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Abstract

An abstract system of congruences describes a way of partitioning a space into finitely many
pieces satisfying certain congruence relations. Examples of abstract systems of congruences include
paradoxical decompositions and n-divisibility of actions. We consider the general question of when
there are realizations of abstract systems of congruences satisfying various measurability constraints.
We completely characterize which abstract systems of congruences can be realized by nonmeager
Baire measurable pieces of the sphere under the action of rotations on the 2-sphere. This answers
a question by Wagon. We also construct Borel realizations of abstract systems of congruences for
the action of PSL2(Z) on P1(R). The combinatorial underpinnings of our proof are certain types of
decomposition of Borel graphs into paths. We also use these decompositions to obtain some results
about measurable unfriendly colorings.

2010 Mathematics Subject Classification: 03E15 (primary); 28A75, 37A20, 52B45 (secondary)

1. Introduction

Recently, several results have been proved about the extent to which realizations
of geometrical paradoxes can be found with sets having measurability properties
such as being Borel, Lebesgue measurable, or Baire measurable (see for
instance [CS, DF, GMP16, GMP17, Ma, MU16, MU17]). This is a growing
area of study at the interface of descriptive set theory, combinatorics, and ergodic
theory. This paper is a contribution to this study. One of the earliest results in
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this vein is the theorem of Dougherty and Foreman [DF] that the Banach–Tarski
paradox can be realized using Baire measurable pieces. In contrast to the classical
Banach–Tarski paradox, which uses five pieces, Dougherty and Foreman’s Baire
measurable solution uses six pieces. A result of Wehrung [Weh] implies that this
is optimal; there is no Baire measurable realization of the Banach–Tarski paradox
with five pieces. This suggests a subtle difference between the classical and Baire
measurable contexts.

In this paper, we consider a refined framework called ‘abstract systems of
congruence’ for describing when an action can be partitioned into finitely
many pieces satisfying certain congruence relations. As one application, we
give an exact characterization of which abstract systems of congruences can be
realized in the 2-sphere with arbitrary pieces versus nonmeager Baire measurable
pieces. This refines the dual results of Wehrung [Weh], and Dougherty and
Foreman [DF].

We formally define abstract systems of congruences as follows. Given a set S,
its proper powerset Ppr(S) is Ppr(S) = {R ⊆ S : R 6= ∅ ∧ R 6= S}. Following
Wagon [W, Definition 4.10], an abstract system of congruences on n = {0, . . . ,
n−1} is an equivalence relation E on Ppr(n) so that if U E V , then U c E V c. Here
U c denotes the complement of U . Suppose a : Γ y X is an action of a group on
a set X . Then we say that A, B ⊆ X are a-congruent if there is a group element
γ ∈ Γ such that γ · A = B. An a-realization of an abstract system of congruences
E is a partition {A0, . . . , An−1} of X such that for all U, V ∈ Ppr(n) with U E V ,
we have that

⋃
i∈U Ai and

⋃
i∈V Ai are a-congruent. The definition of an abstract

system of congruences reflects the fact that congruence is an equivalence relation
and that if A, B ⊆ X are congruent, then Ac and Bc are also congruent.

An important example of an abstract system of congruences is the smallest
abstract system of congruences E on Ppr(4) containing the relations {0} E {0,
1, 2} and {1} E {0, 1, 3}. A realization of this system gives a paradoxical
decomposition since {0, 3} and {1, 2} partition {0, 1, 2, 3}. The translation action
of the free group on two generators F2 on itself is an example of an action realizing
this system of congruences [W, Theorem 4.2]. Another important example of an
abstract system of congruences is the smallest abstract system of congruences E
on Ppr(n)where {i} E { j} for every i, j ∈ n. An action is said to be n-divisible if it
satisfies this system of congruences (that is, it can be partitioned into n congruent
pieces). For example, it is easy to see that the action of the rotation group SO3 on
the 2-sphere is not 2-divisible by considering the ‘poles’ of the rotation. However,
this action is n-divisible for n > 3 (see [W, Corollary 4.14]).

Wagon has characterized which abstract systems of congruences can be realized
in the action of the group SO3 of rotations on the 2-sphere. We say that an abstract
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system of congruences E on n is noncomplementing if there is no set X ∈ Ppr(n)
such that X E X c.

THEOREM 1.1 [W, Corollary 4.12]. Suppose E is an abstract system of
congruences. E can be realized in the action of SO3 on the 2-sphere if and
only if E is noncomplementing.

We show that in order to realize an abstract system of congruences with Baire
measurable pieces in the sphere, we need one additional property. We say that
an abstract system of congruences E on Ppr(n) is nonexpanding if there do not
exist sequences of sets (Vi)i6k and (Wi)i6k , where Vi E Wi for every i 6 k and
Wi ⊆ Vi+1 for every i < k, such that Wk ( V0. Hence,

V0 E W0 ⊆ V1 E W1 ⊆ · · · Vk E Wk ( V0.

THEOREM 1.2. Suppose E is an abstract system of congruences. Then E can be
realized in the action of SO3 on the 2-sphere with Baire measurable pieces, each
of which is nonmeager, if and only if E is noncomplementing and nonexpanding.

This theorem positively answers Wagon’s question [W, page 47] of whether
the 2-sphere is n-divisible with Baire measurable pieces for n > 3. Indeed, the
smallest abstract system of congruences E containing the relations {1} E {2}
E · · · E {n} is clearly noncomplementing and nonexpanding for n > 3, and hence
has a Baire measurable realization in the action of SO3 on the 2-sphere. Wagon
has also asked whether the 2-sphere is n-divisible into Lebesgue measurable
pieces. This remains an open problem.

Let Fn be the free group on n generators. Our proof of Theorem 1.2 shows
more generally that if n > 2, then any free Borel action of Fn on a Polish
space X can realize an abstract system of congruences that is nonexpanding and
noncomplementing using Baire measurable pieces (see Lemma 3.6).

Our main tool for proving Theorem 1.2 is a decomposition lemma for acyclic
Borel graphs into sets of paths with a property concerning how the paths from
different sets may overlap.

DEFINITION 1.3. Suppose G is a graph and G0,G1, . . . is a sequence of
subgraphs of G. Then we say G0,G1, . . . is end-ordered if for all vertices x in
G, if x is a vertex in G i and G j where i < j , then x is a leaf in G j . Similarly, if
S0, S1, . . . are sets of subgraphs of G, then we say that S0, S1, . . . is end-ordered
if for all vertices x in G, if x is a vertex in H ∈ Si and a vertex in H ′ ∈ S j where
i < j , then x is a leaf in H ′.
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DEFINITION 1.4. Suppose G is an acyclic Borel graph. Then a path
decomposition of G is a sequence P0, P1, . . . of sets of paths in G such that
P0, P1, . . . is end-ordered, every Pi consists of vertex-disjoint paths, and for
every edge e in G, there exists exactly one Pi so that e appears in a path in Pi .
We say that a path decomposition is Borel if each set Pi is Borel, and the path
decomposition has length at least n if every path has length at least n.

Roughly, a path decomposition is a way of covering the graph with sets of paths
P0, P1, . . . so that all the paths in Pj have interiors that are disjoint from the paths
in Pi , for i < j .

One of our main lemmas (Lemma 3.4) says that if G is a locally finite acyclic
Borel graph, then for all n, there is a comeager set on which G has a Borel path
decomposition of length at least n.

