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MODERATE DEVIATIONS FOR STABLE
RANDOM WALKS IN RANDOM SCENERY
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Abstract

In this paper, a moderate deviation theorem for one-dimensional stable random walks in
random scenery is proved. The proof relies on the analysis of maximum local times of
stable random walks, and the comparison of moments between random walks in random
scenery and self-intersection local times of the underlying random walks.
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1. Introduction

Let ξ1, ξ2, . . . be a sequence of independent, identically distributed (i.i.d.) Z
d -valued random

vectors. A random walk {Sn, n ≥ 0} in Z
d with S0 = 0 is defined as Sn = ∑n

k=1 ξk for each
n ≥ 1. Let {ζi, i ∈ Z} be a sequence of i.i.d. nondegenerate random variables taking values
in R. We refer to {ζi, i ≥ 0} as the random scenery. Then the process {Xn, n ≥ 1} defined by

Xn =
n−1∑
k=0

ζSk
, n ≥ 1,

is called a random walk in random scenery (with underlying random walk {Sn}). The random
walk in random scenery is often rewritten as

Xn =
∑
x∈Zd

ζxLn(x), n ≥ 1,

where Ln(x) = ∑n−1
j=0 1{x}(Sj ) is the local time of {Sn} at x before time n. Random walks in

random scenery have a heuristic interpretation. If a random walker has to pay Yz units every
time he/she visits the site z, then Xn is the total amount he/she pays before time n.

A random walk in random scenery in the d = 1 case was formally introduced and analyzed
by Kesten and Spitzer [13]. They proved that if {ξk, k ≥ 0} and {ζx, x ∈ Z} belong to
domains of attraction of different stable laws with indices 1 < α ≤ 2 and 0 < β ≤ 2,
respectively, then n−δXn converges in distribution as n → ∞ to a nondegenerate variable,
where δ = 1−1/α +1/αβ. Since then there has been much work on random walks in scenery.
For example, when Sn is a simple random walk in Z

d , Csáki et al. [8] studied the strong
invariance principle for Xn in the d = 2 case, Asselah and Castell [2] estimated the probability
that Xn is large in the d ≥ 5 case, and Asselah [1] investigated the moderate deviation for Xn in
the d = 3 case. More generally, if the underlying random walks have finite variance, Gantert
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et al. [11] analyzed the deviations P(Xn/n > bn) for various choices of sequences {bn}n∈N

in [1, ∞) with bn → ∞ as n → ∞ in the case of arbitrary sceneries unbounded to +∞ and
Fleischmann et al. [10] proved moderate deviation principles for Xn in the d ≥ 2 case with
the random sceneries satisfying Cramér’s condition. In addition, when the underlying random
walk has infinite variance, Lewis showed in [15] that a law of the iterated logarithm for Xn can
be obtained provided random normalizers are employed, and provided in [16] some sufficient
conditions to obtain the deterministic normalizers.

We note that Khoshnevian and Lewis [14] proved a large deviation theorem for stable
processes in Brownian scenery which, in essence, is the limit processes of random walks
in random scenery under certain conditions. Their results (see [14, Theorems 1.1 and 5.1]) read
as follows.

Theorem 1.1. ([14].) Suppose that X = {Xt : t ≥ 0} is a strictly stable Lévy processes with
index α ∈ (1, 2] and Y = {Y (t), t ∈ R} is a two-sided Brownian motion. Let L = {Lx

t : t ≥ 0,

x ∈ R} denote the processes of local times of X. Define G(t) := ∫
R

Lx
t dY (x). Then there exist

a positive real number γ1 = γ (α) and some constant γ2 > 0 such that

lim
λ→∞ λ−2α/(1+α) ln P(G1 ≥ λ) = −γ1 (1.1)

and

lim sup
t→∞

(
ln ln t

t

)1−1/2α
G(t)

(ln ln t)3/2 = γ2 almost surely.

Although the constants γ1 and γ2 are not specific, these results are still very interesting. It
is natural to ask whether similar results hold for the random walks in random scenery when
ξ· belongs to the domain of attraction of stable distributions and ζ·, as in, e.g. [8] and [11],
is generally non-Gaussian. This question does not seem to have been addressed directly by
Khoshnevian and Lewis’ approach, since their proofs are heavily dependent on the properties
of Gaussian processes and/or Brownian motions.

