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The transition to turbulence induced by counter-rotating wall-normal rotating cylindrical
roughness pairs immersed within a laminar boundary layer on a flat plate is investigated
with direct numerical simulations, dynamic mode decomposition (DMD) and perturbation
kinetic energy (PKE) analysis. As long as the cylinder stub is rotating, the wake contains
a steady dominating inner vortex (DIV) surrounded by a secondary inner vortex. Its
circumferential velocity accelerates the fluid on one side of the cylinder and decelerates it
on the other side. With low rotation speed, the perturbation is initiated by a combination
of elliptical and centrifugal instabilities in the near wake. At medium rotation speeds,
Taylor–Couette-like streamwise vortices are generated on the decelerated side, resulting
in a protruding reverse-flow zone. Results from DMD analysis and corresponding PKE
analysis reveal the unstable nature of the deceleration region and the wake. At the largest
rotation speed investigated, the onset of perturbations is directly located on the decelerated
side of the cylinder stubs, where a deceleration mechanism feeds the instability. In the near
wake, the mechanism gradually changes to a pure centrifugal instability when the rotation
speed increases. In the far wake, both elliptical and centrifugal instabilities fade away,
and the streaky flow featuring a vigorous DIV is then only subject to inviscid inflectional
instability.

Key words: boundary layer stability, boundary layer control, transition to turbulence

1. Introduction

The understanding and prediction of laminar–turbulent transition behind surface-roughness
elements is of particular importance for the design of moving vehicles and engineering
parts or processes. Under proper circumstances, surface roughness elements of either
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two-dimensional (2-D)/three-dimensional (3-D) or isolated/distributed patterns have a
fundamental influence on all paths and stages of the transition processes (Morkovin
1994). Despite the investigations of their influence on the boundary-layer stability dating
back to the 1950s (Richards 1950; Gregory & Walker 1956; Tani & Sato 1956), the
underlying physical mechanisms remain hitherto insufficiently understood (Morkovin
1990; Kachanov 1994; Bucci et al. 2018; Lee & Jiang 2019).

Regarding 2-D surface-roughness elements of the boundary-layer size, such as gaps
and steps, the laminar–turbulent transition is promoted by the amplification of primary
Tollmien–Schlichting (TS) waves (Klebanoff & Tidstrom 1972). The recirculation zones
behind the 2-D roughness elements enhance the streamwise growth and behave as an
amplifier for the TS waves (Ergin & White 2006), which advance the downstream
transition location gradually towards the roughness elements if the roughness height
k is increased (Klebanoff & Tidstrom 1972). A similar mechanism is also found in
the case of gaps (Zahn & Rist 2016). For isolated, 3-D roughness elements, the
influence on the boundary-layer transition process is much more complicated. The
flow topology is characterised by a horseshoe vortex wrapping around the front side
of the roughness element and two following elongated counter-rotating streamwise
vortex legs (Gregory & Walker 1956). Thus, alternating high–low–high velocity streaks
are created in the downstream, the process of which is attributed to the lift-up
effect (Landahl 1980). If the amplitude of external disturbances is low enough, the
velocity streaks are able to support secondary instability before breaking down into
turbulence (Andersson et al. 2001). The experimental investigation of Görtler instability
by Swearingen & Blackwelder (1987) has shown that two types of instabilities are
prominent with the low-speed streak: sinuous (anti-symmetric) and varicose (symmetric)
instabilities. Whereas the sinuous instability is related to the lateral shear and is
more likely to cause breakdown (Andersson et al. 2001; Wu & Choudhari 2003), the
varicose instability is due to the inflectional profile of the low-speed streak and is a
consequence of a Kelvin–Helmholtz (K–H) instability (Klebanoff, Tidstrom & Sargent
1962; Ergin & White 2006). The investigation performed by Loiseau et al. (2014) indicates
that the sinuous instability is associated with a global instability of the near wake,
while the varicose instability is the dynamical response of the whole 3-D shear layer
surrounding the central low-speed streak. Alongside the amplification of the inviscid
secondary instability, higher harmonics can be activated, which lead to the generation of
turbulent spots and subsequently turbulence (Bakchinov et al. 1995; Brandt, Schlatter &
Henningson 2004).