A different case in which we have Borel path decompositions is when we have
Borel end selections. Recall that if G is a graph on X , a ray is an infinite simple
path in G, and that two rays (xi)i∈N and (yi)i∈N are end-equivalent if for every
finite set S ⊆ X , the rays (xi) and (yi) eventually lie in the same connected
component of G � (X \S). An end of G is an end-equivalence class of G. If G is a
Borel graph on X , we say that G admits a Borel selection of finitely k ends in each
connected component if there are Borel functions r0, . . . , rk−1 sending each x ∈ X
to k end-inequivalent rays r0(x), . . . , rk(x) in the connected component of x such
that if y are in the same connected component of G as x , then {r0(x), . . . , rk−1(x)}
and {r0(y), . . . , rk−1(y)} are representatives of the same set of ends. We say that
G admits a Borel selection of finitely many ends in each connected component if
G can be partitioned into countably many invariant Borel sets A0, A1, . . . so that
for each i , there is some k so that G � Ai has a Borel selection of k ends in each
connected component.

We show that if G is an acyclic bounded degree Borel graph on X such that
there is a Borel selection of finitely many ends in every connected component of
G, then for every n we can find a Borel path decomposition of G of length at
least n (see Lemma 4.2). We construct explicit realizations of abstract systems of
congruences for the action of PSL2(Z) on P1(R) by combining this lemma with
an explicit end selection defined using continued fraction expansions.

THEOREM 1.5. Suppose E is an abstract system of congruences, which is
noncomplementing and nonexpanding. Then E can be realized in the action of
PSL2(Z) on P1(R) by Borel pieces.

For example, this action is n-divisible using Borel pieces for n > 3.
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OPEN PROBLEM 1.6. Characterize the abstract systems of congruences, which
can be realized in the action of PSL2(Z) on P1(R) by Borel pieces.

It is a theorem of Adams [JKL, Lemma 3.21] that if G is a locally finite graph
on a standard probability space (X, µ) and G is µ-hyperfinite, then G admits a
µ-measurable selection of finitely many ends. Using the Adams theorem, we also
show that any µ-hyperfinite action of F2 on a standard probability space (X, µ)
has a µ-measurable realization of any abstract system of congruences E if E is
noncomplementing and nonexpanding (see Theorem 4.3).

Our decomposition lemmas have some other applications in Borel
combinatorics. Simon Thomas has asked whether every locally finite Borel
graph has an unfriendly Borel coloring, where an unfriendly coloring of a graph
G on X is a function f : X → 2 such that for every x ,

|{y ∈ N (x) : c(x) 6= c(y)}| > |{y ∈ N (x) : c(x) = c(y)}|.

The question by Thomas is partially motivated by the open problem in classical
combinatorics of whether every countable graph admits an unfriendly coloring. If
G is a graph on X , we say that a function f : X → 2 is strongly unfriendly if for
every x , |{y ∈ N (x) : c(x) = c(y)} 6 1.

We use our decomposition lemma to prove the following result.

THEOREM 1.7. Suppose G is a locally finite acyclic Borel graph on a Polish
space X that admits a Borel path decomposition of length at least 5. Then G has
a Borel strongly unfriendly coloring. Hence, if G is a locally finite acyclic Borel
graph of degree at least 2, then G admits a Baire measurable strongly unfriendly
coloring, and G admits a µ-measurable strongly unfriendly coloring for every
Borel probability measure on X rendering G µ-hyperfinite.

In Section 6, we also discuss some further applications of our decompositions,
such as new proofs of Baire measurable and µ-measurable edge coloring and
matchings.

2. Preliminaries

Our notation for graph theory is standard; see [D]. We recall a few notions. By
a graph on X , we mean a simple undirected graph with vertex set X . The degree
of a vertex is its number of neighbors. Two vertices are adjacent if there is an edge
between them. A vertex is a leaf if it has degree 1, and is a splitting vertex if it
has degree at least 3. By a path, we mean a simple path of finite length x0, . . . , xn .
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The endpoints of the path are x0 and xn , and the remaining vertices are interior
vertices of the path. By a ray, we mean a simple infinite path (xi)i∈N.

If G is a graph, we say that a set of vertices is independent if it does not contain
two adjacent vertices. We say that a set A is k-independent if for all distinct x,
y ∈ A, we have d(x, y) > k.

Suppose G is a graph on X . A subgraph H of G is a graph on a subset of X
so that every edge in H is an edge in G. If Y ⊆ X , the restriction of G to Y or
induced subgraph on Y , denoted by G � Y , is the graph on Y where the edges of
G � Y are all edges in G with vertices in Y .

A Borel graph is a graph on a Polish space X whose edge relation is Borel. For
background on Borel graphs, see [KM]. An important example of a Borel graph
arises from Borel group actions. If a is a Borel action of a countable group Γ on
a Polish space X and S ⊆ Γ is a symmetric set of group elements, then we let
G(a, S) be the graph on X , where x, y are adjacent, if there exists some γ ∈ S
such that γ · x = y.

If G is a Borel graph on X , the set of all paths of G is a Borel subset of
⋃

n X n ,
and hence a standard Borel space. Hence, we may speak about a set of paths in G
being Borel.

We note that in contrast to Lemmas 3.4 and 4.2, there exist Borel graphs that
do not admit Borel path decompositions of length at least 3.

THEOREM 2.1. Suppose that G is a Borel graph of degree at least 3 on a Polish
space X that admits an invariant measure µ. Then G does not admit a Borel path
decomposition on any µ-conull Borel set.

Proof. Let P0, P1, . . . be a Borel path decomposition. Note that every vertex x
must be the endpoint vertex of some unique path p(x) ∈ Pi since G has degree
at least 3. Define a Borel function f : X → X , where f (x) is the vertex adjacent
to x in p(x). Then f is a compression function contradicting µ being measure-
preserving [N].

We will use the following lemma giving a criterion for the existence of abstract
systems of congruences without any measurability properties.

DEFINITION 2.2. Suppose E is an abstract system of congruences. We say
that a relation R on a set X generates the equivalence relation E on X if the
smallest abstract system of congruences containing R is equal to E . We say that
a generating set R for E is good if R contains all pairs (U, V ) ∈ E such that
U = V c. Finally, a minimal good generating set of E is a good generating set R
so that there is no proper subset of R that is a good generating set for E .
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LEMMA 2.3 (See also [W, Section 4]). Suppose that E is an abstract system of
congruences on n, and R = {(S1, T1), . . . , (Sk, Tk)} is a minimal good generating
set of E. Suppose a : Γ y X is an action of

Γ = 〈γ1 · · · γk | {γ
2

i = 1 : Ti = Si
c
}〉.

Suppose finally that for every x ∈ X, Stab({x}) is cyclic. Then there is an a-
realization {A0, . . . , An−1} of E, witnessed by

γi ·
⋃
j∈Si

A j =
⋃
j∈Ti

A j . (*)

Proof. This lemma is proved in [W, Section 4] when E is noncomplementing.
Using the axiom of choice, it suffices to prove the lemma when the action has a

single orbit. Since the stabilizer of every point is cyclic, the graph G(a, {γi : i 6
k}) has at most one cycle.