The purpose of this short paper is to partly solve the problem for a one-dimensional random
walk in random scenery. We note that Chen [4], by means of the large deviation results
of intersection local times of random walks in [6], investigated limit laws for the energy of
a charged polymer and got interesting moderate deviation principles in different dimensional
cases. Moreover, Chen and Khoshnevisan [5], under the assumption that the underlying random
walk has finite second moments, pointed out that the model of polymers is close to random
walks in random scenery. This result motivates us to study the problem by modifying the
methods used in Chen [4], if we have large deviation principals for the self-intersection local
times of the corresponding stable random walks.

The rest of this paper is organized as follows. In Section 2 we specify the assumptions
and introduce the main result of this paper, and then prove a comparison lemma on moments
between the random walk in random scenery and the self-intersection local times of underlying
random walks. In Section 3 we prove in detail a limit theorem for the logarithmic moment
generating function of the maximum local times of stable random walks. The proof of the main
result is given in Section 4.

Throughout this paper, we use Eω to denote the expectation with respect to the scenery
variables only, and E and P to respectively denote the expectation and probability with respect
to both the random walk and scenery.

We use the notation C and Ck, k ≥ 1, to denote positive, finite constants, whose values can
change at every occurrence, and which never depend on random quantities.
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2. Main result

Let ξ1, ξ2, . . . be nondegenerate, symmetric i.i.d. random variables taking values in Z. Let
S0 = 0 and Sn = ∑n

k=1 ξk for each n ≥ 1. In the remainder of this paper, we suppose that {Sn}
is strongly aperiodic with support Z and assume that there exists g(x), a function of regular
variation with index 1/α, such that Sn/g(n) → X in law as n → ∞, where E(eiλX) = e−|λ|α

and α ∈ (1, 2]. Then, the ξk, k ≥ 1, belong to the domain of attraction of the symmetric
α-stable distribution, and, hence, in this paper we call S = {Sn} the symmetric stable random
walk (with α) for convenience.

Let Ln(x) be the local time of {Sn} at x before time n, i.e. Ln(x) = ∑n−1
j=0 1{x}(Sj ). From

Theorem 4 of [7] we know that, for any positive sequence {bn, n ≥ 0} with bn → ∞ and
bn/n → 0,

lim
n→∞

1

bn

ln P

(∑
x∈Z

L2
n(x) ≥ λ

n2

g(n/bn)

)
= −λα 1

2α

(
2α − 1

2αMα,2

)2α−1

, (2.1)

where

Mα,2 = sup
f ∈Fα

{
‖f ‖2

4 −
∫ ∞

−∞
|λ|α|f̂ (λ)|2 dλ

}
< ∞,

f̂ is the Fourier transform of f , and

Fα =
{
f ∈ L2(R) : ‖f ‖2 = 1 and

∫ ∞

−∞
|λ|α|f̂ (λ)|2 dλ < ∞

}
.

For simplicity, we always assume in the sequel that

σ := lim
x→∞ x−1/αg(x) > 0.

Therefore, from (2.1), we obtain

lim
n→∞

1

bn

ln P

(∑
x∈Z

L2
n(x) ≥ λ

n2

(n/bn)1/α

)
= −λα σα

2α

(
2α − 1

2αMα,2

)2α−1

. (2.2)

For convenience, in the rest of this paper, let

Cα := σα

(
2α − 1

2αMα,2

)2α−1

.

Consider the stable random walk in random scenery

Xn =
n−1∑
k=0

ζSk
=

∑
x∈Z

ζxLn(x),

where the random scenery ζ = {ζx, x ∈ Z}, independent of {Sn, n ≥ 0}, is a family of
nondegenerate, symmetric, i.i.d. real-valued random variables satisfying Equation (1.2) of [4],
i.e.

E(ζ 2
1 ) = 1 and E(eλ0ζ

2
1 ) < ∞ for some λ0 > 0. (2.3)

Our main result is a moderate deviation theorem for Xn.
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Theorem 2.1. Under the above assumptions,

lim
n→∞

1

bn

ln P(±Xn ≥ λn1−1/2αb
1/2+1/2α
n ) = −α + 1

α
λ2α/(α+1)

(
Cα

2
√

8α

)1/(α+1)

for any positive sequence {bn} satisfying

bn → ∞ and bn = o(n1/(2α+1)).

Remark 2.1. Theorem 2.1 generalizes the corresponding result in [14] (see (1.1)) to random
walks in general random sceneries. Furthermore, we specify that

γ1 = α + 1

α

(
Cα

2
√

8α

)1/(α+1)

.

The proof of Theorem 2.1 is similar to that of Theorem 1.2 of [4] with some necessary
modifications to handle the technical complexities caused by the stable random walks. The
basic idea is to compare the moments between the random walks in random scenery and the
self-intersection local times of underlying random walks by using localization. See [4] for more
details and [6] for some related tricks.

