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Summary

Many common human diseases and complex traits are highly heritable and influenced by multiple
genetic and environmental factors. Although genome-wide association studies (GWAS) have
successfully identified many disease-associated variants, these genetic variants explain only a small
proportion of the heritability of most complex diseases. Genetic interactions (gene—gene and
gene—environment) substantially contribute to complex traits and diseases and could be one of the
main sources of the missing heritability. This paper provides an overview of the available statistical
methods and related computer software for identifying genetic interactions in animal and plant
experimental crosses and human genetic association studies. The main discussion falls under the
three broad issues in statistical analysis of genetic interactions: the definition, detection and
interpretation of genetic interactions. Recently developed methods based on modern techniques for
high-dimensional data are reviewed, including penalized likelihood approaches and hierarchical
models; the relationships between these methods are also discussed. I conclude this review by

highlighting some areas of future research.

1. Introduction

Many common human diseases and complex traits
are highly heritable and are believed to be influenced
by multiple genetic and environmental factors. A
central goal of genetics, evolutionary biology and
epidemiology is to identify genetic and environmental
factors that influence complex traits and diseases, and
to characterize the effects of these factors and their
interactions (Lynch & Walsh, 1998; Thomas, 2004).
Genetic interactions (gene—gene and gene—environ-
ment interactions) have long been recognized as an
important component of the genetic architecture of
complex traits and diseases and are fundamentally
important for understanding the genetics of complex
traits and diseases (Mackay, 2001 ; Moore, 2003 ; Flint
& Mackay, 2009; Mackay et al., 2009).

There is a long history of the examination of genetic
interactions in inbred plant and animal experimental
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crosses (Carlborg & Haley, 2004) and human popu-
lations (Cordell, 2009; Thomas, 2010). Recent ad-
vances in genome-wide association studies (GWAS)
have provided unparalleled opportunities for study-
ing the genetic architecture of complex diseases
(Hardy & Singleton, 2009). In the past few years,
these studies have identified many genetic variants
associated with complex diseases (WTCCC, 2007;
Hindorff et al., 2009). However, the main effects of the
identified variants explain only a small proportion of
the heritability of most complex diseases, motivating
research interest in finding the remaining ‘missing’
heritability (Manolio et al., 2009). Since GWAS have
not fully investigated interactions, it has been specu-
lated that gene—gene and gene—environment interac-
tions could be one of the potential sources of the
missing heritability; this further boosts the investi-
gation of genetic interactions (Cordell, 2009 ; Manolio
et al., 2009 ; Cantor et al., 2010; Eichler et al., 2010;
Thomas, 2010).

Here, 1 review the statistical methods and related
computer software that are currently being used for
identifying genetic interactions for complex traits in
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animal and plant experimental crosses and human
population-based association studies. The discussion
covers the three broad issues in statistical analysis
of genetic interactions, namely, the definition, the
detection and the interpretation of genetic interac-
tions. Significant advances in all the three related to-
pics have been made in the past decades (Cordell,
2009; Thomas, 2010), and many of these are reviewed.
All the methods discussed can be used in targeted
genetic studies with moderate numbers of variants
(for example, from hypothesis-driven candidate-genes
or pathway-based studies), and some can be applied
to large-scale genetic studies with large numbers of
variants (for example, from GWAS).

One of the challenges in statistical analysis of
genetic interactions is that genetic interaction is not
uniquely defined. I first describe the general definition
and meaning of interaction and then introduce the
commonly used models that define an interaction
term as a product of main-effect variables. I also dis-
cuss the issue that any statement about interaction is
necessarily scale and model dependent, and outline
the general principles for analysing interactions. The
detection of genetic interactions involves two issues,
modelling and computational methods, and can be
viewed as a problem of high-dimensional data analy-
sis. The development of statistical methods for high-
dimensional data analysis has recently become one
of the most important and active areas in statistics
(Hesterberg et al., 2008). Recently developed methods
based on modern statistical techniques are mainly
explored, including penalized likelihood approaches
and hierarchical models, and the relationships
among these methods are also discussed. The in-
terpretation of genetic interactions has not been ex-
tensively discussed in the literature. The discussion
is confined to key interpretations. Finally, I highlight
some emerging directions and needs for making
further progress.

2. Notation and challenges in analysing
genetic interactions

We consider quantitative trait locus (QTL) mapping
in experimental crosses from inbred animals or plants
and population-based genetic association studies in
humans. These two types of studies have the same
observed data structure, and thus statistical methods
can be fairly similar, while each has special problems.
For each individual in the sample, observed data
consist of a complex trait Y, a number of genetic
markers G=(gy, g, ..., &») and some environmental
factors E=(zy, z,, ..., zx), where m and k represent the
numbers of makers and environmental factors, re-
spectively. The trait phenotype Y can be continuous
(e.g. body weight) or discrete (e.g. a binary disease
indicator, counts). We consider experimental crosses
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(e.g. F, intercross) or markers (e.g. single-nucleotide
polymorphisms (SNPs)) that segregate three distinct
genotypes. Therefore, each genotype variable g; is a
three-level factor, indicating homozygous for the
more common allele, heterozygous and homozygous
for the minor allele, respectively. The genotyped
markers can be densely distributed either across the
entire genome or within some candidate genes, and
for each case the number of markers can be large.

Our goal is to identify genomic loci that are associ-
ated with the complex trait, and to characterize their
genetic effects. Since most complex traits and diseases
are caused by interacting networks of multiple genetic
and environmental factors, it is desirable to simul-
taneously consider multiple loci and environmental
factors, and include gene—gene (epistatic) and gene—
environment interactions in the model. Such joint
analyses would improve the power for the detection of
causal effects and hence lead to increased under-
standing about the genetic architecture of diseases.
There are considerable challenges, however, to per-
form statistical analysis of genetic interactions:

® One has limited understanding of what the word
‘interaction’ means because it has no unique and
explicit definition. Different definitions have differ-
ent properties and lead to different statistical mod-
els and interpretations.

® With multiple genetic and environmental factors,
there are many possible main effects and interac-
tions, most of which are likely to be zero or at least
negligible, leading to high-dimensional models and
overfitting problems.

® There are many more potential interactions than
main effects, which would require different model-
ling for main effects and interactions.

® Due to linkage disequilibrium, many genetic factors
are highly correlated and nearly collinear, creating
the difficulty of distinguishing disease-associated
variants from others.

® Frequencies of multi-locus genotypes that define
interactions can be very low, which creates vari-
ables with near-zero variance and thus requires
special parameterization.

® The discreteness of genotype data can cause a sep-
arate identifiability problem, called separation, for
discrete traits. Separation arises when a predictor
or a linear combination of predictors is completely
aligned with the outcome and can yield non-ident-
ified models (that is, have parameters that cannot
be estimated).

These problems necessitate sophisticated techniques
in all the steps of modelling, computation and in-
terpretation for analysing genetic interactions. Some
methods have been developed recently to overcome
these problems and will be discussed in the following
sections.
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3. Definition of genetic interaction

The term ‘interaction’ generally refers to a phenom-
enon whereby two or more variables jointly affect the
outcome response. In order to analyse and interpret
interactions, it is important to understand how inter-
actions are defined. In this section, I first discuss the
general definition and meaning of statistical interac-
tions, and then show how they can be made more
concrete in the case of genetic analysis. We return to
the issue of biological interpretation of statistical in-
teraction later in the article.

(1) General definition of statistical interaction

As introduced earlier, the goal of QTL and associ-
ation analysis is to investigate the relationship be-
tween the complex trait Y and the genetic and
environmental factors, G=(gy, g, ..., £&,) and E=(z,,
Zg, ..., Zi). For a normally distributed trait, this can be
expressed as a statistical model

E(Y):n(GaE):n(glang ’Zk)a (1)

with the normal distribution assumption about the
response variable Y, where E(-) is the expectation
and #(-) represents a generally unknown function that
relates the genetic and environmental factors to the
expectation of Y.

