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ROOT CLOSURE IN INTEGRAL DOMAINS, III

DAVID F. ANDERSON AND DAVID E. DOBBS

ABSTRACT. If A is a subring of a commutative ring B and if n is a positive integer,
a number of sufficient conditions are given for “A[[X]] is n-root closed in B[[X]]” to be
equivalent to “A is n-root closed in B.” In addition, it is shown that if S is a multiplicative
submonoid of the positive integers P which is generated by primes, then there exists a
one-dimensional quasilocal integral domain A (resp., a von Neumann regular ring A)
such that S ≥ fn 2 P j A is n-root closedg (resp., S ≥ fn 2 P j A[[X]] is n-root
closedg).

1. Introduction. All rings considered below are commutative with identity. As
usual, if A is a subring of B (with the same 1) and n ½ 1 is an integer, we say that A
is n-root closed in B if bn 2 A with b 2 B implies b 2 A; in case B is the total quotient
ring of A and the above condition holds, we say that A is n-root closed. Much of the
literature on n-root closedness has focused on domains and connections with seminor-
mality (cf . [6], [7], [1], [3], [8], [5]); the emphasis on von Neumann regularity in [14] is
a notable exception.

It is known [8, Theorem 1] that if A is a subring of B, then the polynomial ring A[X]
is n-root closed in B[X] if and only if A is n-root closed in B. Hence if A is a domain with
quotient field K, then A[X] is n-root closed if and only if A[X] is n-root closed in K[X],
since K[X] is integrally closed and contained in the quotient field K(X) of A[X]. Thus if
A is a domain, then A[X] is n-root closed if and only if A is n-root closed. However, the
analogous assertions for rings of formal power series do not hold. Indeed, [14, Example
1] shows that Z[[X]] is not n-root closed in Q[[X]] for any n ½ 2, even though Z is root
closed (that is, n-root closed for each n).

In [5], necessary and sufficient conditions were given on an extension A ² B of do-
mains for A[[X]] to be n-root closed in B[[X]]. Moreover, it was shown that A[[X]] is
n-root closed for a single indeterminate X if and only if A[[X]] is n-root closed for any
nonempty family of indeterminates X [5, Corollary 2.7]. (Here, A[[X]] is defined as the
union of the rings A[[Y]], where Y ranges over the finite subsets of X: cf. [10, (1.1)].)

In the second section, we give several cases where “A[[X]] is n-root closed in B[[X]]”
is equivalent to “A is n-root closed in B.” We also show that if A[[X]] is n-root closed in
K[[X]] for a subring A of a field K, then A is a field. Some of the material in the second
section can be deduced from [5] (we specify the relevant connections at the appropriate
points below), but it is included here for two reasons. First, the approach and methods of
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proof here are often more direct than those of [5] because the papers have different goals.
Second, much of the material in the second section is preparatory for our main result in
the third section and, thus, helps to make the paper self-contained.

The final section is devoted to the multiplicative monoid C (A), in the sense of [1] and
[2], namely C (A) = fn 2 P j A is n-root closedg, where P is the set of positive integers.
Any such monoid is generated by primes since for integers m, n ½ 2, A is mn-root closed
(in B) if and only if A is both m-root closed (in B) and n-root-closed (in B). Conversely,
it was shown in [1, Theorem 2.7] that any multiplicative submonoid of P generated by
primes can be realized as C (A) for a suitable domain A; if the monoid does not contain
2, then it was shown in [2, Theorem 6] that A can be arranged to be a one-dimensional
Noetherian local domain. In Theorem 3.3, we remove the restriction on the prime 2,
at the expense of replacing “Noetherian local” with “quasilocal,” while preserving the
one-dimensionality of the exhibited domain A. We use some results from Section 2 and
[5] to show that the domain A in Theorem 3.3 can also be chosen so that C (A[[X]])
= C (A). This equality fails for an arbitrary ring A, although C (A[X]) = C (A) for all A
and any X. Our final result, Theorem 3.5, states that any multiplicative submonoid of P
generated by primes can be realized as C (A[[X]]) for a suitable von Neumann regular
ring A. In particular, if a ring A is root closed (that is, if C (A) = P), then C (A[[X]]) can
be essentially arbitrary.