In the rest of this section we develop an analogue of Proposition 2.1 of [4] to compare the
moments of the localized random walks in random scenery with those of the corresponding
self-intersection local times. Recall that the self-intersection local times of S = {Sn} are

Hn =
∑
x∈Z

L2
n(x).

For positive constants Kn = Mnn
1−1/αb

1/α
n > 0, where

Mn → ∞ and
M3α

n b2α+1
n

n
→ 0 (2.4)

as n → ∞, define
X̃n = Xn1{supx∈Z Ln(x)≤Kn},
H̃n = Hn1{supx∈Z Ln(x)≤Kn},

and

Am(n) =
∑

(y1,y2,...,ym)∈Bm

E

(
1{supx∈Z Ln(x)≤Kn

}
m∏

k=1

L2
n(yk)

)
,

where m, n = 1, 2, . . . and Bm = {(y1, . . . , ym) ∈ Z
m; y1, . . . , ym are distinct}. By applying

similar arguments used in the proof of Proposition 2.1 of [4] we obtain the following result.

Lemma 2.1. There exists a constant C independent of n, m, and the choice of Kn such that

E(X̃m
n ) ≤ m!

[m/2]∑
l=1

1

l!2−l/2Km−2l
n C(m−2l)/2

(
m − l − 1

m − 2l

)
E(H̃ l

n). (2.5)

On the other hand, for any integers m, n ≥ 1,

E(X̃2m
n ) ≥ (2m!)

2mm! Am(n) (2.6)
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and

E(H̃m
n ) ≤

m∑
l=1

(
m

l

)
lm−lK2(m−l)

n Al(n). (2.7)

Proof. As the proof follows the same lines as that of Proposition 2.1 of [4] with some
modifications, to save space, we only show the modification necessary for the proof of (2.5).

By replacing 
n(x) in Equation (2.10) of [4, p. 644] with 2ζxLn(x) and applying the same
arguments that lead to Equation (2.14) of [4, p. 646], we obtain

E(X̃m
n ) =

[2−1m]∑
l=1

1

l!
∑

i1+···+il=m
i1,...,il≥2

m!
(i1)! · · · (il)!

×
∑

(y1,...,ym)∈Bl

E

(
1{supx∈Z Ln(x)≤Kn}

l∏
k=1

Ln(yk)
ik Eω(ζ ik

yk
)

)
. (2.8)

Condition (2.3) implies that there exists a constant C1 > 1 such that

E(ζ i
x) ≤ (E(ζ 2i

x ))1/2 ≤ (i! Ci
1)

1/2

for all i ≥ 3. Therefore, from (2.8) we obtain

E(X̃m
n ) ≤ m!

[2−1m]∑
l=1

1

l!
∑

i1+···+il=m
i1,...,il≥2

C
i1/2
i1

· · · Cil/2
il√

(i1)! · · · (il)!

×
∑

(y1,...,ym)∈Bl

E

(
1{supx∈Z Ln(x)≤Kn}

l∏
k=1

Ln(yk)
ik

)
,

where C2 = 1 and Ck = C1 for k ≥ 3. Since

1{supx∈Z Ln(x)≤Kn}
l∏

k=1

Ln(yk)
ik ≤ Km−2l

n 1{supx∈Z Ln(x)≤Kn}
l∏

k=1

Ln(yk)
2,

when i1 + · · · + il = m and i1, . . . , il ≥ 2, we further have

E(X̃m
n ) ≤ m!

[2−1m]∑
l=1

1

l!
∑

i1+···+il=m
i1,...,il≥2

C
i1/2
i1

· · · Cil/2
il√

(i1)! · · · (il)! Km−2l
n E(H̃ l)

≤ m!
[2−1m]∑

l=1

2−l/2

l! Km−2l
n E(H̃ l)

∑
i1+···+il=m
i1,...,il≥2

C
i1/2
i1

· · · Cil/2
il

. (2.9)

Let k be the number of elements in the set {0 ≤ j ≤ l, ij = 2}. Then m ≥ 2k + 3(l − k),
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which leads to l − k ≤ m − 2l. Therefore,∑
i1+···+il=m

i1,...,il≥2

C
i1/2
i1

· · · Cil/2
il

≤
∑

i1+···+il=m
i1,...,il≥2

C
(m−2k)/2
1

=
∑

i1+···+il=m
i1,...,il≥2

C
(m−2l+2l−2k)/2
1

≤
∑

i1+···+il=m
i1,...,il≥2

C
3(m−2l)/2
1

= C(m−2l)/2
(

m − l − 1

m − 2l

)
, (2.10)

where C = C3
1 . Substituting (2.10) into (2.9) yields (2.5).