Suppose there is a cycle x0, x1, . . . , xl = x0. Let g be the group element
g = gl−1 · · · g1g0 so that xi+1 = gi · · · g1g0 · x0, and gi ∈ {γ

±

1 , . . . , γ
±

k }. We claim
we can assign elements of this cycle to A0, . . . , An−1 in a way that is consistent
with (*). First, define functions X and Y on the generators by letting X (γ j) = S j ,
Y (γ j) = T j , X (γ −1) = T j , and Y (γ −1) = S j ; so obeying (*) corresponds to
having

xi ∈
⋃

j∈X (gi )

A j iff xi+1 ∈
⋃

j∈Y (gi )

A j .

Let i+ denote i + 1 mod k.

Case 1: Suppose there is some i < l such that X (gi+) 6= Y (gi) and X (gi+) 6=

Y (gi)
c. Then we claim we can assign x0, . . . , xl to A0, . . . , An−1 in a way that

satisfies (*). For example, suppose there is r, s ∈ X (gi+) such that r ∈ Y (gi)

and s ∈ Y (gi)
c. Start by assigning xi++ to an arbitrary element of Y (gi+). Then

proceed around the cycle, assigning elements in a way consistent with (*). Finish
by assigning xi+ to Ar if xi ∈ X (gi), or assigning xi+ to As if xi /∈ X (gi). The
other cases are essentially identical.

Case 2: Suppose for all i < l, X (gi+) = Y (gi) or X (gi+) = Y (gi)
c. In this case,

we claim that if there is no way to assign x0, . . . , xl to A0, . . . , An−1 in a way that
satisfies (*), then R is not a minimal good generating set, which is a contradiction.

Let V (0) = X (g0), and then inductively define V (i + 1) = Y (gi) if V (i) =
X (gi), and otherwise V (i+1)= V (gi)

c if V (i)= X (gi)
c. Hence, V (0) E V (1) E

V (2) · · · E V (l). Since there is no way to assign x0, . . . , xl to A0, . . . , An−1 in a
way that satisfies (*), we must have that V (0)= V (l)c. Now take a minimal length
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subsequence V (i), . . . , V ( j) of V (0), . . . , V (l) such that

j − i > 2 and V (i) = V ( j) or V (i) = V ( j)c. (**)

It is clear that if gi = γm , then we can remove the pair (Sm, Tm) from R and we
would still generate E . This is because if V (i) = V ( j), then V (i) E V (i + 1)
follows from V (i + 1) E V (i + 2) · · · E V ( j) = V (i). If V (i) = V ( j)c, then the
fact that V (i) E V (i + 1) follows from V (i + 1) E V (i + 2) · · · E V ( j) = V (i)c,
and by the definition of a good generating set, the pair V ( j) E V (i)c must appear
in R. (Note that here we are using the minimal length of this subsequence among
those with (**) and the fact that g is a reduced word to ensure that the equivalences
V (i) E V (i + 1) and V (i) E V (i + 1)c do not appear in the equivalences
V (i + 1) E · · · E V ( j)). This finishes Case 2.

Now that we assigned the elements of the cycle to A0, . . . , An−1, if a cycle
exists, for the remaining acyclic portion of the graph, we clearly iteratively assign
the vertices to A0, . . . , An−1 in a way that satisfies (*).

Throughout, we will be working with actions of such groups Γ that are free
products of copies of Z and Z/2Z and where the generators of Γ of order 2 will
witness congruences of the form U E U c.

3. Baire measurable realizations

In this section, we prove Theorem 1.2. We begin with a decomposition lemma
for acyclic locally finite Borel graphs (Lemma 3.4). As an intermediate step
toward this lemma, we consider decompositions into certain types of trees that
themselves have suitable decompositions into paths. Recall that a tree is a
connected acyclic graph, a leaf of a tree is a vertex of degree 1, and a splitting
vertex is a vertex of degree at least 3. We say that a tree T is n-spindly if there
is at most one leaf l of T so that for all distinct leaves x, y, if l /∈ {x, y}, then
d(x, y) > 2n, and if l ∈ {x, y}, then d(x, y) > n. The utility of spindly trees is
given by the following lemma.

LEMMA 3.1. Every finite n-spindly tree T can be written as a union of edge-
disjoint paths p0, p1, . . . each having length at least n, and which are end-
ordered.

Proof. We construct p0, p1, . . . , pk by induction. Let p0 be a path from one leaf
to another leaf, having minimal length among such paths between leaves. Let the
endpoints of p0 be x and y. We may assume x 6= l for the distinguished leaf l if it
exists.
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For each vertex z not in p0, let Vz be the set ofw such that there is a path p from
z to w such that no interior vertex of p is in p0. Since T is a tree, there is exactly
one vertex in T � Vz , which is contained in p0. Let this vertex be lz , which is a leaf
in T � Vz . For any leaf w in T � Vz , the distance d(x, lz) 6 d(w, lz). Otherwise
if d(w, lz) < d(x, lz), the path from w to y would have smaller length than
p0, but p0 has minimal length. Hence, d(w, lz) > n since otherwise d(x, lz) 6
d(w, lz) < n, which implies that d(x, w) < 2n, contradicting T being n-spindly
since neither x nor w is equal to l. It follows that T � Vz is n-spindly, witnessed
by lz .

The lemma follows by inductively applying the lemma to all these n-spindly
subgraphs of the form T � Vy .

REMARK 3.2. Every locally finite n-spindly tree T can be written as a union of
edge-disjoint paths p0, p1, . . . that are of length at least n and which are end-
ordered. That is, Lemma 3.1 remains true for infinite n-spindly trees. This is
by an infinite iteration of the same process in the proof of Lemma 3.1 (or by a
compactness argument).

As an intermediate step toward our path decomposition, we prove a lemma
decomposing into n-spindly trees.

LEMMA 3.3. Suppose G is a locally finite acyclic graph on a Polish space X of
degree at least 2, and n > 1. Then there are a G-invariant comeager Borel set D
and edge-disjoint Borel subgraphs G0,G1, . . . such that

⋃
i G i = G � D, every

connected component of G i is a finite n-spindly tree, and the sequence G0,G1, . . .

is end-ordered.

Proof. We give a construction in countably many steps. Let d(i) = 3n6i .
By [MU16, Lemma 3.1], let (Ai)i∈N be subsets of X such that the elements of
Ai are pairwise of distance greater than 3d(i), and D =

⋃
i Ai is comeager and

G-invariant. Before step s, we will have constructed edge-disjoint Borel
subgraphs G0,G1, . . . ,Gs−1. Let Hi =

⋃
j6i G j . Let Hi,k for k 6 i be all

the connected components C in Hi , where k is least such that C is also a
connected component of Hk . So Hi is the disjoint union Hi =

⋃
k6i Hi,k .

Our induction hypotheses are as follows:

(1) For every i < s and x ∈ Ai , there is an edge incident to x in Hi .

(2) For every k 6 s − 1, the diameter of any connected component of Hs−1,k is
at most d(k).

https://doi.org/10.1017/fms.2020.4 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.4


C. T. Conley, A. S. Marks and S. T. Unger 10

(3) For every k 6 s− 1, the distance between any two connected components of
Hs−1,k is at least 2d(k).

(4) The distance between any two connected components of Hs−1 is greater than
2n.

Note that these hypotheses imply that every edge in G � D will appear in some
G i . To see this, suppose x, x ′ are adjacent, where x ∈ As and x ′ ∈ As′ . Then x and
x ′ must both be in connected components of Hmax(s,s′) by (1), and hence the same
connected component by (4). Thus the edge (x, x ′) must be in Hmax(s,s′) since G
is acyclic.

