing is applied slightly upstream
at x/L = 0.05. The selected frequencies correspond to those of the streaks, the first mode
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and the second mode. It can be observed that the optimal gains are insensitive to the forcing
location.
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