Remark 2.2. It is readily seen that X̃n is symmetric, and, hence, by (2.5), E(X̃2m+1
n ) = 0 for

each integer m ≥ 0.

3. Deviations of the maximum local time of stable random walks

In this section we prove a limit theorem for the logarithmic moment generating function of
the maximum local times of the symmetric stable random walk Sn. This is not only an important
step in the proof of the main result, but is also of independent interest. The main result of this
section is as follows.

Theorem 3.1. There exists a constant C > 0 such that, for any λ > 0 and positive sequence
{bn} with bn → ∞ and bn = o(n) as n → ∞,

lim sup
n→∞

1

bn

ln E

(
exp

{
λ

(
bn

n

)1−1/α

sup
x

Ln(x)

})
<

1

2
(2Cλ ∨ 1)α/(α−1) < +∞. (3.1)

In the case where the random walks have finite second moment, the finiteness of the lim sup
in (3.1) seems to be well known; it was used by Chen [4] without specific proof. Our result
deals with the case of stable random walks and provides an explicit constant as the upper bound.
The proof of the theorem is based on the refinements of some results in [12] and Chen’s ideas
on local times (see [3]). To avoid unnecessary repetition with the material included in [12],
identical parts are omitted.

For convenience, let cn := (n/bn)
1/α in this section.

The following lemma generalizes Lemma 9 of [12].

Lemma 3.1. There is a constant C > 0 such that if |x − y| ≤ ηcn then

P

(
cn

n
|Ln(x) − Ln(y)| ≥ Cη(α−1)/4

)
≤ ηbn(α−1)/2

for all n, 0 < η < 1.

Proof. By the same arguments as those used in the proof of the first part of Lemma 9 of [12]
we obtain, for some constant C > 0,

E[(Ln(x) − Ln(y))2r ] ≤ (2r)! Cr(ma−1
m )r(|x − y|Q(|x − y|))−r ,
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where m = [n/r] + 1, Q(x) = E[(x−1|ξ1| ∧ 1)2] for x ≥ 0, and ax satisfies Q(ax) = 1/x for
x > 1/Q(1) and ax = 1 for x ∈ [0, 1/Q(1)]. Note that ξ1 is in the domain of attraction of an
α-stable law with α ∈ (1, 2]. There exists a constant C1 > 0 such that limx→∞ xαQ(x) = C1.
Therefore, for any 1 ≤ x ≤ y, xαQ(x) ≥ C2y

αQ(y) for some constant C2 and an = O(n1/α).
Now, since |x − y| ≤ ηcn, we obtain

|x − y|Q(|x − y|) ≥ C2η
−(α−1)cnQ(cn),

and, hence,

E

[(
cn

n
(Ln(x) − Ln(y))

)2r]
≤

(
C

C2

)r

(2r)2r

(
cn

n

)2r(
m

am

)r( 1

cnQ(cn)

)r

ηr(α−1)

≤ Cr
3r2r

(
cn

n

)2r(
n

r

)(1−1/α)r

c(α−1)r
n ηr(α−1)

= Cr
3rr+r/αcr+αr

n

1

nr+r/α
ηr(α−1)

= Cr
3

(
r

bn

)r+r/α

ηr(α−1).

Let r = bn. Then

E

[(
cn

n
(Ln(x) − Ln(y))

)2bn
]

≤ C
bn

3 ηbn(α−1).

Using Markov’s inequality, we obtain

P

(
cn

n
|Ln(x) − Ln(y)| ≥ √

C3η
(α−1)/4

)
≤ 1

C
bn

3 ηbn(α−1)/2
E

[(
cn

n
(Ln(x) − Ln(y))

)2r]

≤ ηbn(α−1)/2,

which is the desired conclusion if we take C = √
C3.

Lemma 3.2. For any ε > 0, there exist a constant 0 < δ < 1 independent of {cn} and a
constant n0 > 0 such that

P

(
sup

|x−y|≤δcn

cn

n
|Ln(x) − Ln(y)| ≥ ε

)
≤ e−bn for all n > n0.

Proof. Since the random walk is α-stable with α ∈ (1, 2], by Lemma 3 of [12], there exist a
constant C > 0 and λ > 1 such that P(max1≤k≤n |Sk| ≥ Man) ≤ CM−λ for all n and M > 1.
Therefore,

P(Ln(x) �= 0 for some |x| ≥ e2bnan) ≤ Ce−2λbn < Ce−2bn .