Below we inductively define Gs and then prove that each connected component
of Gs is n-spindly. Note that to satisfy part (1) of the induction hypothesis, we
need to add an edge incident to each x ∈ As to Gs if there is not one already in
Hs−1. However, simply adding such edges by themselves may violate induction
hypothesis (4). So we will need to inductively define Gs to include paths to
all nearby connected components of Hs−1,k so that they all become the same
connected component in Hs . Hypotheses (2) and (3) give us control over this
process, so we can satisfy (4).

To begin, let Gs,0 be the graph consisting of all vertices in As (and no edges).
Inductively, for 0 < i 6 s, let Gs,i ⊇ Gs,i−1 be the union of Gs,i−1 with all
paths of length at most d(s − i) in the graph G \ Hs−1 from vertices in Gs,i−1 to
connected components of Hs−1,s−i . Since elements of As have pairwise distance
at least 3d(s), it is clear by induction that components of Gs,i have diameter at
most 2d(s − 1) + · · · + 2d(s − i), and hence components of Gs,s have diameter
at most 2d(s − 1) + · · · + 2d(0). Similarly, the components of Gs,s are pairwise
of distance at least 3d(s)− 2d(s − 1)− · · · − 2d(0).

Let A0
s be the set of x ∈ As that are not incident to any edge of Hs−1 or Gs,s .

(Hence, every x ∈ A0
s has d(x, Hs−1) > d(0) > 3n.) For each x ∈ A0

s , let p(x) be
the lex-least path of length n in G starting at x . Let A1

s be the set of x ∈ As that are
leaves in Gs,s . For x ∈ A1

s , let p(x) be the lex-least path of length n starting at x in
G \ (Gs,s ∪ Hs−1). Such a path exists since every vertex in G has degree at least 2,
and since if y is a neighbor of x that is not in Gs,s , then there is no simple path of
length at most d(0) > 3n beginning x, y, . . . that ends in an element of Hs−1 by
the definition of Gs,s . Let Js = {p(x) : x ∈ A0

s ∨ x ∈ A1
s } and let Gs = Gs,s ∪ Js .

Clearly, Hs satisfies (1) by definition.
Suppose C is a connected component of Gs . We want to prove C is n-spindly.

Now C contains a unique x ∈ As . We consider three cases. Case 1: If x ∈ A0
s , then

clearly C is just a path of length n; hence, C is n-spindly. Case 2: If x ∈ A1
s , then

let p(x) = x, . . . , z have endpoint z. In this case, z is the distinguished leaf C ; if l
is any other leaf of C , then d(z, l) > n since p(x) has length n. By the definition
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of Gs , any leaf in C not equal to z is the endpoint of a path from Gs,i−1 to Hs−1,s−i

for some i . Since any two connected components of Hs−1 have distance at least 2n
by (4), all these leaves have distance pairwise greater than 2n. So C is n-spindly.
Case 3: If x /∈ A0

s and x /∈ A1
s , then all leaves of C are endpoints of paths from

Gs,i−1 to Hs−1 and have distance greater than 2n, so C is n-spindly.
Now we verify parts (2) and (3) of the induction hypothesis. By the construction

of Gs , every connected component of Gs has diameter at most 2d(s − 1)+ · · · +
2d(0)+n 6 d(s)−2d(s−1). Since connected components of Hs−1 have diameter
at most d(s − 1) by our induction hypothesis, connected components of Hs,s

therefore have diameter at most d(s). Similarly, the distance between any two
connected components of Gs is at least 3d(s)− 2d(s − 1)− · · · − 2d(0)− 2n >
2d(s)+ 2d(s− 1). Hence, connected components of Hs,s are pairwise of distance
at least 2d(s) since connected components of Hs−1 have diameter at most d(s−1).
Note that if C is a connected component of Hs,k , then it is also a connected
component of Hs′,k for all s ′ < s. Hence, parts (2) and (3) of the induction
hypothesis are also true for all k < s. This verifies parts (2) and (3) of the induction
hypothesis.

Now we show that part (4) of the induction hypothesis holds. Suppose C is a
connected component of Hs,s . We want to show that distance from y ∈ C to any
other connected component C ′ of Hs,k is greater than 2n for k 6 s. When k = s,
this follows from (3), so assume k < s. For a contradiction, let y be a vertex in C
with d(y,C ′) 6 2n. We may assume that y ∈ Gs since if y ∈ Gs′ for s ′ < s, then
d(y,C ′) follows from our induction hypothesis. We may further assume y ∈ Gs,s .
To see this, let x ∈ C be the unique vertex in C with x ∈ As . If x ∈ A0

s , then
C = p(x), and d(x, Hs−1) > 3n, so d(y, Hs−1) > 2n since p(x) has length n. If
x ∈ A1

s , then any path of length at most 2n from x ∈ p(z) to an element of Hs−1

must go through y by our discussion after the definition of p(x).
Hence, let y ∈ Gs,s be so that d(y,C ′) 6 2n. Let y′ be the closest element

in Gs,s−k � C to C ′. Hence, by the construction of Gs,s , we have d(y, y′) 6
d(k− 1)+ · · ·+ d(0). Since C ′ is of distance at most 2n from y, C ′ is of distance
at most 2n+d(k−1)+· · ·+d(0) < d(k) from x ′. First, suppose x ′ is also a vertex
in Gs,s−k−1. Then x ′ would be an element of Gs,s−k−1 of distance < d(k) from an
element of Hs,k , and so in the definition of Gs,s−k , there should have been a path
added from Gs,s−k−1 to C ′ in Gs,s−k . If x ′ is not a vertex in Gs,s−k−1, then x ′ must
be part of a path added in Gs,s−k from an element of Gs,s−k−1 to some connected
component C ′′ of Hs−1,k . Since this path is of distance at most d(k), this would
imply that C ′ and C ′′ are of distance < 2d(k), which contradicts part (3) of the
induction hypothesis.

We are now ready to prove our path decomposition lemma.
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LEMMA 3.4. Suppose G is a locally finite acyclic graph on a Polish space and
n > 1. Then there is a comeager Borel set D such that G � D has a path
decomposition of length at least n.

Proof. We prove this lemma by combining Lemmas 3.3 and 3.1 with the obvious
derivative process to obtain sets of paths.

Suppose (Di)i∈N is such that each S ∈ Di is a finite sequence of paths in
G that are end-ordered, and (Di)i∈N is end-ordered. Let <(Di ) (suppressing the
indexing for clarity) be the partial order on the paths appearing in the elements of
Di where p <(Di ) p′ if p, p′ share some vertex, and either p, p′ both appear in
some sequence S ∈ Di where p appears before p′ or p is in an element of Di and
p′ is in an element of D j for i < j .

We begin by applying Lemma 3.3 to obtain an n-spindly decomposition G0,

G1, . . . of G restricted to some comeager G-invariant Borel set. If C is an n-
spindly connected component of some G i , let P(C) be the lexicographically
least decomposition (p0, . . . , pk) of C satisfying the conclusion of Lemma 3.1.
Letting Di,0 = {P(C) : C is a connected component of G i}, we obtain a sequence
(Di,0)i∈N of sets of finite sequences of paths in G, and the associated partial order
<(Di,0) defined in the previous paragraph.

Inductively, for j > 0, let Pj be the set of p appearing in some element of Di, j

such that there is no p′ <(Di, j ) p. Then let Di, j+1 be the set of all sequences in Di, j

with all elements of Pj removed. These Pj are our desired set of paths. Every path
p′ in each S ∈ Di must eventually appear in some Pj since there are only finitely
many p such that p <(Di,0) p′.