2. Root closure. As usual, a domain A is said to be completely integrally closed
(in its quotient field K) if cui 2 A for all integers i ½ 1, 0 Â≥ c 2 A, u 2 K implies
u 2 A. Recall that any completely integrally closed domain is integrally closed [10, The-
orem 13.1(2)], and hence root closed. Moreover, A[[X]] is completely integrally closed
if and only if A is completely integrally closed; also, if and only if A[X] is completely
integrally closed [10, Theorem 13.9]. Similarly, we recalled in the introduction that A is
n-root closed if and only if A[X] is n-root closed. However, as the next example shows,
“n-root closed” does not behave so simply for power series rings.

EXAMPLE 2.1. (a) In [14, Example 1], it is shown that although Z is root closed,
Z[[X]] is not n-root closed in Q[[X]] for any n ½ 2. Note that Z[[X]] is however root
closed, in fact, completely integrally closed since Z is completely integrally closed.

(b) A = Z + TQ[[T]] is root closed in B = Q[[T]] by [4, Theorem 1.7] since Z is root
closed in Q and A and B have common ideal TQ[[T]]. In fact, A is a two-dimensional
Bézout domain [10, p.202, Exercise 11(4), and p. 286, Exercise 13(3)], and hence inte-
grally closed (cf . [10, Theorem 23.4(1)]). However, A[[X]] is not n-root closed in B[[X]]
for any n ½ 2 since Z[[X]] is not n-root closed in Q[[X]].

Clearly, A is n-root closed (in B) if A[[X]] is n-root closed (in B[[X]). The converse is
false; indeed, Example 2.1(b) shows that A[[X]] need not be root closed even when A is
integrally closed. Such results should be contrasted with the behavior of “seminormality.”
(As in [8], a domain A with quotient field K is said to be seminormal if u 2 K, u2 2

A, u3 2 A implies u 2 A. If A is n-root closed for some n ½ 2, then A is seminormal;
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but the converse is false.) On the positive side, A[[X]] is seminormal if and only if A is
seminormal [9].

We often restrict to the case where A is p-root closed in B for p a prime. When A
has positive characteristic, our next lemma often allows us to restrict to studying n-root
closure when (n, char A) = 1, that is, when n is invertible in A. Lemma 2.2 (a) was stated
without proof in [5, Remark 1.20] as it also follows from a much deeper result ([5, The-
orem 1.18], fortified with [5, Remark 1.5(v)]).

LEMMA 2.2. (a) Let A be a subring of a ring B with char A ≥ p prime. Then A[[X]]
is p-root closed in B[[X]] if and only A is p-root closed in B.

(b) The following conditions are equivalent for a domain A with quotient field K and
char A = p prime:

(i) A is p-root closed;
(ii) A[[X]] is p-root closed;

(iii) A[[X]] is p-root closed in K[[X]].

PROOF. These assertions all follow easily from the fact that (
P

aiXi)p =
P

ap
i Xip forP

aiXi 2 B[[X]] when char A = p is prime.

Our next result isolates a reason that the domains in Example 2.1 fail to be n-root
closed.

PROPOSITION 2.3. Let A be a subring of a domain B with A n-root closed in B and n
nonzero in A. Let f ≥

P
biXi 2 B[[X]] with b0 nonzero and f n 2 A[[X]]. Then b0 2 A and

f 2 A[1Û(nb0)][[X]]. If, in addition, b0 and n are each invertible in A, then f 2 A[[X]].

PROOF. Let f ≥
P

biXi 2 B[[X]] with f n 2 A[[X]]. Then b0 2 A since A is n-root
closed in B. Suppose now by induction that b0, . . . , bm�1 2 A[1Ûnb0)]. Then, by com-
paring coefficients of Xm, we have that nbn�1

0 bm + b 2 A ² A[1Ûnb0)], where b is a sum
of products of b0, . . ., bm�1. By the induction hypothesis, b 2 A[1Û(nb0)], and thus also
bm 2 A[1Û(nb0)]. Hence f 2 A[1Ûnb0)][[X]]. The final assertion follows immediately.

It may be helpful to record the fact that Proposition 2.3 remains valid if the hypothesis
“A is n-root closed in B” is replaced with “b0 2 A.”