With multiple genetic and environmental factors,
even if we restrict our attention for simplicity to
two-factor interactions, three different kinds have
to be considered: (a) gene x gene (G x G), (b) gene x
environment (G x E), (¢) environment X environment
(E x E). We do not discuss E x E interactions because
they can be included in the model as covariates. While
the formal definitions of G x G and G x E interactions
are similar, their interpretations are rather different. |
will briefly discuss their differences below.

With just two genetic factors g; and g,, if the func-
tion of two factors #n(g;, g;) can be replaced by the
simpler form of two functions of one variable, i.e.

9gm;219227 e

17(g1> 82) =1,(81) +175(g2), 2

then there is no interaction between g; and g,
(Cox, 1984). This implies that the genotypic effect of
locus g; (g,) does not depend on the genotypes of g,
(g1). Therefore, these two genetic factors act in a way
that appears causally independent. For G x E inter-
actions, the condition of independence, (g, z)=
1m1(g1) + f1(z1), appears identical to the above-men-
tioned one, but the interpretation is quite different.
Here, the concern is with regard to the stability of the
genotypic effect of g; as the environmental condition z;
varies. In genetic mapping, the environmental effect
f1(zy) itself is of no direct interest, but can be an im-
portant component in controlling the potential con-
founding effect.
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The converse conclusion that condition (2) is not
satisfied is an indication of interaction between the
two factors. In that case a change in the response due
to a change in g; (g,) does depend on the level of g,
(g1). However, any deviation from the independence
condition (2) could be specified in various ways,
leading to different types of interaction that may re-
quire different methods to identify. I here discuss
the most commonly used method that considers
the interaction as a product term of the main-effect
variables. Because the genetic factors g; and g, are
three-level factors, we naturally start with a two-way
factorial model:

1(g1i> &) =t + g1 + &2+ 0y, (3)

where i=1, 2, 3; j=1, 2, 3; gy; represents the main
effect of factor g; at level i; gy; represents the main
effect of factor g at level j; and J;; represents the in-
teraction effect for factors g; and g, at levels i and j,
respectively. With this model, the overall effect of
factor g; at level i (i.e. genotypic effects) equals
U+ g1+ 0, that does depend on the levels of gs.

(i1) Cockerham model and alternatives

With no constraints on the parameters, model (3) is
non-identifiable. In model (3), genotype factors g; and
g, take on three values and therefore each has three
main effects. However, the classical regression frame-
work can estimate only two parameters — if all three
were included, they would be collinear with the con-
stant term and thus cannot be estimated uniquely
(i.e. the model is non-identifiable).

One of the commonly used constraints on the
parameters is to exclude the first level of each geno-
type factor from the model. The level that is excluded
from the model is known as the reference or baseline
condition. With this constraint, the number of main
effects of each genotype factor and interactions be-
tween two factors reduces to two and four, respect-
ively. Model (3) can be re-parameterized as

(g1, 82) =p + (X1 + X dy) + (Xo2as + X o)
+ (X Xe200hs + Xq X ot 4)

+ X1 Xgadtrs + X X o lldlys),

with x, =1 if gi=2, x4 =0 otherwise, and x ;=1
if g =3, x4 =0 otherwise, where a; and d represent
two main effects, and aay,, ad,,, da;s and dd,, represent
four interaction effects. In human genetic association
studies, this model is called a co-dominant model
(Thomas, 2004).

There are other options to construct constraints.
The most widely used method is the Cockerham
model (Cordell, 2002; Kao & Zeng, 2002; Zeng et al.,
2005; Wang & Zeng, 2006, 2009; Cordell, 2009),
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which defines the main-effect variables as
Xa=gr—2 and xg=(gx—1)3—gr)—0-5, ®)

For the Cockerham model, @, and d, correspond to
the additive and dominance effects, respectively, and
aays, adye, day, and dd,, are interaction effects, called
the additive x additive, additive x dominance, dom-
inance x additive and dominance x dominance inter-
actions, respectively. The Cockerham model can be
easily understood by introducing the paternal and
maternal indicators of the minor allele, &P and &™,
centring by subtracting a conventional point 0-5. The
indicator &P (&™) equals 1 if the paternal (maternal)
allele is the minor allele and 0 otherwise. Therefore,
the additive-effect variable can be expressed as
Xae=(EP—0-5)+ (§™—0-5). This can be explained be-
cause a genotype consists of two alleles inherited from
father and mother, respectively, and the paternal and
maternal allelic effects are assumed to be identical.
The dominance-effect variable can be expressed as
Xage= —2(EP—0-5)(E™—0-5), representing the interac-
tion between paternal and maternal alleles. The
Cockerham model can be modified by centring the
indicators &P and &™ by subtracting their mean p
(i.e. the allelic frequency) (Wang & Zeng, 2006, 2009).
Therefore, we have x, =(EP—p)+(E™—p) and
Xae=—2(EP—p)(E™—p).

The co-dominant and Cockerham models can be
extended to include multiple genetic loci, environ-
mental factors and their interactions:

081,825 s 8mZ1s Zas -+ -5 Zk)

=+ B+ Y (g + x4d)

+ 2% (XX apaay +xgxgpady (©)
+ XgiXapdajy + XX gy ddlyy)

+ Zi</cz;n:1(xajziaeji + xgzide) + - -+,

which consists of 2 m main effects and 2 m(m—1)
two-way epistatic interactions. This model can be
further extended to include higher-order interactions.
We can see that even with a moderate number of
factors m, the interaction model can include a huge
number of parameters.

(ii1) Generalized linear models

Generalized linear models have been widely used to
analyse various types of non-normal complex traits
(Yi & Banerjee, 2009; Li et al., 2010). A generalized
linear model consists of three components: the linear
predictor, the link function and the distribution of the
outcome variable (McCullagh & Nelder, 1989;
Gelman et al., 2003). The linear predictor is the same
as that in the normal linear models described above.
The link function /() is invertible and relates the mean
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of the outcome variable Y to the linear predictor:

h[E(Y)]=77(gl>g2s <o 8msZ1, 22, "'9Zk) (7)
or equivalently,
E(Y)zhil[n(glag% <o 8msZ1, 22, "'aZk)]7 (8)

which obviously reduces to the normal linear model if
h() is the identity function. The distribution of Y can
take various forms, including normal, Gamma, bi-
nomial and Poisson distributions. Common forms of
the link function for different assumed distributions
of the outcome variable are /(n) =log (1) for Poisson
treatment of counts, and logit=log (n/(1—n)),
probit=®(5), or cloglog=log (—log(l1—n)) for
binary and binomial data. Therefore, generalized
linear modelling provides a unified framework for
statistical analysis; by choosing appropriate link
functions and data distributions, some commonly
used models, e.g. normal linear, logistic, probit and
Poisson regressions, become special cases.

Interaction effects are more complicated in gen-
eralized linear models due to the link function be-
tween the linear predictor and the outcome variable:

® [t is obvious from model (7) that the genetic effects
correspond to a transformation of the mean of the
outcome variable, A[E(Y)], rather than directly to
the mean of the outcome variable E(Y) as in normal
linear models. In a logistic regression, for example,
genetic effects are defined on the scale of the
log odds of a success outcome (i.e. Y=1), i.e.
logit[Pr(Y=1)]=log[Pr(Y=1)/1—Pr(Y=1)].