Roughness-induced streaks may also stabilise the boundary layer. Kachanov &
Tararykin (1987) and Boiko et al. (1994) first observed the stabilisation effect of steady
and unsteady boundary-layer streaks, respectively. The underlying mechanism is revealed
by a perturbation energy analysis performed by Cossu & Brandt (2004). In addition
to the viscous dissipation, a negative spanwise production energy is induced by the
streaks which overtakes the positive wall-normal production, thus resulting in an overall
stabilisation effect. Fransson et al. (2006) and coworkers (Shahinfar et al. 2012; Siconolfi,
Camarri & Fransson 2015) eventually succeed in delaying boundary-layer transition with
roughness-induced streaks. In a previous study (Wu, Axtmann & Rist 2021; Wu & Rist
2022), the current authors investigated the stability of boundary-layer flows controlled by
rotating cylindrical roughness elements and found that the induced velocity streaks are
able to stabilise TS waves as well. The mechanism is, however, ascribed to the reduction
of the wall-normal production.
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Rotating cylindrical roughness element-induced transition

Transient growth or even direct transition can be triggered if a moderate or large
amplitude of external disturbances, e.g. free-stream turbulence, enters the boundary
layer (Joslin & Grosch 1995; Andersson, Berggren & Henningson 1999). Through the
lift-up effect, the characteristic counter-rotating streamwise vortices behind a roughness
element are able to support a strong convective algebraic growth of the perturbations
which is followed by an exponential decay or breakdown to turbulence (Reshotko
2001), depending on the level of the external disturbances. This can be explained
theoretically by the non-normality of the stability operator (Trefethen et al. 1993),
where the algebraic growth appears as a superposition of decaying linear or nonlinear
instability waves (Chomaz 2005). The optimal disturbance (Butler & Farrell 1992; Luchini
2000) that leads to the maximum transient growth as predicted by Andersson et al.
(1999) is a series of streamwise vortices with a dimensionless spanwise wavenumber
β = 0.45. However, the roughness-element-induced streamwise vortices are only capable
of supporting sub-optimal transient growth (Ergin & White 2006). In fact, Denissen
& White (2013) discovered that the mid-wake behind a roughness element is ‘more
likely to cause transition’ than the more-optimal far wake, which means the secondary
instability breakdown has already happened at mid-wake before the velocity streaks can
reach optimality.

Another characteristic feature of a boundary layer perturbed by 3-D roughness elements
is the reverse-flow region behind the roughness, as this provides a hydrodynamic resonance
for the generation of self-sustained oscillations (Monkewitz, Huerre & Chomaz 1993).
Such a region is called a wavemaker (Giannetti & Luchini 2007), where global instability
is most likely to take place. Contrary to an amplifier, which only responds extrinsically
to external disturbances or forcing, a wavemaker provides the dynamical system with its
intrinsic behaviour (or self-sustained global mode) (Chomaz 2005). As found by Loiseau
et al. (2014), the wavemaker of the sinuous global mode is exclusively located at the flank
of the recirculation bubble, whereas the wavemaker of the varicose global mode can be
categorised into two regions: the downstream central low-speed streak and the top region
of the recirculation bubble. The latter is associated with the creation of hairpin vortices
(Acarlar & Smith 1987).