Let γ = 2−(α−1)/4. Choose δ < e−16/(α−1) such that Cδ(α−1)/4 ≤ ε(1 − γ ), where C is the
constant in Lemma 3.1, and let j = min{k, δcn ≤ 2k}. For 0 < x < 2j ≤ 2δcn < cn, we may
write x = ∑j

i=0 χi2i , where each χi = 0 or 1. Let xm = ∑j
i=m χi2i . By the same arguments

used in the proof of Lemma 11 of [12] (see the last three lines on page 79), from Lemma 3.1
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we obtain

P

(
max

0<x≤δcn

cn

n
|Ln(0) − Ln(x)| ≥ ε

)

≤ P

(
max

0<x≤2j

cn

n
|Ln(0) − Ln(x)| ≥ ε

)

≤
j∑

m=0

2j−m P

(
cn

n
|Lk(xm+1) − Lk(xm)| ≥ εγ j−m(1 − γ )

)

≤
j∑

m=0

2j−m P

(
cn

n
|Lk(xm+1) − Lk(xm)| ≥ C(2m−j δ)(α−1)/4

)

≤
j∑

m=0

2j−m(2m−j δ)bn(α−1)/2.

Note that bn → ∞ implies that

j∑
m=0

2(m−j)(bn(α−1)/2−1) ≤ 2

for sufficiently large n. Therefore,

P
(

max
0<x≤δcn

cn

n
|Lk(0) − Lk(x)| ≥ ε

)
≤ 2δbn(α−1)/2

for sufficiently large n. Since there are at most 2(e2bnan + cn)/δcn + 2 disjoint short intervals
of length δcn in [−(e2bnan + cn), e2bnan + cn], by the same arguments used in the proof of
Lemma 11 of [12] (see pages 79 and 80), there exist constants C1, C2 > 0 which are independent
of cn and δ such that

P

(
sup

|x−y|≤δcn

cn

n
|Ln(x) − Ln(y)| ≥ ε

)

≤ Ce−2bn + C1δ
bn(α−1)/2 e2bnan + cn

δcn

≤ C2(e
−2bn + δbn(α−1)/2−1e2bnb

1/α
n )

= C2

(
e−2bn + exp

{
bn

(
ln bn

αbn

+
(

α − 1

2
− 1

bn

)
ln δ + 2

)})
.

Since bn → ∞, we can choose suitable n0 such that, for n > n0, 2C2e−bn < 1 and

ln bn

αbn

+
(

α − 1

2
− 1

bn

)
ln δ + 2 ≤ ln bn

αbn

+
(

α − 1

2
− 1

bn

) −16

α − 1
+ 2 ≤ −2.

Consequently, for all n ≥ n0,

P

(
sup

|x−y|≤δcn

cn

n
|Ln(x) − Ln(y)| ≥ ε

)
≤ 2C2e−2bn ≤ e−bn,

which completes the proof.
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Lemma 3.3. For sufficiently large n,

P

(
cn

n
sup
x

Ln(x) ≥ 1

δ
+ ε

)
≤ e−bn, (3.2)

where δ and ε are the constants in Lemma 3.2.

Proof. Suppose that, for some n > n0 with cn > 2/δ,

P

(
cn

n
sup
x

Ln(x) ≥ 1

δ
+ ε

)
> e−bn .

Then Lemma 3.2 implies that

P

(
cn

n
sup
x

Ln(x) ≥ 1

δ
+ ε, sup

|x−y|≤δcn

cn

n
|Ln(x) − Ln(y)| < ε

)

≥ P

(
cn

n
sup
x

Ln(x) ≥ 1

δ
+ ε

)
− P

(
sup

|x−y|≤δcn

cn

n
|Ln(x) − Ln(y)| ≥ ε

)

≥ P

(
cn

n
sup
x

Ln(x) ≥ 1

δ
+ ε

)
− e−bn

> 0.

Note that {
cn

n
sup
x

Ln(x) ≥ 1

δ
+ ε, sup

|x−y|≤δcn

cn

n
|Ln(x) − Ln(y)| < ε

}

⊂
{∑

x∈Z

cn

n
Ln(x) ≥ 2

δ
(δcn − 1)

}

⊂
{∑

x∈Z

cn

n
Ln(x) > cn

}
.