® Some generalized linear models (for example,
logistic and probit regressions) can be expressed
as a normal linear model with an unobserved
or latent outcome variable. For example, the
logistic regression logit[Pr(Y=1)]=#5(g1,22, ----&m;
Z1,Z3, ...,Zk) 1S equivalent to the latent normal linear
model, u~N(g1.82 - s&m; Z1:Z25 --Zi),  1.6%),
Y=1if u>0 and Y=0 if u<0. Therefore, genetic
effects in a logistic model actually correspond to the
scale of a latent normally distributed outcome. The
formulation of latent variables not only provides a
computational trick but also a way to interpret the
generalized linear models.

® Because genetic effects depend on the link function,
it is possible that interaction effects on a link func-
tion may be removed by changing the link function.
This is similar to the phenomenon for continuous
responses that interaction on one scale may poss-
ibly be removed by a non-linear transformation
of the scale (e.g. logarithmic and simple powers)
(Cox, 1984; Berrington & Cox, 2007). We may call
an interaction removable if a transformation of the
outcome scale can be found that induces additivity.
I shall return to this issue later.
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® Even with no multiplicative interaction terms in a
generalized linear model, it is possible that the ef-
fects of a factor on the mean of the observed out-
come E(Y) may depend on the levels of other
factors in the model, because of the non-linear
transformation A ~*() (Gill, 2001). Therefore, inter-
action effects are automatically introduced into
all generalized linear models by a link function.
However, these interactions do not affect the trans-
formation of the observed data A[E(Y)]. Multipli-
cative interaction terms such as x,,xeaa;; are called
the ‘variable-specific’ interaction terms, which are
different from the ‘automatic’ interaction. If speci-
fying these variable-specific terms in the model
leads to improved fit, then we have successfully
captured through parameterization at least some
of the necessarily existent interaction between
variables by the model specification.

(iv) Principles for analysing interactions

The widely used genetic interaction models define an
interaction term as a product of main-effect variables,
following the general definition of interaction
(Cox, 1984). For conventional models, guiding prin-
ciples have been established for efficiently studying
interactions. These principles could be more crucial
for our problems because of the high-dimensional and
correlated structure of genetic data. If appropriately
applied, these principles can improve the analysis of
genetic interactions (Kooperberg et al., 2009).

1. The basic strategy for identifying interactions is to
start from a simpler model involving only main
effects, and then to introduce interaction effects
when they improve the model fit to the data. The
final interpretation of conclusions will be based on
some simpler specification, for example, one in-
volving some strong interaction terms (Cox, 1984).

2. We prefer simultaneously fitting as many pre-
dictors as possible and introducing some hier-
archical structure into the model (Gelman et al.,
2003). This would allow us to take into account the
correlation among the predictors. Applied to in-
teraction analysis, therefore, it would be desirable
to simultaneously include many correlated main
effects and interactions.

3. Inputs with large main effects are more likely to
have appreciable interactions with other inputs,
although small main effects do not preclude the
possibility of large interactions (Cox, 1984;
Gelman & Hill, 2007). Also, the interactions cor-
responding to larger main effects may be in some
sense of more practical importance. This principle,
sometimes referred to as ‘effect heredity’, has been
used to build on interaction models (Hamada &
Wu, 1992; Nelder, 1994; Chipman, 1996).
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4. When an interaction of multiple factors is in the
model, the lower-order variables comprising the
interaction should also be present (Nelder, 1994).
This is called the ‘effect hierarchy principle’. The
reason for this is that if some contrast interacts
with, say, z, and is therefore non-zero at some le-
vels of z, it would normally be very artificial to
suppose that the value averaged out exactly to zero
over the levels of z involved in defining the ‘main
effect” for the contrast (Cox, 1984). Applied to
genetic interactions, genetic variants that have an
interaction effect typically will also show some
modest main effects (Kooperberg et al., 2009). This
could be used to explore interactions more ef-
ficiently.

4. Detection of genetic interaction

The detection of genetic interactions involves issues of
statistical modelling and computing. A variety of
methods for detecting gene—gene and gene—environ-
ment interactions have been proposed in the past
decade (Musani et al., 2007; Cordell, 2009;
Kooperberg et al., 2009; Thomas, 2010), and it is
impossible to discuss all the available methods in this
review. I focus on the most commonly used ap-
proaches: penalized likelihood regressions and hier-
archical models. These two approaches are based on
modern statistical techniques for high-dimensional
data analysis and are powerful to handle the chal-
lenges in statistical analysis of genetic interactions,
although alternative methods, including simple
exhaustive searches (Marchini et al., 2005), Bayesian
partitioning algorithms (Zhang & Liu, 2007), non-
parametric Bayesian methods (Zou et al., 2010) and
various machine learning techniques (Ritchie et al.,
2001; Chen et al., 2007; Lou et al., 2007), have their
own advantages.

(1) Penalized likelihood approach

In the classical framework, parameter estimation
is obtained by maximizing the likelihood function.
A linear model with either many coefficients or highly
correlated variables can be non-identifiable. A stan-
dard approach to overcome the problem of non-
identifiability is to add a penalty to the likelihood
function, yielding the penalized likelihood function:

PL(B. ¢) = log f(y|B. #)—p(P). )

where 8 represents all effects and ¢ represents other
parameters (e.g. residual variance). The logarithm of
the likelihood function log f(y|8,¢) is a standard
statistical summary of model fit; larger likelihood
means better fit to data. For classical models, adding
a parameter to a model is expected to improve the fit,
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even if the new parameter represents pure noise
(Gelman & Hill, 2007). Therefore, the penalty term
p(B) serves to control the complexity of the model and
place some constraints or prior information on the
parameters. Maximization of the penalized likelihood
results in a penalized likelihood estimator.

The penalized likelihood function not only stabi-
lizes parameter estimation but also provides criteria
for model selection and comparison. The form of the
penalty p(f) determines the general behaviour of the
penalized likelihood approach. Small penalties would
lead to large models with limited bias, but potentially
high variance; larger penalties lead to the selection of
models with fewer predictors, but with less variance.
A traditional approach is to specify a penalty on the
number of coefficients in the model, p(8)=A41|M|,
where A is a penalty parameter and |M]| is the size of
a model M. Many classical criteria have this form,
including the Akaike information criterion (AIC)
(A=1) (Akaike, 1969) and the Bayesian information
criterion (BIC) (A=Ilog(sample size)/2) (Schwartz,
1978). These criteria have been widely used in earlier
methods of multiple QTL mapping (Kao et al., 1999;
Zeng et al., 1999). However, Broman & Speed (2002)
showed that the original AIC and BIC tend to include
many spurious QTLs and thus are not appropriate
for model selection in QTL mapping, due to the large
numbers of potential variables. Therefore, a variety of
modifications to these classical criteria have been
proposed, all seeking to control the false positive rate
by using stronger penalty (Broman & Speed, 2002;
Bogdan et al., 2004 ; Baierl et al., 2006).

For epistatic models, using a single penalty to con-
trol the overall complexity of the model would not be
appropriate, because there are many more potential
interactions than main effects. Therefore, two separ-
ate penalties should be used for main effects and
pairwise epistatic interactions (Bogdan et al., 2004;
Baierl et al., 2006; Manichaikul et al., 2009):

PL(B, p) =1og fy|B, ¢) — Au| M|, —2i| M|, (10)

where A,, and A; are the penalties on main effects and
pairwise epistatic interactions, respectively, and |M|,,
and |M|; are the numbers of main effects and pairwise
epistatic interactions. Bogdan et al. (2004) and Baierl
et al. (2006) suggested incorporating prior numbers of
main effects and interactions to specify the penalty
parameters 4,, and A;. Manichaikul et al. (2009) used
the null distribution of the genomewide maximum
LOD score to derive the penalty on main effects and
the results of a two-dimensional, two-QTL scan to
derive the penalty for the interaction terms. These
methods employed forward and stepwise procedures
to select main effects and interactions based on the
corresponding penalized likelihoods. Manichaikul
et al. (2009) further imposed an effect hierarchy prin-
ciple, with the inclusion of a pairwise interaction
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requiring the inclusion of both corresponding
main effects, and always included both additive and
dominance terms for a QTL and all four epistatic ef-
fects for a pair of interacting QTLs. The method of
Manichaikul ef al. (2009) has been implemented in the
freely available software R/qtl. R/qtl is an extensible,
interactive environment for mapping QTLs in exper-
imental populations derived from inbred lines
(Broman et al., 2003).