Uniform flow around infinite static and rotating cylinders is investigated intensively as
a canonical problem in fluid mechanics, see Williamson (1996) and Rao et al. (2015) for
a comprehensive review. The wake behaviour behind an infinite (static) circular cylinder
is controlled by the Reynolds number Re = u∞d/ν, where d is the cylinder diameter, u∞
the free-stream velocity and ν the kinematic viscosity. At low Reynolds number Re < 46,
its wake consists of steady recirculation with two attached symmetrical vortices (Jackson
1987). At higher Reynolds number 46 ∼ 49 < Re < 190, 2-D Bénard–von Kármán vortex
shedding occurs, which results in large fluctuations of pressure, acoustics and other effects
(Kumar & Mittal 2006). For Re > 190, multiple secondary 3-D modes with different
spanwise wavenumbers develop upon the shedding vortices (Williamson 1988; Barkley
& Henderson 1996; Williamson 1996). In the case of a rotating cylinder, its wake is
asymmetric and a circulation around the cylinder is created, which leads to a lift force
normal to the flow direction by the so-called Magnus effect (Seifert 2012). The rotation
rate is defined as α = Ωd/2u∞, where Ω is the angular velocity of the cylinder. It
is demonstrated that rotating the circular cylinder can not only largely reduce the drag
coefficient (Tokumaru & Dimotakis 1991), but also delay the onset of 3-D instability to
a higher critical Reynolds number (at low rotation rate α < 2, El Akoury et al. 2008;
Rao et al. 2013a), as well as efficiently suppress the vortex shedding (in the range
1.9 < α < 4 ∼ 5, Mittal & Kumar 2003). Controlled by Re and α, various steady and
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unsteady 3-D instabilities have been reported (Mittal & Kumar 2003; Pralits, Giannetti
& Brandt 2013; Rao et al. 2013a, 2015). At low rotation rate α � 1, the wake symmetry
is only slightly altered and the instabilities are comparable to the non-rotating case, i.e.
a succession of bifurcations starting with Bénard–von Kármán vortex shedding as the
Reynolds number increases (Kang, Choi & Lee 1999). At higher rotation rate (1 � α � 2),
the asymmetric wake starts to become unstable with respect to a subharmonic instability
(Blackburn & Sheard 2010). For α � 2, closed streamlines can form around the cylinder
separating the flow into inner and outer regions, and vortex shedding can be stabilised.
However, this steady state wake is subject to two 3-D modes: a hyperbolic instability
(Pralits et al. 2013; Rao et al. 2013b) which arises from the strained shear layer in the near
wake, and a centrifugal instability (Bayly 1988; Rao et al. 2013a) of the closed region.

The flow structure behind a rotating cylindrical surface-roughness element differs
fundamentally from that of the aforementioned infinite rotating cylinder due to its
immersion in a boundary layer, and hence the implicated instability mechanisms.
Apart from our research, the authors are unaware of any other studies on the induced
boundary-layer transition. The primary motivation for this analysis is to complement our
previous study (Wu et al. 2021), where the characteristic downstream vortices induced
by rotating cylinder stubs at low rotation speed are found capable of attenuating TS
instabilities. The present work focuses on the boundary-layer transition triggered by
larger rotation speeds, with particular emphasis on the underlying mechanisms. In § 2,
the simulation set-up of the roughness elements and the relevant numerical methods
are introduced, and a validation with experimental measurement is presented. Next,
characteristic vortical structures induced by the rotating cylindrical roughness elements in
a laminar flow are investigated in § 3. In § 4, transition controlled by gradually increasing
the rotation speed of the cylindrical roughness elements is then studied with direct
numerical simulation (DNS). The underlying mechanisms are identified with dynamic
mode decomposition (DMD; Schmid (2010)) in § 4.3 and a perturbation kinetic energy
(PKE) analysis in § 4.4. Finally, the findings of the current work are summarised and
concluded in § 5.

2. Numerical methods

2.1. Computational set-up
In Wu et al. (2021), two sets of boundary-layer flows with rotating cylindrical roughness
elements, i.e. co-rotating and counter-rotating cylinder pairs, are investigated by linear
stability theory. It is demonstrated that the velocity streaks generated by ‘positive’
counter-rotating pairs, which accelerate the flow between two immediate neighbours,
are able to effectively stabilise TS instabilities, since they create a high-speed streak in
the centre. In the present work, the corresponding boundary-layer transition induced by
positive counter-rotating cylindrical roughness elements is investigated. The numerical
set-up is illustrated in figure 1. Hereafter, all physical quantities are non-dimensionalised
by the dimensional roughness height k̄ = 0.01(m) and the incoming free-stream velocity
u∞ = 0.937(m s−1). The roughness elements with height k and diameter D are placed at
the location xk = 99.2 from the flat-plate leading edge, under zero-pressure gradient in
the streamwise direction. At this position, the non-dimensional displacement thickness
is δ∗/k = 0.6883. The roughness-height-based Reynolds number is Rekk = u(k)k/ν =
465.8, which is intentionally chosen to be below the critical transitional Reynolds number
as reviewed by Von Doenhoff & Braslow (1961). Here, u(k) is the undisturbed Blasius
velocity at the height of the roughness element. The free-stream-velocity-based Reynolds
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Figure 1. Set-up of counter-rotating roughness pair embedded into a flat-plate boundary layer. High- and
low-momentum flows induced by streamwise vortices are coloured in red and blue, respectively.