It follows that

P

(∑
x∈Z

cn

n
Ln(x) > cn

)
> 0,

which contradicts the fact that ∑
x∈Z

cn

n
Ln(x) = cn.

Therefore, for any n > max{n0, min{n : cn > 2/δ}}, (3.2) holds.

Lemma 3.4. For any nonnegative integer r , there exists a positive constant C independent of
{cn} such that

E

[(
cn

n
sup
x

Ln(x)

)r]
≤ Cr

(
1 + r!

br
n

)
.

Proof. By Lemma 1 of [3] we obtain, for any a, b > 0,

P

(
cn

n
sup
x

Ln(x) > a + b

)
≤ P

(
cn

n
sup
x

Ln(x) > a

)
P

(
cn

n
sup
x

Ln(x) > b

)
.
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Therefore, we can infer from Lemma 3.3 that

F(u) := P

(
cn

n
sup
x

Ln(x) > u

)
≤ (e−bn)[u/C1] ≤ e−bn(u/C1−1) (3.3)

for all u > C1 := 1/δ + ε. Hence,

E

[(
cn

n
sup
x

Ln(x)

)r]
=

∫ ∞

0
rxr−1F(x) dx

≤ (2C1)
r +

∫ ∞

2C1

rxr−1e−bn(x/C1−1) dx

≤ (2C1)
r +

∫ ∞

0
rxr−1e−bnx/2C1 dx

= (2C1)
r + r!

(bn/2C1)r

≤ (2C1)
r

(
1 + r!

br
n

)
.

Letting C = 2C1 completes the proof.

Proof of Theorem 3.1. If λ ≤ 1/2C, where C is the constant in Lemma 3.4, then, by
Lemma 3.4 and Taylor’s expansion, for any {bn} satisfying the conditions in Theorem 3.1
and sufficiently large n, we have

ln E

(
exp

{
λ

(
bn

n

)1−1/α

sup
x

Ln(x)

})
= ln E

(
exp

{
λbn

cn

n
sup
x

Ln(x)

})

= ln
∞∑

k=0

(λbn)
k

k! E

[(
cn

n
sup
x

Ln(x)

)k]

≤ ln
∞∑

k=0

(λbn)
k

k!
(

Ck + Ck k!
bk
n

)

= ln

(
eλCbn + 1

1 − λC

)
. (3.4)

If λ > 1/2C then

ln E

(
exp

{
λ

(
bn

n

)1−1/α

sup
x

Ln(x)

})

= ln E

(
exp

{
1

2C

(
bn(2Cλ)α/(α−1)

n

)1−1/α

sup
x

Ln(x)

})
.

Letting b′
n = bn(2Cλ)α/(α−1), from (3.4) we obtain

ln E

(
exp

{
λ

(
bn

n

)1−1/α

sup
x

Ln(x)

})
≤ ln(e(2Cλ)α/(α−1)bn/2 + 2) (3.5)

for sufficiently large n. From (3.4) and (3.5), it is easy to obtain the desired conclusion. This
completes the proof.
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4. Proof of the main result

In this section we complete the proof of Theorem 2.1. Although this part is in essence the
same as the proof in [4, pp. 651–655], we make some modifications owing to the stable random
walks and introduce some simplifications by using the symmetry of the sceneries.

Owing to the fact that Hn ≤ n supx∈Z Ln(x) for any λ > 0,

E

(
exp

{
λ

b
1−1/α
n

n2−1/α
Hn

})
≤ E

(
exp

{
λ

(
bn

n

)1−1/α

sup
x∈Z

Ln(x)

})
,

which, together with Theorem 3.1, implies that

lim
n→∞

1

bn

ln E

(
exp

{
λ

b
1−1/α
n

n2−1/α
Hn

})
< +∞. (4.1)

Therefore, by Varadhan’s integral lemma (see Theorem 4.3.1 of [9, p. 137]), it follows from
(2.2) and (4.1) that

lim
n→∞

1

bn

ln E

(
exp

{
λ

b
1−1/α
n

n2−1/α
Hn

})
= sup

y>0

{
yλ − Cα

2α
yα

}
= α − 1

2α
Cα

(
2λ

Cα

)α/(α−1)

. (4.2)

The symmetry of X̃n yields

E

(
exp

{
−θ

b
1/2−1/2α
n

n1−1/2α
X̃n

})
= E

(
exp

{
θ
b

1/2−1/2α
n

n1−1/2α
X̃n

})
, (4.3)

and, by Taylor’s expansion and (2.5),

E

(
exp

{
θ
b

1/2−1/2α
n

n1−1/2α
X̃n

})

= 1 +
∞∑

k=2

θk

k!
(

b
1/2−1/2α
n

n1−1/2α

)k

E(X̃k
n)

≤ 1 +
∞∑

k=2

θk

k!
(

b
1/2−1/2α
n

n1−1/2α

)k

k!
[k/2]∑
l=1

1

l!2−l/2Kk−2l
n C(k−2l)/2

(
k − l − 1

k − 2l

)
E(H̃ l

n).