The above penalty is called the Ly-penalty, which
only involves the number of parameters and ignores
the sizes of individual coefficients. Other penalty fun-
ctions depend on the sizes of individual coefficients
and can be more flexible. A popular method of this
form uses an L,-penalty (quadratic penalty) on all
coefficients (excluding the intercept), corresponding
to ridge regression (Hoerl & Kennard, 1970):

PL(B. $)=log f¥IB. 9) =AY, _.f. (11)

which is equivalent to maximizing the likelihood
function subject to a size constraint on the sum of the
squared coefficients, ijzlﬁf <t. The penalty par-
ameter is predetermined usually by cross-validation.
Ridge regression can handle the problem of colli-
nearity and thus can simultaneously fit highly corre-
lated variables. Malo et al. (2008) applied ridge
regression to fit all SNPs in a genomic region in genetic
association studies and showed that such multiple-
SNP analyses accommodate linkage disequilibrium
among SNPs and have the potential to distinguish
causative from non-causative variants. Park & Hastie
(2008) proposed a logistic regression with L,-penalty
to fit genetic interactions in population-based case-
control studies. They showed that the penalized
logistic regression has a number of attractive proper-
ties for detecting genetic interactions. First, the
Ly-penalty can deal with perfectly collinear variables
(they sum to 1), and thus makes it possible to code
each level of a factor by a dummy variable, yielding
coefficients with direct interpretations (see eqn 3). As
described earlier, this coding method cannot be ap-
plied to classical regression. Secondly, the L,-penalty
automatically assigns zero to the coefficients of zero
columns and hence gracefully handles interaction
models that consist of variables with near-zero vari-
ance. Thirdly, the quadratic penalty enables us to
simultaneously fit a large number of factors and in-
teractions in a stable fashion. Although the L,-penalty
has the above advantages, it cannot shrink any coef-
ficients directly to zero and thus does not automati-
cally remove variables from the model. Park & Hastie
(2008) proposed a forward stepwise method based on
the penalized likelihood to perform variable selection.
Their algorithm obeys the effect hierarchy principle
and also provides the option to accept an interaction
even with no corresponding main effects in the model.
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Another widely used penalized likelihood approach
uses an L,-penalty, leading to the lasso (least absolute
shrinkage and selection operator) introduced by
Tibshirani (Tibshirani, 1996). The lasso estimator is
obtained by maximizing the likelihood function sub-
ject to a constraint on the sum of absolute values of
the regression coefficients Z/,J:l|ﬁj| <t. This is equiva-
lent to maximizing the following penalized likelihood
function:

PL(B. ¢)=log fYIB. ) =AY, | (12)

Compared to the ridge regression, a remarkable
property of the lasso is that the L;-penalty can shrink
some coefficients exactly to zero and therefore auto-
matically achieve variable selection. This can be
intuitively explained by the fact that |8 is much larger
than |B* for small §; and thus the constraint
ZJ,J:1|ﬁj| <t forces some fB;s exactly to zero. Various
optimization algorithms have been proposed to ob-
tain the lasso estimator (Hesterberg et al., 2008);
Notably, the least angle regression (Efron et al., 2004)
and the co-ordinate descent algorithm (Wu & Lange,
2008 ; Friedman et al., 2010) are the most computa-
tionally efficient.

The feature of continuous shrinkage and variable
selection along with the fast algorithms makes the
lasso an effective method for genome-wide analysis of
interacting genes. Tanck et al. (2006) applied lasso
penalized regression to detect epistatic interactions in
association studies, with L,-penalty on main effects
and L;-penalty on epistatic effects. Therefore, all main
effects are always included in the model, while irrel-
evant interactions can be removed. Wu et al. (2009)
developed a lasso penalized logistic regression for
genome-wide association analysis in case-control stu-
dies. Their approach always selects a fixed number of
predictors from all potential predictors. This yields a
more efficient way of determining the penalty par-
ameter. This novel strategy is similar to the composite
model space approach that places an upper bound on
the number of effects included in the model (Y1, 2004 ;
Yi et al., 2005). For a given value of the penalty par-
ameter, Wu et al. (2009) applied the co-ordinate de-
scent algorithm to fit the lasso penalized logistic
regression. Wu et al. (2009) handled interactions
in two stages. In the first stage, the most important
main effects of the predetermined number are ident-
ified; in the second stage, the two-way or higher-order
interactions among the selected SNPs are examined.
The method of Wu ef al. (2009) has been implemented
in the freely available software Mendel 9.0 at the
UCLA Human Genetics web site.

(i1) Hierarchical models

Hierarchical modelling is an important tool in the
analysis of complex and high-dimensional data and
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has been increasingly applied to QTL and association
studies. Hierarchical models use a population distri-
bution to structure some dependence into the par-
ameters, thereby enabling to fit a large number of
predictor variables. In contrast, non-hierarchical
models generally cannot handle many variables sim-
ultaneously, because they are numerically unstable or
tend to overfit data (i.e. fit the existing data well but
lead to inferior prediction for new data). Hierarchical
models are more easily interpreted and handled in the
Bayesian framework. In Bayesian models, the popu-
lation distribution of the parameters is often referred
to as the prior distribution, and statistical inference
is based on the posterior distribution that is pro-
portional to the product of the likelihood function
f|B,¢) and the prior distribution 7(83,¢):

The posterior distribution contains all the current in-
formation about the parameters. Ideally one might
fully explore the entire posterior distribution by sam-
pling from the distribution p(8,¢[y) using Markov
chain Monte Carlo (MCMC) algorithms (Gelman
et al., 2003). For practical and computational pur-
poses, however, it is desirable to have a fast algorithm
that returns a point estimate of the parameters
and standard errors. A commonly used point estimate
is the posterior mode, that is, the single most
likely value, which can be obtained by maximizing the
posterior density p(8,¢|y), or equivalently its logar-
ithm:

log p(B, ¢|y) =log f(y|B, ¢) +1og n(B, ¢) + constant.
(14)

Compared with the penalized likelihood function (9),
we can see that the posterior mode estimator is
equivalent to the penalized estimator, with the logar-
ithm of the prior density log m(5,¢) as the penalty.
Therefore, with particular priors, hierarchical models
can lead to the penalized likelihood approaches dis-
cussed above.

(a) Shrinkage priors

The prior distribution 7(5,¢) plays an important
role on the hierarchical modelling approach. A var-
iety of priors have been proposed (Griffin & Brown,
2007), some of which have been adopted in QTL
mapping and association analysis (Yi & Xu, 2008;
Yi & Banerjee, 2009; Mutshinda & Sillanpda, 2010;
Sun et al., 2010). For models with a large number of
potential variables, it is reasonable to assume that
most of the variables have no or weak effects on the
phenotype, whereas only a few have noticeable effects.
Therefore, we can set up a prior distribution that gives
each effect B, a high probability of being near zero.
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Such priors are often referred to as ‘shrinkage’ priors.
In the following discussion, the prior distribution of
¢ is assumed to be non-informative and independent
of B.