A useful observation is that if G is a graph with a path decomposition, the
decomposition may be assumed to consist of paths of bounded length. This
follows the fact that the intersection graph on paths has a countable Borel coloring,
and a derivative operation analogous to that of Lemma 3.4.

LEMMA 3.5. Suppose G is a locally finite Borel graph with a Borel path
decomposition P0, P1, . . . of length at least n. Then G admits a Borel path
decomposition P ′0, P ′1, . . . of length at least n such that every path p ∈ P ′i has
length at most 2n.

Proof. Every path of length greater than 2n can clearly be written as a finite union
of paths of length between n and 2n. Hence, we may replace any path p ∈ Pi of
length greater than 2n by the lex-least finite set of paths of length between n and
2n whose union is p. This gives a sequence P0, P1, . . . having every property of
being a Borel path decomposition with the exception that Pi may not consist of
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vertex-disjoint paths (but with the property that every path in every Pi has length
at most 2n).

Let H be the graph on the paths
⋃

i Pi , where distinct p, p′ ∈
⋃

i Pi are adjacent
in H if they share some vertex. Then H is a locally finite Borel graph and hence
has a countable Borel coloring c :

⋃
i Pi → N by [KST, Proposition 4.10].

Inductively, let Di,0 = Pi . For a fixed j , we can order the paths in
⋃

i Di, j

by p <(Di, j ) p′ if p ∈ Di, j and p′ ∈ Di ′, j , where either i < i ′ or i = i ′ and
c(p) < c(p′). Now a construction identical to the last paragraph of the proof of
Lemma 3.4 gives our desired Borel path decomposition.

LEMMA 3.6. Suppose that E is an abstract system of congruences on n, which is
nonexpanding, and R = {(S1, T1), . . . , (Sk, Tk)} is a minimal good generating set
of E. Suppose also that a is a free Borel action of the group

Γ = 〈γ1 · · · γk | {γ
2

i = 1 : Ti = Si
c
}〉

on a Polish space X. If G(a, {γ1, . . . , γk}) has a Borel path decomposition of
length at least r for sufficiently large r (depending on E), then there is an a-
realization of E with Borel pieces witnessed by

γi ·
⋃
j∈Si

A j =
⋃
j∈Ti

A j . (*)

Furthermore, if the space X is assumed to be perfect, then the sets A1, . . . , Ak

can be chosen so that each is nonmeager.

Proof. Let G be the graph G = G(a, {γ1, . . . , γk}). The idea of our proof is as
follows. We first argue that there is a sufficiently large length r so that given
any path p of length at least r in G, if we have already assigned the endpoints
of p to be in elements of A0, . . . , An−1, then there is some way of consistently
assigning the interior points of the path to elements of A0, . . . , An−1 so as to obey
the congruences required in (*). Then we use a path decomposition of length at
least r for G to inductively construct a realization of this system of congruences.

Suppose that g = gl . . . g0 is a reduced word in Γ , where gi ∈ {γ
±

1 , . . . , γ
±

k }

are generators. If we begin at some x ∈ X , then such a reduced word of length
l + 1 gives a path of length l + 1 in G: the path x, g0 · x, . . . , gl · · · g0 · x . We
give a definition concerning what elements of A0, . . . , An−1 the elements of this
path can belong to. Define functions X and Y on generators as follows: X (γ j) =

S j , Y (γ j) = T j , X (γ −1
j ) = T j , and Y (γ −1

j ) = S j . We say that n0, . . . , nl+1 is a
labeling of g = gl · · · g0 if for all i , we have ni ∈ X (gi) if and only if ni+1 ∈ Y (gi).
So labelings correspond to acceptable assignments of the points x, g0 · x, . . . ,
gl · · · g0 · x to the sets A0, . . . , An−1.
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We are interested in the ways labelings of g may start and end. If k,m ∈ n, we
say a reduced word g is (k,m)-bad if there is no labeling n0, . . . , nl+1 of g with
n0 = m and nl+1 = k. We say that g is bad if there is some k,m ∈ n such that g is
(k,m)-bad. We will use a pigeonhole principle argument to show there is a bound
on the length of bad words.

To begin, note that if g = gl · · · g0 is bad, then gl · · · g1 and gl−1 · · · g0 are also
bad. That is, initial segments and final segments of bad words are bad.

Suppose g = gl · · · g0 is (k,m)-bad. Then exactly one of the following holds.
Either

(1) m ∈ Y (gl) and g is (k,m ′)-bad for every m ′ ∈ Y (gl) or

(2) m ∈ Y (gl)
c and g is (k,m ′)-bad for every m ′ ∈ Y (gl)

c.

Fix a (k,m)-bad word g. Define a pair of associated sequences Vg,k(i) and
Wg,k(i), where (Vg,k(i),Wg,k(i)) = (X (gi)

c, Y (gi)
c) if gi · · · g0 is (k,m ′)-bad for

every m ′ ∈ Y (gi)
c and (Vg,k(i),Wg,k(i)) = (X (gi), Y (gi)) otherwise. It is clear

that there exist labelings n0, . . . , nl+1 of g, where ni ∈ Vg,k(i) and ni+1 ∈ Wg,k(i)
for every i . Indeed, we have that Vg,k(i) E Wg,k(i) by definition, and Wg,k(i) ⊆
Vg,k(i + 1) for all i 6 l or else g is not a bad word.

Suppose for a contradiction that there are infinitely many bad words. We divide
this into two cases.

Case 1: Suppose that there are arbitrarily long bad words g such that g is (k,m)-
bad for some (k,m), and Wg,k(i) = Vg,k(i + 1) for all i < l. Hence, Vg,k(0) E
Vg,k(1) E · · · E Vg,k(l). By the pigeonhole principle, and since initial segments
and final segments of bad words are bad, we can find some bad word g such that
g is (k,m)-bad, and

g has length at least 2 and Vg,k(0) = Wg,k(l) or Vg,k(0) = Wg,k(l)c. (**)

We claim that this implies that either the word g is not reduced or the generating
set of E is not a minimal good generating set.

First, we may assume that g has minimal length among bad words with property
(**), and so no proper subword of g has property (**).

If Vg,k(0) = Wg,k(l), then the minimal length of g among words with (**)
implies that g0 6= g±1

i for any i > 0. This implies that the generating set R is
not a minimal good generating set; the fact that Vg,k(0) E Vg,m(1) follows from
Vg,k(1) E Wg,k(1) = Vg,k(2) E · · · E Vg,k(l) E Wg,k(l) and Wg,k(l) = Vg,k(0).
In particular, removing the pair (S j , T j), where g0 = γ j , would still generate E .
Hence, the generating set is not minimal.

In the case where Vg,k(0) = Wg,k(l)c, we can also remove the pair (S j ,

T j), where g0 = γ j , since there must be a generator witnessing Vg,k(0) E
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Vg,k(0)c = Wg,k(l) by our definition of a good generating set (see Definition 2.2).
In particular, a good generating set must contain every relation of the form (S, Sc)

where S E Sc.

Case 2: Suppose case 1 does not hold. Then by the pigeonhole principle, and
since initial segments and final segments of bad words are bad, we can find some
(k,m)-bad word g such that Vg,k(0) = Wg,k(l + 1), and Wg,k(i) ( Vg,k(i + 1)
for some i 6 l. Then we can obtain a contradiction to the nonexpansion of E by
cyclically permuting the sequences to bring Vg,k(i + 1) to the 0th position and
Wg,k(i) to the lth position.