Furthermore, for any θ > 0 and sufficiently large n,

E

(
exp

{
θ
b

1/2−1/2α
n

n1−1/2α
X̃n

})

≤ 1 +
∞∑
l=1

θ2l

l!
(

b
1/2−1/2α
n

n1−1/2α

)2l

2−l/2 E(H̃ l
n)

×
∞∑

k=2l

θk−2l

(
b

1/2−1/2α
n

n1−1/2α

)k−2l

Kk−2l
n C(k−2l)/2

(
k − l − 1

k − 2l

)

= 1 +
∞∑
l=1

θ2l

l!
(

b
1/2−1/2α
n

n1−1/2α

)2l

2−l/2
(

1 −
√

CθKnb
1/2−1/2α
n

n1−1/2α

)−(l−1)

E(H̃ l
n)

≤ E

(
exp

{
θ2

√
2

b
1−1/α
n

n2−1/α

(
1 −

√
CθKnb

1/2−1/2α
n

n1−1/2α

)−1

H̃n

})
, (4.4)
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where we have used the facts that

(1 − x)−(l−1) =
∞∑

k=0

(
l − 1 + k

k

)
xk

for |x| < 1, and, as n → ∞,
√

CθKnb
1/2−1/2α
n

n1−1/2α
=

√
CθMnb

1/2+1/2α
n

n1/2α
→ 0

by (2.4). Combining (4.4) with (4.3) and (4.2) yields

lim sup
n→∞

1

bn

E

(
exp

{
±θ

b
1/2−1/2α
n

n1−1/2α
X̃n

})
≤ α − 1

2α
Cα

(√
2θ2

Cα

)α/(α−1)

. (4.5)

On the other hand, from Remark 2.2 and Taylor’s expansion, it follows that

E

(
exp

{
±θ

b
1/2−1/2α
n

n1−1/2α
X̃n

})
= 1 +

∞∑
k=1

θ2k

(2k)!
(

b
1/2−1/2α
n

n1−1/2α

)2k

E(X̃2k
n ). (4.6)

By (2.6),

∞∑
k=1

θ2k

(2k)!
(

b
1/2−1/2α
n

n1−1/2α

)2k

E(X̃2k
n ) ≥

∞∑
k=1

1

k!
θ2k

2k

(
b

1/2−1/2α
n

n1−1/2α

)2k

Ak(n). (4.7)

Letting

θ̄ = θ exp

{
−θ2 K2

nb
1−1/α
n

2n2−1/α

}
≤ θ,

by (2.7) we have

∞∑
k=1

θ̄2k

2kk!
(

b
1/2−1/2α
n

n1−1/2α

)2k

E(H̃ k
n )

≤
∞∑

k=1

θ̄2k

2kk!
(

b
1/2−1/2α
n

n1−1/2α

)2k k∑
l=1

(
k

l

)
lk−lK2(k−l)

n Al(n)

=
∞∑
l=1

θ̄2l

2l l!
(

b
1/2−1/2α
n

n1−1/2α

)2l

Al(n)

∞∑
k=l

lk−l

(k − l)!K
2(k−l)
n

(
b

1/2−1/2α
n

n1−1/2α

)2(k−l)(
θ̄2

2

)k−l

=
∞∑
l=1

θ̄2l

2l l!
(

b
1/2−1/2α
n

n1−1/2α

)2l

Al(n) exp

{
θ̄2 lK2

nb
1−1/α
n

2n2−1/α

}

≤
∞∑
l=1

1

2l l!
(

b
1/2−1/2α
n

n1−1/2α

)2l

Al(n)

(
θ̄2 exp

{
θ2 K2

nb
1−1/α
n

2n2−1/α

})l

.