A class of shrinkage priors uses continuous dis-
tributions. A commonly used continuous shrinkage
prior is the double exponential (also called Laplace)
distribution (Tibshirani, 1996; Park & Casella,
2008; Yi & Xu, 2008), 7(8)) = (4/2)e |, where 1is a
shrmkage parameter and controls the amount of
shrinkage; larger A forces more coefficients near zero.
With this prior, the log posterior density can be ex-
pressed as log p(f.p|y) =log fy|B. @) —AY_, |6+
constant. Therefore, the posterior mode estlmate of
the coefficients f is the lasso penalized estimate (Park
& Casella, 2008).

Another widely used continuous shrinkage distri-
bution is the well-known Student’s ¢-distribution,
7(B) =1, (u;, s]?), where the hyperparameters u;, v;>0
and s;> 0 are the location, the degrees of freedom and
the scale parameters, respectively (Gelman et al.,
2003). The location y; is usually set to zero. The hy-
perparameters v; and s; control the global amount of
shrinkage in the effect estimates; larger v; and smaller
s? induce stronger shrinkage and force more effects to
be near zero. The family of the Student’s z-distribu-
tions includes various distributions as special cases.
At s;=00, the ¢ prior approaches a flat distribution, i.e.
7(f8;)ox1. Placing flat priors on all B, corresponds to a
classical model, which usually fails in our problem as
illustrated earlier. At v;=o and s;=s, the ¢ prior is
equivalent to a normal distribution ;~ N(0,s%), and
thus the log posterior density can be expressed as
log p(B, ¢|y) =log f (v, ¢) — (1/s*)Y/_, B} +constant.
Therefore, the posterior mode estimate of the coeffi-
cients 3 is the ridge penalized estimate.

Both the double exponential distribution and the
Student’s ¢-distribution can be presented as a two-
level hierarchical model (Griffin & Brown, 2007; Yi &
Xu, 2008). The first level assumes that the coefficients
B/s follow independent normal distributions with
mean zero and unknown variances 7%, and the second
level assumes that the variances 77 follow some
specified independent prior dlstrlbutlons
Bt ~ NBlu; 7). 7716, ~ a(z}16)), (15)
where 0, represent hyperparameters. The above
two-level priors result in a scale mixture of normal
distributions for the coefficients: fB;:f; ~ w(B,|0,) =
f N(B,|0, 77 )n(rz\e)dr For the double exponentlal
prior, n(r2| ) is an exponential distribution
Expon(47/2) or equivalently a gamma distribution
Gamma(1,4/2). For the Student-7 prior, 7(z7|6)) is a
scaled inverse-y? distribution Inv-y*(v;s?) or equiva-
lently an inverse gamma distribution Inv-gamma

Vi V2
G:35))-
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The two-level hierarchical formulation has several
advantages. First, it allows easy and efficient compu-
tation; conditional on the variances 7/ the coefficients
B, can be easily estimated and for some distributions
71(z76;) (for example, the exponential and the inverse-
x* distributions) the variances 7z also can be easily
estimated. Secondly, it offers easy interpretation of
the model; the coefficient-specific variances 7/ result
in different shrinkage amounts for different coeffi-
cients. Thirdly, it is flexible enough to encompass
most versions of the penalized regression procedures
and also lead to new hierarchical models by using new
priors for the variances 77 or further modelling the
hyperparameters 6; (Griffin & Brown, 2007; Hoggart
et al., 2008 ; Kyung et al., 2010; Sun et al., 2010).

The second class of shrinkage priors assumes a
discrete, two-component mixture distribution for
each genetic effect, a normal distribution, and a point
mass at zero (Yi et al., 2005, 2007b; Y1 & Shriner,
2008):

Bily; ~ (1=yply+y;NO. 7)), (16)

where /, is a point mass at 0 and y;is a binary variable
indicating the absence (y;= 0) or presence (y;=1) of
the effect ;. The variance 7 can be predetermined or
treated as a random variable with an inverse-y® hyper-
prior distribution: 77~ Inv-y*(v,s?). The sparseness
in the fitted model is controlled by the values of (v;,s7)
and the prior inclusion probability p(y;=1) for each
effect. The values of (v;s7) can be chosen to control
the prior expected mean and the prior confidence
region of the proportion of the phenotypic variance
explained by f;. Yi et al. (2005) proposed a method
to choose the prior inclusion probabilities p(y;=1)
for main effects and the G x G and G x E interactions
(Yiet al., 2007h; Yi & Shriner, 2008). These discrete
‘spike and slab’ priors lead to various Bayesian vari-
able selection methods (Yi & Shriner, 2008).

(b) Estimating posterior modes

The continuous shrinkage priors result in continuous
posterior distributions, allowing us to develop de-
terministic algorithms to quickly estimate the pos-
terior mode. A variety of methods for computing the
posterior mode have been developed for hierarchical
models with continuous shrinkage priors, using the
EM (expectation—maximization) algorithms by taking
advantage of the two-level hierarchical formulation
(Figueiredo, 2003; Gelman et al., 2008; Armagan &
Zaretzki, 2010) or other optimization algorithms
(Genkin et al., 2007). These algorithms have been
adapted to multiple QTL mapping and genetic as-
sociation analysis (Zhang & Xu, 2005; Xu, 2007,
2010; Hoggart et al., 2008; Yi & Banerjee, 2009;
Sun et al, 2010; Yi et al., 2010). Among these
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developments, Yi & Banerjee (2009) and Yi et al.
(2010) have attractive features and will be discussed
below. The method of Yi & Banerjee (2009) has been
implemented in the freely available software R/qtlbim
(Yandell et al., 2007). R/qtlbim is an extensible, in-
teractive environment for the Bayesian Interval
Mapping of QTL, built on top of R/qtl (Broman et al.,
2003), providing Bayesian analysis of multiple inter-
acting QTL models for continuous, binary and ordi-
nal traits in experimental crosses.

Yi & Banerjee (2009) and Yi et al. (2010) developed
hierarchical generalized linear models with Student-z
prior distributions on the coefficients for multiple
interacting QTL mapping and genetic association
studies. Yi & Banerjee (2009) discussed the choice of
the shrinkage parameters v; and s; to favour sparse-
ness in the fitted model. Yi ez al. (2010) further pro-
posed different scales s; for different types of effects
(i.e. main effects, G x G and G x E interactions); this
specification applies stronger shrinkage for interac-
tions and thus allows more reliably a joint estimation
of main effects and interactions. They used the EM
algorithm to fit the model by estimating the marginal
posterior modes of the coefficients ;5. The algorithm
uses the two-level expression of the ¢ prior distri-
bution, treats the unknown variances 7 as missing
data and replaces them by their conditional expecta-
tions at each E-step. The conditional expectations of
7/ are independent of the response data, and thus the
E-step is the same for different types of phenotypes.
Given the variances v/, the prior distributions
Bit?~N(0,7%) can be included as additional ‘data
points’ in the normal approximation of the general-
ized likelihood. Therefore, the coefficients ; can be
estimated using the standard iterative weighted least
squares (IWLS) for fitting classical generalized linear
models. Yi & Banerjee (2009) incorporated the above
EM algorithm into the standard package glm in R for
fitting classical generalized linear models. This com-
putational strategy takes advantage of the standard
algorithm and software, and thus leads to a stable,
flexible and easily used computational tool.

The above approach is built upon the generalized
linear model framework, and therefore can deal with
various types of continuous and discrete phenotypes
and any models as implemented in the R package glm
(e.g. normal linear, gamma, logistic, Poisson, etc.).
This flexibility allows us to conveniently analyse data
in different ways. As described earlier, interactions are
defined relative to particular models and thus can be
affected by a change in the model (Cordell, 2002;
Berrington & Cox, 2007). The above approach would
allow us to investigate whether an interaction can be
removed by a transformation of the scale and to de-
tect interactions that are only present in a particular
model. The hierarchieal generalized linear models
with Student-¢z priors on the coefficients includes

https://doi.org/10.1017/5S0016672310000595 Published online by Cambridge University Press

451

various methods as special cases that have been de-
signed to handle problems encountered in interacting
QTL and association studies (Yi et al., 2010). In ad-
dition, the above EM algorithm takes advantage of
the two-level formulation of the ¢ distribution and
hence can be easily applied to other shrinkage priors
(e.g. the double exponential distribution) with only
modification on the conditional expectations of 7.