This finishes the proof that there are only finitely many bad words.
Now let r be sufficiently large so that there are no bad words of length r , and

let P0, P1, . . . be a Borel path decomposition of G of length at least r . We may
assume that this path decomposition satisfies the conclusion of Lemma 3.5. Now
we inductively construct a Borel a-realization A0, . . . , An−1 of E in countably
many steps. After step i , we will have assigned each vertex appearing in the paths
in Pj for j 6 i to some A0, . . . , An−1.

At step i , we will consider the paths p ∈ Pi . For each such path p, we assign
the vertices of p to be the lex-least assignment to A0, . . . , An−1 that is consistent
with the requirement (*) in the statement of the lemma. There is guaranteed to be
such an assignment since we will have assigned at most the start and end nodes
of the path to A0, . . . , An−1 and since the path has length at least r , the group
element corresponding to it is not bad.

At the end of this construction, we will have assigned every element of X to
some A0, . . . , An−1. Since every edge in G appears in some path p, this ensures
that the requirement (*) is satisfied at the end of the construction.

To finish, we prove the ‘furthermore’ statement at the end of the lemma.
Suppose that the space X is perfect. We show that the sets A1, . . . , An can be
chosen to be nonmeager. Note that it suffices to have a path decomposition, where
the first set P0 of paths has a set of endpoints D that is nonmeager. If this is
the case, then we may partition D into k many nonmeager Borel sets since X
is perfect. Then we may assign these k sets to A1, . . . , Ak . This is because in
our construction above, the endpoints of the paths of P0 may be assigned to
A1, . . . , Ak arbitrarily.

So we need to show that we can construct a path decomposition, where the
set of endpoints of paths in P0 is nonmeager. To see this, observe that in our
proof of Lemma 3.3 given the subsets (Ai)i∈N of X such that the elements of Ai

are pairwise of distance greater than d(i), all the elements of the set A0 become
endpoints of paths in P0 in the final path decomposition. Hence, it suffices to show
that A0 can be chosen to be nonmeager in [MU16, Lemma 3.1]. To see this, note
first that we can find a Borel nonmeager k-independent set. This is because G6k
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has a countable Borel coloring [KST, Proposition 4.10] and one of the color sets
must therefore be a nonmeager k-independent Borel set A0. Now apply [MU16,
Lemma 3.1] to the graph G \ A0 and the function f (n) = d(n + 1).

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. We begin with the forward direction of Theorem 1.2.
Suppose A0, . . . , An−1 is a Baire measurable realization of an abstract system of
congruences E on n, where every Ai is nonmeager. By Theorem 1.1, it suffices to
show that E is nonexpanding. For a contradiction, suppose there are sequences of
sets (Vi)i6k and (Wi)i6k with Vi ,Wi ∈ Ppr(m) such that Vi E Wi for every i 6 k,
Wi ⊆ Vi+1 for every i < k and V0 ) Wk . Let A =

⋃
i∈V0

Ai and B =
⋃

i∈Wk
Ai . Let

γ be the product of the group elements witnessing Vi E Wi taken in increasing
order for i 6 k. It follows that γ · A ⊆ B. Clearly, if x ∈ A \ B, then for all n > 0,
γ n
· x /∈ A \ B.

Now there are two cases. First, if the rotation given by γ is rational (that is,
periodic), this implies that A \ B is not in any orbit of γ . This contradicts the fact
that A \ B is nonmeager.

Second, suppose the rotation of γ is aperiodic. Then A\B meets each orbit of γ
in at most one point, which contradicts A\B being nonmeager as follows. If A\B
was nonmeager, there would be an open set U in which A \ B is comeager. But
since γ is an irrational rotation, we can find some n > 0 rendering γ n arbitrarily
close to the identity, and hence some n for which γ nU ∩ U 6= ∅. Since γ is a
homeomorphism, this implies that both A \ B and γ n

· (A \ B) are comeager in
γ nU ∩U . But then there is some x so that x ∈ A \ B and γ n

· x ∈ A \ B, which
is a contradiction. This finishes the proof of the forward implications.

To prove the reverse implication, suppose that E is noncomplementing and
nonexpanding. Choose some R = {(S1T1), . . . , (Sk Tk)} that minimally generates
E , and let 〈γ1 · · · γk〉 be rotations of the 2-sphere that generate a copy of Fk .

Now let r be sufficiently large (so as to satisfy the hypothesis of Lemma 3.6).
By Lemma 3.4, we can find a comeager G-invariant Borel set D so that there is a
Borel path decomposition of length at least r of G � D. Let a′ be the restriction
of the action of 〈γ1, . . . , γk〉 to D. Then by Lemma 3.4, we can find a Borel a′-
realization A′0, . . . , A′n−1 of E . By the ‘furthermore’ clause of Lemma 3.6, we can
assume each of A′0, . . . , A′n−1 to be nonmeager.

By Lemma 2.3, there is some realization A′′0, . . . , A′′n−1 of E on the 2-sphere
witnessed using (*). To finish our proof, replace A′′i with A′i on D to obtain a
Baire measurable realization of E on the 2-sphere. That is, set Ai = (A′′i ∩ Dc) ∪

(A′i ∩ D).
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4. Borel path decompositions from Borel end selections

Suppose f : X → X . We say that f is aperiodic if for all x ∈ X and n > 1,
we have f n(x) 6= x . Let G f be the graph induced by f , where distinct x0, x1 ∈ X
are G f -adjacent if f (x0) = x1 or f (x1) = x0. Suppose A ⊆ X . We say that A is
forward recurrent (with respect to f ) if for every x ∈ X , there exists some n > 0
such that f n(x) ∈ A.

We have the following lemma showing that bounded-to-one Borel functions
admit forward recurrent r -independent sets. Recall that a function f : X → Y is
bounded-to-one if there is some k > 0 such that for every y ∈ Y , | f −1(y)| 6 k.

LEMMA 4.1. Suppose X is a standard Borel space and f : X → X is an
aperiodic bounded-to-one Borel function. Then for every r > 1 there exists a
Borel set A ⊆ X that is forward recurrent and r-independent.

Proof. Let G6r
f be the graph on X , where distinct x, y ∈ X are G6r

f -adjacent if
d(x, y) 6 r . Since G f has bounded degree, G6r

f also has bounded degree. Hence,
by [KST, Theorem 4.6], there is a Borel coloring c of G6r

f with finitely many
colors. Let A be the set of x ∈ X such that c(x) is equal to the least number
appearing infinitely often in the sequence c(x), c( f (x)), c( f 2(x)) · · · . Then for
each x , all the elements of A in the (G-)connected component of x have the same
color, and hence A is r -independent since c is a coloring of G6r

f . A is forward
recurrent by construction.

Now we show that we can obtain Borel path decompositions from Borel end
selections.

LEMMA 4.2. Suppose G is an acyclic bounded degree Borel graph on X such
that there is a Borel selection of finitely many ends in every connected component
of G. Then for every n > 0, G admits a Borel path decomposition of length at
least n.