The special case of the next corollary when B is also a field is actually a special case of
[14, Theorem 1], since any field is von Neumann regular. Corollary 2.4 is also a special
case of [5, Theorem 1.27], since any field is a p-injective ring. However, the proof given
below is much easier than the proofs of the results just cited from [14] and [5].

COROLLARY 2.4. Let k be a subfield of a ring B. Then k[[X]] is n-root closed in
B[[X]] if and only k is n-root closed in B.

PROOF. Clearly, k is n-root closed in B if k[[X]] is n-root closed in B[[X]]. For the
converse, we may assume by Lemma 2.2(a) that n is nonzero in k. Let f =

P
biXi 2 B[[X]]

with f n 2 k[[X]]. By factoring out a suitable power of X from f , we may assume that b0

is nonzero. Then k[1Û(nb0)] = k, and so f 2 k[[X]] by Proposition 2.3.
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Our next theorem, which concentrates on the case when A is a subring of a field K,
shows that Example 2.1 should not really be too surprising. The proof is a reworking of
the proof of [13, Theorem, p. 171] and [12, footnote (2), p. 321]. The special case of The-
orem 2.5 in which n is assumed invertible in A also follows from [5, Proposition 1.28].

THEOREM 2.5. Let A be a subring of a field K and n ½ 2 such that n is nonzero in
A. If A[[X]] is n-root closed in K[[X]], then A is a field. Thus, if A has quotient field K,
then A[[X]] is n-root closed in K[[X]] if and only if A = K.

PROOF. Let 0 Â≥ a 2 A. Recursively, one can verify that 1 + (nÛa2)X 2 K[[X]] has
an n-th root f ≥ 1 + (XÛa2) + c2(XÛa2)2 + Ð Ð Ð 2 K[[X]] with each ci contained in the
prime subfield of K. Thus (af )n ≥ an + nan�2X 2 A[[X]]. If A[[X]] is n-root closed in
K[[X]], then af 2 A[[X]], and hence 1Ûa 2 A. Thus each nonzero a 2 A is a unit; hence
A is a field. The final assertion is now clear.

Our next two results, which will be used in Section 3, give some more cases in which
“A[[X]] is n-root closed in B[[X]]” is equivalent to “A is n-root closed in B.” Theorem 2.6
may also be proved by applying [5, Proposition 1.30(2)].

THEOREM 2.6. Let A and B be quasilocal rings, with A a subring of B and common
maximal ideal M. Then the following conditions are equivalent:

(1) AÛM is n-root closed in BÛM;

(2) A is n-root closed in B;

(3) A[[X]] is n-root closed in B[[X]].

PROOF. By Corollary 2.4, we may assume that M is nonzero. The equivalence of
(1) and (2) then follows from [4, Theorem 1.7]. Since A and B have common maxi-
mal ideal M, A[[X]] and B[[X]] have M[[X]] as a common ideal. Since (AÛM)[[X]] and
A[[X]]ÛM[[X]] are naturally isomorphic, (1) and (3) are equivalent by Corollary 2.4 and
[4, Theorem 1.7] again.

COROLLARY 2.7. Let A and B be quasilocal domains, with A a subring of B and
common nonzero maximal ideal M. Suppose that B[[X]] is n-root closed. Then A[[X]] is
n-root closed for any nonempty family of indeterminates X if and only if AÛM is n-root
closed in BÛM.

PROOF. By Theorem 2.6, A[[X]] is n-root closed in B[[X]] if and only AÛM is n-root
closed in BÛM. Moreover, since B[[X]] is n-root closed, A[[X]] is n-root closed if A[[X]]
is n-root closed in B[[X]]. Since A[[X]] and B[[X]] have common nonzero ideal M[[X]],
they also have the same quotient field. Thus A[[X]] is n-root closed in B[[X]] if and only
if A[[X]] is n-root closed. By [5, Corollary 2.7], A[[X]] is n-root closed for any nonempty
family of indeterminates X if and if A[[X]] is n-root closed. Hence A[[X]] is n-root closed
if and only if AÛM is n-root closed in BÛM.
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3. Realizing C (A). As in [1] and [2], for any ring A, we define C (A) ≥ fn 2 P j A
is n-root closedg. Then C (A) is a multiplicative submonoid of P generated by primes. In
[1, Theorem 2.7], a monoid domain construction was used to show that any multiplica-
tive submonoid S of P generated by primes can be realized as C (A) for some domain
A. In that construction, the domain A was typically quite large. In [2, Theorem 6], it
was shown that A can be chosen to be a one-dimensional Noetherian local domain as
long as 2 Â2 S. In Theorem 3.3, we show that A can be chosen to be a one-dimensional
quasilocal domain. In fact, A will be of classical “D + M” type. Example 3.1 identifies
C (A) for such A. The particular domain A exhibited in Theorem 3.3 will be shown to
satisfy C (A[[X]]) ≥ C (A). Our final result, Theorem 3.5, states that any multiplicative
submonoid of P generated by primes can also be realized as C (A[[X]]) for a suitable von
Neumann regular ring A. For any such ring A, in contrast with the domains in Theo-
rem 3.3, C (A[[X]]) differs by as much as possible from C (A) ≥ P.