Therefore,

∞∑
k=1

θ̄2k

2kk!
(

b
1/2−1/2α
n

n1−1/2α

)2k

E(H̃ k
n ) ≤

∞∑
l=1

θ2l

2l l!
(

b
1/2−1/2α
n

n1−1/2α

)2l

Al(n),
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which, together with (4.7), yields

1 +
∞∑

k=1

θ2k

(2k)!
(

b
1/2−1/2α
n

n1−1/2α

)2k

E(X̃2k
n ) ≥ 1 +

∞∑
k=1

θ̄2k

2kk!
(

b
1/2−1/2α
n

n1−1/2α

)2k

E(H̃ k
n )

= E

(
exp

{
θ̄2

2

b
1−1/α
n

n2−1/α
H̃n

})
. (4.8)

Note that H̃n ≤ nKn and that

K3
nb

1−1/α
n

n2−1/α

b
1−1/α
n

n1−1/α
= M3

nb
2+1/α
n

n1/α
→ 0

by (2.4). We have

θ̄2

2

b
1−1/α
n

n2−1/α
H̃n = θ2

2

b
1−1/α
n

n2−1/α
H̃n − θ2

2

[
1 − exp

{
−θ2 K2

nb
1−1/α
n

n2−1/α

}]
b

1−1/α
n

n2−1/α
H̃n

≥ θ2

2

b
1−1/α
n

n2−1/α
H̃n − θ4

2

K3
nb

1−1/α
n

n2−1/α

b
1−1/α
n

n1−1/α

= θ2

2

b
1−1/α
n

n2−1/α
H̃n − o(1). (4.9)

Combining (4.6) with (4.7)–(4.9), we further obtain

E

(
exp

{
±θ

b
1/2−1/2α
n

n1−1/2α
X̃n

})
≥ E

(
exp

{
θ2

2

b
1−1/α
n

n2−1/α
H̃n

})
− o(1). (4.10)

Observe that

E

(
exp

{
θ2

2

b
1−1/α
n

n2−1/α
H̃n

})

≥ E

(
exp

{
θ2

2

b
1−1/α
n

n2−1/α
Hn

}
1{supx∈Z Ln(x)≤Kn}

)

= E

(
exp

{
θ2

2

b
1−1/α
n

n2−1/α
Hn

})
− E

(
exp

{
θ2

2

b
1−1/α
n

n2−1/α
Hn

}
1{supx∈Z Ln(x)>Kn}

)
. (4.11)

By the Cauchy–Schwarz inequality,

1

bn

ln E

(
exp

{
θ2

2

b
1−1/α
n

n2−1/α
Hn

}
1{supx∈Z Ln(x)>Kn}

)

≤ 1

bn

ln

[
E

(
exp

{
θ2 b

1−1/α
n

n2−1/α
Hn

})1/2

P
(

sup
x∈Z

Ln(x) > Kn

)1/2
]

= 1

2bn

ln E

(
exp

{
θ2 b

1−1/α
n

n2−1/α
Hn

})
+ 1

2bn

ln P
(

sup
x∈Z

Ln(x) > Kn

)
. (4.12)

In addition, since Kn = Mnn
1−1/αb

1/α
n and Mn → ∞, by (3.3) we obtain

1

2bn

ln P
(

sup
x∈Z

Ln(x) > Kn

)
≤ 1

2bn

ln e−[Mn/C1]bn → −∞, (4.13)
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which, together with (4.1) and (4.12), implies that

1

bn

ln E

(
exp

{
θ2

2

b
1−1/α
n

n2−1/α
Hn

}
1{supx∈Z Ln(x)>Kn}

)
→ −∞. (4.14)

Consequently, it follows from (4.11) and (4.14) that

lim inf
n→∞

1

bn

ln E

(
exp

{
θ2

2

b
1−1/α
n

n2−1/α
H̃n

})
≥ lim inf

n→∞
1

bn

ln E

(
exp

{
θ2

2

b
1−1/α
n

n2−1/α
Hn

})

= α − 1

2α
Cα

(√
2θ2

Cα

)α/(α−1)

. (4.15)

Combining (4.5), (4.10), and (4.15), we obtain

lim
n→∞ E

(
exp

{
±θ

b
1/2−1/2α
n

n1−1/2α
X̃n

})
= α − 1

2α
Cα

(√
2θ2

Cα

)α/(α−1)

. (4.16)

According to the Gärtner–Ellis theorem (see [9, Theorem 2.3.6, p. 44]), (4.16) implies that X̃n

satisfies the moderate deviation given in Theorem 2.1. By [9, Theorem 4.2.13, p. 130], the
moderate deviation passes from X̃n to Xn through the exponential equivalence given by

lim sup
n→∞

1

bn

ln P(X̃n �= Xn) = lim
n→∞

1

bn

ln P
(

sup
x∈Z

Ln(x) > Kn

)
= −∞,

which follows from (4.13). The proof is complete.
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