Proof. We are given a bounded degree acyclic Borel graph G on a standard Borel
space X , where every vertex has degree at least 2. First, by [HM, Theorem C],
which builds on methods from [Mi], if there is a Borel function selecting finitely
many ends from every connected component of G, then there is a Borel function
selecting one or two ends in every connected component of G. Hence, we can
partition X into two G-invariant Borel sets C1,C2 so that G � C1 has a Borel
selection of one end in each connected component and G � C2 has a Borel
selection of two ends in each connected component.
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Let r(x) be the Borel function selecting one end in each connected component
of G � C1. We may assume that r(x) begins with the vertex x (by either appending
the path from x to the start of the ray r(x) if x is not included in the ray or deleting
the vertices preceding x if x is included in the ray). Let f (x) be the vertex after x
in r(x). Then it is easy to see that f : C1 → C1 generates the graph G.

Let B2 ⊆ C2 be the Borel set of vertices lying on the geodesic between the two
ends chosen in C2. Precisely, let r0(x), r1(x) be the functions selecting two ends
in each connected component of G � C2. We may similarly assume that r0(x) and
r1(x) begin with the vertex x , and let f0(x) be the vertex after x in r0(x) and f1(x)
be the vertex after x in r1(x). Then B2 = {x ∈ C2 : f0(x) 6= f1(x)}. It is easy to
see that every connected component of G � B2 is 2-regular and every connected
component of G � C2 contains exactly one connected component of G � B2.

By Lemma 4.1, we can find a forward recurrent Borel set A ⊆ C1 such that A is
2n-independent in G. Let P1

0 be the set of lex-least paths of length n, which begin
at some vertex of A, and let B1 be the set of vertices contained in some element of
P1

0 . If x ∈ C1 \ B1, let [x] be the set of vertices y for which there is a path p from
x to y for which no interior vertex of p is in B1. The forward recurrence of A
implies that for every x ∈ C1, there is a unique forwardmost element of [x] under
f . It is also clear that G � [x] satisfies the hypothesis of Remark 3.2. For each x ,
the space of n-spindly decompositions is a compact space in the natural topology
on all such decompositions. Hence, by compact uniformization ([Sr, Theorem
5.7.1], see also [K, Theorem 18.18]), there is a Borel way of selecting a unique
path decomposition of length at least n for G � [x] for each x ∈ C1 \ B1. Hence,
we can extend P1

0 to a Borel path decomposition of length at least n for G � C1.
On G � C2, we can first partition G � B2 into a Borel set P2

0 of finite paths of
length at least n. If x ∈ C2 \ B2, let [x] be the set of y ∈ X such that there is a path
p from x to y for which no interior vertex of p is in B2. Once again, G � [x] is n-
spindly. Hence, by Remark 3.2, we can extend P2

0 to a Borel path decomposition
of length at least n for G � C2.

Using the Adams end selection, we can use this lemma to show that µ-
hyperfinite free actions of Fn have µ-measurable realizations of abstract systems
of congruences that are noncomplementing and nonexpanding.

THEOREM 4.3. Suppose that n > 2, and a is a free Borel action of Fn on
a standard probability space (X, µ) that is µ-hyperfinite. Then there is a µ-
measurable a-realization of every abstract system of congruences E that is
noncomplementing and nonexpanding.

Proof. Let R minimally generate E . Pass to a free subgroup Fk 6 Fn , where
k = |R|. Let S be the set of generators of S. By a theorem of Adams [JKL,
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Lemma 3.21], on a conull set there is a Borel function selecting either one or two
ends from each connected component of G(a, S). Hence, the theorem follows
from Lemmas 4.2 and 3.6.

When we apply Lemma 4.2, it will be useful to know that end selections pass
between finite index subgroups.

LEMMA 4.4. Suppose a is a free Borel action of a finitely generated group Γ on
X. Let ∆ 6 Γ be a finitely generated finite index subgroup of Γ and b be the
restriction of the action of a to ∆. Then if S ⊆ Γ and R ⊆ ∆ are finite symmetric
generating sets, then G(a, S) has a Borel selection of finitely many ends if and
only if G(b, R) has a Borel selection of finitely many ends.

Proof. Since∆ is a finite index in Γ , each G(a, S) connected component contains
finitely many components of G(b, R) and each connected component of G(b, R)
is bounded distance from every point in the connected component of G(a, S) it
is contained in. Hence, there is an effectively defined bijection between ends in
a connected component of G(a, S) and ends in each G(b, R)-component that it
contains.

More precisely, suppose r = (xi)i∈N is a ray representing an end in G(a, S) and
C is a connected component of G(b, R). We define a ray fC(r) in G(b, R) � C
as follows. To each xi , we associate the nearest point yi in C , and let fC(r) be
the lex-least ray passing through all the points (yi)i∈N, erasing loops. The map
fC clearly lifts to a map sending a selection of finitely many ends in G(a, S) to a
selection of finitely many ends in G(b, R). The reverse implication is similar.

5. Constructive realizations of nonexpanding abstract systems of
congruences for PSL2(Z) acting on P1(R)

The group PSL2(Z) acts on the space P1(R) of lines in R2 through the origin.
By identifying such a line with the x-value x ∈ R ∪ {∞} of its intersection point
with the line y = 1, it is easy to see that this action is isomorphic to the action
of PSL2(Z) on R∪ {∞} by fractional linear transformations, where

[
a b
c d

]
acts via

x 7→ ax+b
cx+d .

It is a standard fact (see [Se, VII.1]) that PSL2(Z) is generated by the two
transformations α(x) = x + 1 and β(x) = −1/x and, moreover, that it factors as
the free product of 〈β〉 of order 2 and 〈αβ〉 of order 3.

The group PGL2(Z) has index 2 over PSL2(Z) and, similarly, is generated
by α(x) = x + 1 and γ (x) = 1/x . Note that β(x) = α−1(γ (α(β(α−1(x))))) =
(−1+ 1/(1+ 1/(x − 1))) = −1/x .
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Let Irr denote the set of irrational numbers. Each x ∈ Irr has a unique continued
fraction expansion

x = a0 +
1

a1 +
1

a2+
1

a3+···

,

where a0 ∈ Z and a1, a2, . . . ∈ Z+ are positive integers. We note the continued
fraction expansion of x as (a0; a1, . . .). The following lemma is standard.

LEMMA 5.1. Let f : Irr→ Irr be the function given by

f (x) =


x − 1 if x > 0,
1/x if x ∈ (0, 1),
x + 1 if x < 0.

Then f generates the orbit equivalence relation of PGL2(Z) on Irr, and so x,
y ∈ Irr are in the same orbit if and only if their continued fraction expansions are
tail-equivalent.

Proof. The equivalence relation generated by f is clearly contained in the orbit
equivalence relation of PGL2(Z) since f is defined piecewise by fractional linear
transformations.

Recall that two continued fraction expansions (a0; a1, . . .) and (b0; b1, . . .) are
tail-equivalent if there exists some n,m > 0 such that an+i = bm+i for all i > 0.
Since

f

a0 +
1

a1 +
1

a2+
1

a3+···

 =



(a0 − 1)+
1

a1 +
1

a2+
1

a3+···

if a0 > 0,

a1 +
1

a2 +
1

a3+···

if a0 = 0,

(a0 + 1)+
1

a1 +
1

a2+
1

a3+···

if a0 < 0,

it is clear that if x and y are tail-equivalent, then they are in the same equivalence
class of the equivalence relation generated by f .