EXAMPLE 3.1. Let B be a one-dimensional valuation domain of the form K + M,
where K is a field contained in B and M is the maximal ideal of B. For k a proper subfield
of K, the subring A ≥ k + M is a one-dimensional quasilocal domain which is not com-
pletely integrally closed. (A is integrally closed if and only if k is algebraically closed in
K [10, p. 202, Exercise 12(2)]). Note that B[[X]] is root closed, in fact completely inte-
grally closed, since a one-dimensional valuation domain is completely integrally closed
[10, Theorem 17.5]. Hence, by Corollary 2.7, A[[X]] is n-root closed if and only if k is
n-root closed in K. Thus C (A[[X]]) ≥ C (A) ≥ fn 2 P j k is n-root closed in Kg for
any nonempty family of indeterminates X. Note that A[[X]] is always seminormal [9],
but for suitable choices of k and K, C (A[[X]]) may be generated by any prescribed set of
primes (see Lemma 3.2 and Theorem 3.3).

Let S be a multiplicative submonoid of P generated by some set P of positive primes.
The key step in the following work is to identify a suitable associated field (denoted KS

below). We define inductively an increasing sequence of subfields of R by K0 ≥ Q and
Kn+1 ≥ Kn(fx 2 R j xp 2 Kn for some p 2 Pg). Let KS ≥ [Kn. In particular, KS ≥ Q if
P is the empty set.

LEMMA 3.2. KS is n-root closed in R if and only if n 2 S.

PROOF. We may assume that n ≥ p is prime. First , suppose that p 2 S and xp 2 KS

for some x 2 R. Then xp 2 Kn for some n, so x 2 Kn+1 ² KS. Hence KS is n-root
closed in R if n 2 S. Conversely, we next show that 21Ûp Â2 KS for p any prime such
that p Â2 P . Suppose that 21Ûp 2 KS. Then 21Ûp 2 Kn+1 � Kn for some n ½ 0. Hence
21Ûp 2 Kn(ã1, . . . ,ãr), where each ãpi

i 2 Kn for some pi 2 P . Thus we may assume
that 21Ûp 2 k(ã1Ûq) � k for some subfield k ² R, ã 2 k, and prime q 2 P . Since
Xp � 2 and Xq � ã are each irreducible over k [11, Theorem 9.1, p. 297], we have that
[k(21Ûp) : k] ≥ p divides [k(ã1Ûq) : k] ≥ q, a contradiction. Hence KS is not n-root closed
if n Â2 S.

https://doi.org/10.4153/CMB-1998-001-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1998-001-0


8 DAVID F. ANDERSON AND DAVID E. DOBBS

THEOREM 3.3. Let S be a multiplicative submonoid of P generated by primes. Then
there is a one-dimensional quasilocal domain A with C (A) ≥ C (A[[X]]) ≥ S for any
family of indeterminates X.

PROOF. Let A ≥ KS + TR[[T]], where KS is the subfield of R constructed above. By
Example 3.1 and Lemma 3.2, C (A[[X]]) ≥ C (A) ≥ fn 2 P j KS is n-root closed in
Rg ≥ S.