The hierarchical models can simultaneously analyse
many covariates, main effects of numerous loci, epi-
static and G x E interactions. For large-scale genetic
data, however, we recommend performing a prelimi-
nary analysis to weed out unnecessary variables, or
use a variable selection procedure to build a parsi-
monious model that only includes the most important
predictors. The above algorithm can be incorporated
into various variable selection procedures. Following
the general principle for analysing interactions dis-
cussed earlier, Yi & Banerjee (2009) proposed a useful
model search strategy, beginning with a model with
no genetic effect but relevant covariates if any, and
then gradually adding main effects and interactions
into the model. This procedure differs from most
variable selection methods by simultaneously adding
or deleting many correlated variables.

(c) Sampling from the continuous posterior
distribution

In Bayesian inference, it is more comprehensive to
fully explore the posterior distribution than merely
calculate the posterior mode. For the hierarchical
models described above, this requires MCMC algo-
rithms to generate samples from the posterior density.
Various MCMC algorithms have been developed for
hierarchical models with the continuous shrinkage
priors discussed above (Bae & Mallick, 2004 ; Park &
Hastie, 2008 ; Hans, 2009; Kyung et al., 2010), most
taking advantage of the hierarchical formulation of
the priors. These algorithms have recently been
adapted to multiple QTL mapping and genetic as-
sociation analysis (Xu, 2003; Yi & Xu, 2008; Sun
et al., 2010), although they consider only main effects.

For hierarchical models with shrinkage priors that
can be expressed as a mixture of normal distributions,
it is easy to construct MCMC algorithms. Yi & Xu
(2008) and Sun ef al. (2010) developed MCMC algo-
rithms for mapping multiple QTLs using the hier-
archical formulation of the double exponential and
the Student-¢ priors. Since all priors for regression
coefficients are conditionally Gaussian, a simple and
unified scheme can be developed to update the coeffi-
cients 3; regardless of the specific prior distributions
on the variances 7. For the Student-r and double
exponential priors, the conditional posterior dis-
tributions of the variances 7/ have the standard form
and thus can be easily sampled. Since the variances
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are separated from the data by the regression co-
efficients, the conditional distributions of the var-
iances are independent of the response data.
Therefore, the same updating scheme can be used
to update the variances regardless of the response
distribution. The advantage of MCMC samplers for
hierarchical priors becomes more obvious when deal-
ing with hyperparameters 4 in the double-exponential
prior and (v, s) in the Student-¢ prior. The penalized
likelihood approaches predetermine the penalty par-
ameter using cross-validation, and the mode-finding
algorithms usually preset the hyperparameters. In the
fully Bayesian framework, however, the hyperpara-
meters can be assigned appropriate hyperpriors and
are updated along with other parameters (Park &
Casella, 2008; Yi & Xu, 2008 ; Kyung et al., 2010; Sun
et al., 2010) or are estimated based on empirical Bayes
using marginal maximum likelihood (Park & Casella,
2008; Yi & Xu, 2008; Kyung ef al., 2010; Sun et al.,
2010); this procedure obviates the choice of the hy-
perparameters and automatically accounts for the
uncertainty in its selection that affects the estimates of
the regression coeflicients.

The disadvantage of the above fully Bayesian ap-
proach is the intensive computation. This may restrict
its application in genetic interaction analysis of large-
scale data. However, these methods can provide
richer information on the posterior of a regression
coefficient and adequately reflect the uncertainty in
estimating a parameter to be close to zero (Park &
Casella, 2008 ; Kyung et al., 2010). The fully Bayesian
analysis can return not only point estimates but also
interval estimates of all parameters, and offers a
natural means of assessing model uncertainty. As the
mode-finding algorithms, the fully Bayesian methods
can simultaneously fit many correlated variables and
can distinguish important effects from a large number
of correlated variables (Yi & Xu, 2008; Sun et al.,
2010).

(d) Bayesian variable selection using discrete priors

The hierarchical models with a discrete prior (16) are
usually fitted using MCMC algorithms. A variety of
algorithms have been proposed, some of which have
been adapted to multiple interacting QTL mapping
and genetic association analysis. Yi & Shriner (2008)
provide a comprehensive review on these methods.
In this section, I describe the Bayesian multiple in-
teracting QTL mapping methods that have been im-
plemented in the freely available software R/qtlbim
(Yi et al., 2005; Yandell et al., 2007; Yi et al.,
2007 a, b).

Yi et al. (2005) developed a Bayesian model selec-
tion method for mapping epistatic QTL in exper-
imental crosses for complex traits, based on the
discrete priors described above and the composite
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model space approach of Yi (2004). The key idea of
this approach is to place an upper bound on the
number of QTLs included in the model. Yi et al.
(2005) set up the upper bound based on the Poisson
prior on the number of QTLs with the prior mean
determined by any initial analyses. Given the upper
bound, Yiet al. (2005) used a vector y of binary (0 or 1)
variables indicating the absence or presence of the
corresponding effects, equivalent to assuming the
discrete prior (16). The vector y determines the num-
ber of included QTLs and the activity of the associ-
ated genetic effects. The use of the upper bound and
the indicator variables avoids the need to explicitly
model the number of QTLs as in the previous
Bayesian methods, allowing us to fit models of dif-
ferent dimensions, e.g. one versus two QTLs, without
resorting to complicated reversible jump MCMC
(Y1, 2004). It also largely reduces the model space and
provides an efficient way to walk through the space of
models, spending more time at ‘good’ models.

Yi et al. (2005) developed an MCMC algorithm to
generate samples from the posterior distribution and
extended (2007b) the above method to include arbi-
trary environmental effects and G x E interactions,
and to map interacting QTL for binary and ordinal
traits based on the generalized probit models (2007 a).
The posterior samples can be used to summarize the
genetic architecture and search for models with high
posterior probabilities. Larger effects should appear
more often, making them easier to identify. We use
all the saved iterations of the Markov chain, corre-
sponding to model averaging, which assesses charac-
teristics of the genetic architecture by averaging over
possible models weighted by their posterior prob-
ability. Various methods have been developed to
graphically and numerically summarize and interpret
the posterior samples (Yi et al., 2005; Yandell et al.,
2007).

5. Interpretation of genetic interaction

In QTL and genetic association analysis, there are
many options available when modelling the data and
computing the model. Once multiple QTLs are de-
tected and a model with main effects and interactions
are established, it is important to assess the fit of the
model to the data and to our substantive (biological)
knowledge, and to interpret the fitted models.
Assessment and interpretation of interaction models
have not been extensively discussed in the literature,
possibly because identifying genetic interactions is a
challenge and researchers are often so relieved to have
detected interactions that there is a temptation to stop
and rest rather than interpret the fitted model. Here,
we discuss some methods for interpreting genetic in-
teractions, including the issues of model checking,
removable or non-removable interactions, average
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predictive genotypic effects and biological interac-
tions.