To finish, since α(x) = x + 1 and γ (x) = 1/x generate PGL2(Z), it suffices
to show that if x ∈ Irr, then x , x + 1, and 1/x are tail-equivalent. It is trivial to
see that x and x + 1 are tail-equivalent. That x and 1/x are tail-equivalent is clear
when x > 0. When x < 0, since either x or 1/x is less than −1, by swapping x
and 1/x , we may assume the continued fraction expansion of x is x = a + 1

b+C ,
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where a 6 −2 and b > 1. Then, we apply the following identity:

1
a + 1

b+C

= −1+
1

1+ 1
(−a−2)+ 1

1+ 1
(b−1)+C

.

Note that −a − 2 > 0 and b− 1 > 0. If either of these two terms is equal to zero,
this just removes the corresponding term in the continued fraction expansion since

1
0+ 1

an+C
= an + C .

COROLLARY 5.2. Let a be the restriction of the action of PSL2(Z) to the
irrationals. Let S = {α, β} be the set of generators α(x)= x+1 and β(x)=−1/x.
Then there is a Borel selection of one end in each equivalence class of G(a, S).

Proof. By Lemma 5.1, there is a Borel selection of one end in the graph G(a′,
{α, γ }), where a′ is the action of PGL2(Z) on Irr, and γ (x) = 1/x . Hence, this
corollary follows from Lemma 4.4 since PGL2(Z) is index 2 over PSL2(Z).

The action of PSL2(Z) is free modulo a countable set since if x = (ax +
b)/(cx+d), then x is the solution to a quadratic equation with integer coefficients.
To finish, we need to analyze the countable set on which the action is nonfree.

LEMMA 5.3. For every x ∈ P1(R), the stabilizer Stab(x) of x in PSL2(Z) is
cyclic.

Proof. It suffices to show for all x that Stab(x) is a solvable subgroup of PSL2(Z)
containing no involution. Indeed, as PSL2(Z) ∼= (Z/2Z) ∗ (Z/3Z), it follows
from the Kurosh subgroup theorem [C, Theorem 7.8] that all solvable subgroups
are either cyclic or the free product of two involutions, and we are done upon
precluding the latter alternative.

Toward that end, first observe that the action of PGL2(R) on P1(R) is transitive,
and thus all stabilizers are conjugate to the stabilizer of the point at infinity. This
stabilizer is isomorphic to the group of affine transformations of the real line and,
in particular, is solvable. Returning to PSL2(Z), it follows that the stabilizer of
every point is a subgroup of a solvable group, and hence is itself solvable.

It remains to show that every nontrivial involution in PGL2(Z) acts freely
on P1(R). But this is immediate as all such involutions are conjugate to
β : x 7→ −1/x , which has no fixed point.

We can now prove Theorem 1.5 from Section 1.
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Proof of Theorem 1.5. Let R be a minimal relation generating E . Let k = |R|.
There is a finite index copy of F2 in PSL2(Z) and hence a finite index copy of
Fk . Let the free generating set of Fk be S. Let a be the restriction of the action of
PSL2(Z) to this copy of Fk . Let F ⊆ X be the subset on which the action of F is
free. By Lemma 5.3, the action of PSL2(Z) on F has cyclic stabilizers, and so by
Lemma 2.3, there is a realization of E witnessed by letting the generators S of Fk

witness the elements of R. Since X \ F is a subset of the quadratic rationals, it is
countable, and so the sets realizing E on X \ F are Borel.

Now on F , the graph G(a � F, S) has a Borel selection of finitely many ends
by Corollary 5.2 and Lemma 4.4. Hence, by Lemma 4.2, we have a Borel path
decomposition and hence by Lemma 3.6, there is a realization of E on a � F once
again with the i th generator witnessing the i th congruence in R. The theorem
follows by taking the union of these two realizations.

6. Applications of path decompositions in Borel combinatorics

If G is a locally finite acyclic Borel graph, then path decompositions for G give
a very strong type of unfriendly coloring.

LEMMA 6.1. Suppose G is a locally finite acyclic Borel graph on X where every
vertex has degree at least 2. Then if G has a Borel path decomposition of length
at least 4, then G admits a Borel unfriendly coloring. Indeed, there is a Borel
function c : X → 2 such that for every x, |{y ∈ N (x) : c(x) = c(y)}| 6 1.

Proof. Suppose P0, P1, . . . is the Borel path decomposition of G of length at
least 4. We may assume that this path decomposition satisfies the conclusion of
Lemma 3.5.

We inductively construct c. At step i , we will ensure that every vertex in a path
p ∈ Pi has been colored. For all such paths p ∈ Pi , inductively, the only vertices
in p that can have already been colored must be endpoints of p. Hence, there
is some extension of our partial coloring so that every vertex of p has at most
one adjacent vertex of the same color and the endpoint of p has neighbors of the
opposite color. For example, alternate between the two colors along p, possibly
breaking parity once in the middle of the path. (Here, the reason that paths of
length 3 cannot work is if the endpoints of such a path were already assigned
opposite colors, one of the endpoints would then gain another vertex of the same
color.) Since Pi is a path decomposition, each vertex is an interior vertex of at
most one path and every edge is contained in some path. Hence, our final coloring
c of X has the desired property that each vertex has at most one neighbor of the
same color.
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By combining this lemma with Lemma 3.4, we obtain Theorem 1.7 as a
corollary.

Suppose G is an acyclic locally finite Borel graph, where every vertex has
degree at least 3. An almost identical greedy construction shows that if G has
a path decomposition of length at least 3, then G has a Borel perfect matching,
and if G has maximum degree d, then G has a Borel d-list-coloring for any
Borel assignment of lists to edges of G. For example, this gives us a new way
for proving a Baire measurable version of Vizing’s theorem for acyclic bounded
degree Borel graphs, and the existence of Baire measurable perfect matchings for
acyclic locally finite Borel graphs.
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[GMP17] L. Grabowski, A. Máthé and O. Pikhurko, ‘Measurable circle squaring’, Ann. of Math
(2) 185 (2017), 671–710.

[HM] G. Hjorth and B. D. Miller, ‘Ends of graphed equivalence relations, II’, Israel J. Math.
169 (2009), 393–415.

[JKL] S. Jackson, A. S. Kechris and A. Louveau, ‘Countable Borel equivalence relations’,
J. Math. Log. 2 (2002), 1–80.

[Ka] S. Katok, Fuchsian Groups, Chicago Lectures in Mathematics (Chicago, 1992).
[K] A. S. Kechris, Classical Descriptive set Theory (Springer, New York, 1995).

[KM] A. S. Kechris and A. S. Marks, ‘Descriptive graph combinatorics’, Preprint, 2016.
[KST] A. S. Kechris, S. Solecki and S. Todorcevic, ‘Borel chromatic numbers’, Adv. Math. 141

(1999), 1–44.
[L88] M. Laczkovich, ‘Closed sets without measurable matching’, Proc. Amer. Math. Soc.

103(3) (1988), 894–896.
[L90] M. Laczkovich, ‘Equidecomposability and discrepancy; a solution of Tarski’s circle-

squaring problem’, J. Reine Angew. Math. 404 (1990), 77–117.
[L92] M. Laczkovich, ‘Decomposition of sets with small boundary’, J. Lond. Math. Soc. 46

(1992), 58–64.
[LN] R. Lyons and F. Nazarov, ‘Perfect matchings as IID factors of non-amenable groups’,

European J. Combin. 32 (2011), 1115–1125.
[MU16] A. Marks and S. Unger, ‘Baire measurable paradoxical decompositions via matchings’,

Adv. Math. 289 (2016), 397–410.
[MU17] A. Marks and S. Unger, ‘Borel circle squaring’, Ann. of Math. (2) 186 (2017), 581–605.
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