REMARK 3.4. (a) Note that the domain A constructed in Theorem 3.3 is never
Noetherian, since KS is countable and hence [R : KS] is infinite [10, p. 271, Exercise
8(3)]. However, if the set J of primes not in P is finite, then we may modify the con-
struction to make A Noetherian. In this case, define L ≥ KS(f21Ûq j q 2 Jg). Since
[L : KS] Ú 1, A ≥ KS + TL[[T]] is Noetherian; also, C (A[[X]]) ≥ C (A) ≥ S as above.

(b) Note that KS is not algebraically closed in R, and hence the domain A in Theo-
rem 3.3 is not integrally closed. Thus when S ≥ P, A and A[[X]] are each root closed,
but not integrally closed. (A similar example of such a domain A is given in [10, p. 184,
Exercise 6].)

An open question [5, Question 2.6] asks whether A[[X]] must be integrally closed,
given that A is an integrally closed domain such that A[[X]] is root closed. By an example
of Watkins [14, Example 4], the answer is negative if “domain” is changed to “ring.” In
Watkin’s example, the ring A is Boolean, hence von Neumann regular. The ring A in
Theorem 3.5 is also von Neumann regular; its analysis depends on using Lemma 3.2 to
modify another example of Watkins [14, Example 6].

THEOREM 3.5. Let S be a multiplicative submonoid of P generated by primes. Then
there is a ring A which is root closed (that is, C (A) ≥ P) and satisfies C (A[[X]]) ≥ S. It
can be arranged that A is von Neumann regular.

PROOF. Let A ≥ (
Q

n½0 KS) + (
L

n½0 R), viewed as a subring of B ≥
Q

n½0 R, a direct
product of denumerably many copies of R. Thus, A is the ring of all the real-valued
sequenceswhich after some point (depending on the sequence) take all subsequentvalues
in KS. Notice that A is von Neumann regular, and hence equals its own total quotient ring.
In particular, A is root closed. Thus, it remains only to prove that if n ½ 1, then A[[X]]
is n-root closed if and only if n 2 S. Note first that B[[X]] is torsion-free over A[[X]],
by an application of [14, Proposition 1]. (This application is straightforward after one
interprets the support supB as the pointwise supremum—the verification then reduces
to the triviality that 0 and 1 are the only idempotents of R). Hence, according to [14,
Theorem 2(b), (i) and (ii)], it suffices to show that if n ½ 1, then n 2 S if and only ifn

b 2 B j bn 2 A, b ≥ supBfakg for some countable subset fakg of A such that aiaj ≥ 0 if

i Â≥ j
o
² A. (The results quoted from [14] would require us to replace “²” with equality,

but it is evident that “¦” holds in general.)
We may prove the (contrapositive of the) “if” assertion by modifying the proof of [14,

Example 6]. Consider n 2 P� S. Then, by Lemma 3.2, KS is not n-root closed in R, and
so we may pick ã 2 R � KS such that ãn 2 KS. If k ½ 0, let ak ≥ (0, . . . , 0,ã, 0, . . . ),
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with ã in the k-th place and zeros elsewhere. Each ak 2 A and aiaj ≥ 0 if i Â≥ j. Put
b :≥ supBfakg. Then b ≥ (ã,ã, . . . ) 2 B, whence bn ≥ (ãn,ãn, . . . ) 2

Q
n½0 KS ² A,

although b Â2 A since ã Â2 KS. Therefore, the above “²” fails, and the “if” assertion has
been proved.

Finally, to prove the “only if” assertion, let n 2 S, and consider b ≥ (b0, b1, b2, . . . ) 2
B such that bn 2 A. (It will not be necessary to specify that b ≥ supBfakg for some
countable subset fakg of A such that aiaj ≥ 0 if i Â≥ j. ) We need only show that b 2 A;
that is, that there exists ñ 2 P such that bm 2 KS for all m ½ ñ. Since (bn

0, bn
1, bn

2, . . . ) ≥
bn 2 A, there exists ñ 2 P such that bn

m 2 KS for all m ½ ñ. The proof then concludes,
since Lemma 3.2 ensures that KS is n-root closed in R.

NOTE ADDED IN PROOF (JULY 2, 1997). For S as in Theorem 3.3, M. Roitman
has independently given another construction of a domain A such that C (A) ≥ S: see
Theorem 2.11(2) of On root closure in Noetherian domains, pp. 417–428, in Lecture
Notes Pure Appl. Math., Vol. 189, Dekker, New York, 1997.
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