(1) Model checking and assessment

A flexible method for model checking and assessment
is posterior predictive checking that can be applied to
complex genetic models and can assess the fit of the
model to various aspects of the data. Posterior pre-
dictive checking proceeds by generating replicated
data sets from the fitted model and then comparing
these replicated data sets to the observed data set with
respect to any features of interest. Assume that our
data analysis has generated a set of simulations of the
parameters, 6© =B, ¢¥), s=1, ..., ngm. For each
of these draws, we simulate a replicated data set y™P®
from the predictive distribution of the data, p(y™P|3®,
¢). We check the model by means of discrepancy
measures (test quantities) T(y, 6); several discrepancy
measures can be chosen to reveal interesting features
of the data or discrepancies between the model and
the data. For each discrepancy variable, each simu-
lated realized value T(y, 6®) is compared with the
corresponding simulated replicated value T(y™P®,
0®). Large and systematic differences between rea-
lized and replicated values indicate a misfit of the
model to the data. In some cases, differences are ap-
parent visually ; otherwise, it can be useful to compute
the p-value, p=Pr(T(y"P,0)> T(y,0)|y), to see whe-
ther the difference could plausibly have arisen by
chance under the model. Although the posterior pre-
dictive model checking method is very flexible and
quite simple, an important issue is how to choose the
discrepancy quantities; this deserves future research.

A related approach to model checking is cross-
validation, in which observed data are partitioned,
with each part of the data compared with its predic-
tions conditional on the model and the rest of the data.
Cross-validation has been considered as a standard
method for the expected predictive fit to new data.
But it is computationally intensive and cannot be
widely applied to Bayesian model assessment. For
hierarchical models, however, the posterior predictive
checking can produce results close to cross-validation
if higher-level parameters are also simulated from the
posterior (Green et al., 2009). Another approach is
the deviance information criterion (DIC), which is a
mixed analytical/computational approximation to an
estimated predictive error (Spiegelhalter et al., 2002).

(i) Removable or non-removable interactions

Statistical interactions are defined relative to particu-
lar models and thus can be affected by a change of
modelling or outcome scale (Cordell, 2002;
Berrington & Cox, 2007; Cordell, 2009; Thomas,
2010). We call an interaction ‘removable’ if a
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transformation of the outcome scale can be found
to induce additivity (Berrington & Cox, 2007). Re-
movable interactions are sometimes referred to as
quantitative, whereas non-removable interactions
are referred to as qualitative interactions. It may be
important to investigate whether the detected inter-
actions are removable or non-removable. If the
interactions can be removed, the resulting interpret-
ation may be improved and easily understood by a
reasonable and interpretable model simplification.

For a continuous positive outcome, the Box-Cox
technique (Box & Cox, 1964) can be used to find
a non-linear transformation of the outcome that op-
timally fits the data (Cox, 1984; Berrington & Cox,
2007). The Box-Cox transformations include com-
monly used logarithmic and simple powers as special
cases. For binary data, the logistic or probit or
complementary log scale may be effective (Berrington
& Cox, 2007). The hierarchical generalized linear
model approach of Yi & Banerjee (2009) and Yi et al.
(2010) can deal with various types of continuous and
discrete phenotypes and any generalized linear mod-
els, and allows us to conveniently analyse data using
different models, providing a flexible way to investi-
gate the nature of interactions.

(iii) Average predictive genotypic effects

Once we detect multiple QTLs with main effects and
interactions, one of our interests is to infer which
genotypes of these QTLs are associated with increased
phenotypic value or disease risk, and to describe how
a gene is associated with a trait or disease in combi-
nation with another gene or an environmental factor.
This can be derived from the fitted models. However,
challenges remain. First, single coefficients in an in-
teraction model are less informative. In the presence
of appreciable interaction, for example, main effects
are rarely of direct concern because they represent
effects among individuals with other variables equal-
ling zero. Therefore, the genetic effects should always
be interpreted jointly. Secondly, the predictors in
genetic models are usually coded as functions of the
genotypes, rather than the genotypes themselves,
leading to further difficulty in interpreting the coeffi-
cients. Thirdly, for generalized linear models of in-
teracting genes, the genetic effects are related to a
non-linear transformation (i.e. the link function) of
the observed data, and thus cannot be directly inter-
preted on the scale of the data.

One way to understand models with multiple in-
teractions is to calculate the average predictive com-
parison of each of the inputs. The average predictive
comparison is defined as the expected change in the
outcome variable corresponding to a specified change
in the input of interest averaging over some specified
distribution of all other inputs and parameters
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(Gill, 2001; Gelman & Hill, 2007). Yi et al. (2010)
extend the average predictive comparison method to
interpret genetic interaction models in case-control
studies by presenting the average predictive prob-
ability of case for each of the SNPs and each pair of
SNPs (or an SNP and a covariate) that significantly
interact.

The method of Yi et al. (2010) can be extended to
any genetic interaction model. Suppose that an inter-
action model has already been established. Generally,
we define the marginal expectation E(y|g,=k) as the
average predictive effect of the genotype g,=k of QTL
s, and E(y|lgs=k, g¢=Kk') as the average predictive ef-
fect of the two-locus genotype (g,, g+) = (k, k") of QTL
s and s'. For a binary trait, these expectations equal
the average predictive probabilities as defined by
Yi et al. (2010). These average predictive effects can
be compared with each other, e.g. E(ylg;=k)—
E(y|g,=k"), or with the overall mean E(y). Thus, the
average predictive effects clearly show which geno-
types of the detected QTL and their combinations are
associated with increased or decreased phenotypic
value or disease risk. Yi et al. (2010) developed a
simple method to calculate the average predictive
probability and graphically display the results. Their
method can be extended to calculate the average pre-
dictive effects based on any generalized linear models.

(iv) Biological relevance of statistical interactions

The term ‘epistasis’ or ‘gene x gene interaction’ was
originally used to describe instances in which the
effect of a particular genetic variant was masked by a
variant at another locus so that variation of pheno-
type with genotype at one locus was only apparent
among those with certain genotypes at the second lo-
cus (Cordell, 2009; VanderWeele, 2010). This original
concept of epistasis is different from the definitions of
statistical interactions that are usually used in stat-
istical analysis of complex traits. Phillips (2008) re-
cently discussed the ambiguity in the term ‘epistasis’
and defines three distinct forms of epistasis: statistical
epistasis, compositional epistasis and functional epis-
tasis. Phillips (2008) defined ‘statistical epistasis’ as
a departure from marginal effects in a statistical
model, much closer to the statistical interaction de-
scribed earlier. The term ‘compositional epistasis’
refers to epistasis in Bateson’s original sense of the
term, while the term ‘functional epistasis’ describes
the physical molecular interactions between various
proteins (and other genetic elements) (Phillips, 2008).
Compositional epistasis is a more biological form of
interaction than the commonly used statistical epis-
tasis, but does not necessarily imply functional epis-
tasis. These distinct concepts of epistasis can be also
applied to gene—environment interactions (Thomas,
2010; VanderWeele, 2010).

https://doi.org/10.1017/5S0016672310000595 Published online by Cambridge University Press

454

Most statistical methods for analysing genetic in-
teractions actually test statistical interactions. How-
ever, the extent to which statistical interaction implies
biological or functional interaction has been exten-
sively debated in both the genetics and epidemiologi-
cal literature. A prevailing opinion is that statistical
tests for interactions are of limited use for elucidating
epistasis in the biological sense of the term (Cordell,
2009). However, VanderWeele recently showed some
relationship between statistical interaction and com-
positional epistasis, and derived conditions under
which statistical interactions correspond to composi-
tional epistasis (VanderWeele, 2010; Vanderweele &
Laird, 2010). These empirical conditions are quite
strong, but the procedures proposed may provide a
useful strategy to study biological interactions.

6. Needs for further progress
(1) Gene or pathway level information

Candidate gene studies usually consist of data at dif-
ferent levels, i.e. genetic variants (e.g. haplotype-
tagging SNPs) within multiple candidate genes which
may be functionally related or from different path-
ways. Most of the statistical methods that are recently
being used consider only individual-level predictors
(i.e. SNPs and covariates) and ignore the hierarchical
structure of the data and gene or pathway-level in-
formation. It is biologically expected that genectic
variants within a gene would influence the pheno-
type more similarly than those in different genes
(Hung et al., 2004). Often, rich gene or pathway-level
information is available (Rebbeck et al., 2004), in-
cluding simple pathway indicator variables, genomic
annotation or pathway ontologies, functional assays,
in silico predictions of function or evolutionary con-
servation or simulation of pathway kinetics (Thomas
et al., 2009). Therefore, there is a growing need to
develop sophisticated approaches that model the
multilevel variation simultaneously and incorporate
gene or pathway-level data into the model (Dunson
et al., 2008 ; Thomas, 2010).

Hierarchical models provide a natural and efficient
way of incorporating the external information about
candidate genes into the analysis. One way of includ-
ing the gene-level information in the hierarchical
models is to model the prior means in the prior dis-
tributions of coefficients 3; using gene-level predictors.
This approach allows us to pool the information in
the same genes and thus would provide more effective
inference about the genetic effects. Recent develop-
ments of penalized regressions for high-dimensional
data may provide alternative improved ways to deal
with specific structures in candidate genes. It is well
known that the original lasso regression does not ef-
fectively account for the relationship among a group
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of correlated predictors and tends to select individual
variables from the grouped variables. The elastic net
(Zou & Hastie, 2005) is a generalization of the lasso
regression, which introduces an additional penalty or
prior to incorporate the correlation of predictors into
the model (Kyung et al., 2010). The elastic net can be
implemented in a hierarchical fashion combining
variable selection at lower levels (e.g. among SNPs
within a pathway) and shrinkage at higher levels
(e.g. between genes within a pathway or between
pathways).

(1) Modelling genetic interactions hierarchically

The effect heredity and hierarchy are two important
principles for the statistical analysis of interaction
(Chipman, 1996; Hamada & Wu, 1992; Nelder,
1994). These principles pose certain dependence of
interactions on their main effects. Since with many
predictors there are a huge number of potential in-
teractions, a simple inclusion of interactions can de-
grade the model fit and thus preclude effective
estimation of main effects and interactions. Although
these two principles have been noticed in some of the
previous methods of genetic interactions, there is a
clear need for further studies in the future. Recently,
the lasso penalized regression has been extended to
incorporate the effect heredity and hierarchy princi-
ples (Yuan et al., 2007; Zhao et al., 2009 ; Choi et al.,
2010). Theoretical and empirical results have showed
that these extensions outperform the previous meth-
ods for detecting interactions. These new develop-
ments should be adapted to the statistical analysis of
genetic interactions. Another promising approach
could be modelling interactions in a structured way,
for example, with larger variances for interactions
whose main effects are large. This type of priors can
incorporate the effect heredity principle in a more
continuous form.

(iii) Next-generation sequencing and rare variants
in genetic interactions

The genetic aetiology of common (or complex) hu-
man diseases is determined by both common and
rare genetic variants (Bodmer & Bonilla, 2008;
Schork et al., 2009). Since GWAS have so far focused
on common variants (with minor allele frequency
(MAF)=5%) in the human genome, it has been
speculated that rare variants might account for at
least some of the heritability that GWAS have missed
(Manolio et al., 2009; Cirulli & Goldstein, 2010;
Eichler et al., 2010). Several studies have already
shown that rare variants play an important role in
genetic determination for some diseases (Cohen ez al.,
2004, 2006; Ahituv et al., 2007; Romeo et al., 2007,
2009; Azzopardi et al., 2008; Ji et al., 2008 ; Nejentsev
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et al., 2009). Recent advances in next-generation se-
quencing technologies facilitate the detection of rare
variants, making it possible to uncover the roles of
rare variants in complex diseases.

As a single rare variant contains little variation
owing to low MAF (<0-5 or 1 %), statistical methods
that test variants individually provide insufficient
power to detect causal rare variants. Therefore, as-
sociation analysis of rare variants requires sophisti-
cated methods that can effectively combine the
information across variants and test for their overall
effect (Manolio et al., 2009). Several approaches have
been developed to analyse rare variants, including the
Collapsing, Simple-Sum and Weighted-Sum methods
(Li & Leal, 2008 ; Madsen & Browning, 2009 ; Morris
& Zeggini, 2010; Price et al., 2010). These methods
summarize multiple rare variants by weighting them
equally (Li & Leal, 2008 ; Morris & Zeggini, 2010) or
on the basis of estimated standard deviation (Madsen
& Browning, 2009) or functional prediction (Price
et al., 2010). Recently, penalized likelihood approach
and hierarchical models have been applied to rare
variants analysis (Zhou et al., 2010; Yi & Zhi, 2010).
These methods have focused on rare variants in a gene
or region, and exclude genectic interactions in the
analysis. Since complex diseases are usually influ-
enced by multiple genes and environmental factors
and their interactions, it would be important to de-
velop sophisticated methods for jointly analysing all
rare variants in multiple genes and gene—environment
and gene—gene interactions.

(iv) Using interaction models for risk prediction

GWAS have raised expectations for predicting indi-
vidual susceptibility to common diseases using genetic
variants (Wray et al., 2008; Kraft et al., 2009).
Previous methods using only a limited number of
significant variants have typically failed to achieve
satisfactory prediction performance (Jakobsdottir et
al., 2009 ; Kraft & Hunter, 2009). Recent studies show
that joint analysis of a large number of genetic var-
iants can improve the risk prediction performance
(Meuwissen et al., 2001; Lee et al., 2008; de los
Campos et al., 2009; Wei et al., 2009; Hayashi &
Iwata, 2010; Yang et al., 2010). However, the pre-
vious studies have not included interactions into the
predictive models. If G x G and G x E interactions are
present, adding these interactions to a predictive
model should increase the accuracy of prediction.
Therefore, jointly modelling genetic, environmental
factors and their interactions has important implica-
tions for disease risk prediction and personalized
medicine (Clark, 2000; Moore & Williams, 2009).
Because frequencies of multi-locus genotypes that
define interactions are usually low, inclusion of inter-
actions may not largely improve the overall prediction
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in the entire population based on the commonly
used receiver operating characteristic (ROC) curve
(Bjernvold et al., 2008 ; Clayton, 2009). However, the
interaction models can identify combinations of mul-
tiple susceptibility loci that confer very high or low
risk, and hence can be highly predictive for subsets
that carry certain combinations of interacting
variants (Y1 et al., 2010). Unfortunately, most of the
genetic association studies have so far not addressed
G xG and G x E interactions, and thus the trans-
lation of scientific understanding about G x G and
G x E interactions into risk assessment and genomic
profiling has been limited.

7. Conclusions

Genetic interactions are worth studying for many
reasons (Cordell, 2009; Thomas, 2010). First, model-
ling GxG and G x E interactions can increase the
power to detect additional variants or genes and more
accurately characterize the genetic effects, Secondly,
detection and characterization of genetic interactions
will help elucidate the biological and biochemical
pathways that underpin disease. Finally, including
significant interactions in risk prediction models can
have important implications for disease risk predic-
tion and personalized medicine. Recent advances in
GWAS have provided unparalleled opportunities
for investigating the genetic architecture of complex
diseases. However, most of these studies have used a
single-locus analysis strategy and thus ignored inter-
actions. Therefore, the follow-up studies should focus
on investigating genetic interactions and other com-
plexities (Manolio et al., 2009; Cantor et al., 2010).
However, this requires sophisticated statistical meth-
ods. As discussed in this article, there are a variety
of approaches that can be used to analyse genetic
interactions. The integration of the modern high-
dimensional statistical methods and the specific form
of genetic data and external biological knowledge will
further improve the power to detect complex interac-
tions.
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