number is Rek = u∞k/ν = 620. The aspect ratio of the cylinder stub is defined as η =
D/k = 1. The counter-rotating cylinder stubs are placed at spanwise locations z = ±2
such that they are spaced by λ = 4, and the spanwise spacing between roughness pairs
is Λ = 12. The origin of the local x,y,z-coordinate system is placed at the centre of the
roughness pair. Depending on the rotational direction of the roughness pair, different
types of downstream streaks are created. For the co-rotating roughness case, the generated
downstream vortices rotate in the same direction, which will counteract the momentum
exchange effect of neighbouring vortices. In contrast, this momentum exchange effect
is intensified in the case of counter-rotating roughness elements. The strength of the
generated downstream vortices depends on the rotation speed of the roughness elements.
This is measured by the ratio of the tangential velocity at the top of the cylindrical
roughness element to the incoming local velocity, i.e.

Ωu = ΩD
2u(k)

, (2.1)

where Ω is the angular velocity of the cylinder. In this work, the studied rotation speeds
are in the range of Ωu = 0 ∼ 2.

2.2. Steady and unsteady flow computation
The characteristic flow structures induced by a rotating cylindrical roughness element are
a dominating inner vortex (DIV) encircled by a secondary inner vortex (SIV), as described
in Wu et al. (2021) and Wu & Rist (2022) and also shown in figure 3 further down. The
behaviour of the downstream vortical structures in response to different rotation rates is
investigated in laminar flow. For this purpose, steady base flows have been computed
with the method of selective frequency damping (SFD, Åkervik et al. 2006). In the
SFD approach, a filtered state ũ is introduced and its evolutionary equation is solved
together with the Navier–Stokes equations. This leads to the following incompressible
non-dimensional governing equations:

∇ · u = 0, (2.2a)

∂u
∂t

+ (u · ∇)u = −∇p + 1
Rek

�u − χ(u − ũ), (2.2b)

∂ũ
∂t

= ωc(u − ũ), (2.2c)
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where Rek = ū∞k̄/ν̄ is the free-stream-velocity-based Reynolds number, ωc is the filter
cutoff circular frequency and χ is the feedback control coefficient. Here, an overbar
denotes a dimensional value, so that t = t̄ū∞/k̄ and p = p̄/(ρ̄ū2). The additional forcing
term on the right-hand side of the momentum equation acts as a temporal low-pass filter.
From theoretical analysis it is known that the cutoff frequency ωc should be lower than the
lowest eigenfrequency of instabilities, while the feedback control coefficient χ should be
higher than the growth rate of that instability (Åkervik et al. 2006).

The above governing equations are implemented and solved with the open source
OpenFOAM solver icoSfdFoam (Wu et al. 2021), which solves the incompressible
Navier–Stokes equations using the pressure-implicit with splitting of operators algorithm.
The unsteady terms of the governing equations are discretised with an implicit backwards
scheme. For investigating the spatio-temporal evolution of instabilities and transition in the
presence of rotating cylindrical roughness elements, unsteady simulations are performed
with the SFD mechanism switched off. A multi-directional cell-limited gradient scheme is
used to approximate the gradient term. The divergence term is handled with a limited linear
scheme. A second-order deferred correction scheme is used for the Laplacian term. The
pressure equation is solved by the geometric algebraic multi-grid solver and the velocity
equation by the preconditioned bi-conjugate gradient solver.

A Blasius boundary-layer velocity profile is prescribed at the inlet according to the
distance from the leading edge of the flat plate. No-slip wall boundary conditions are
applied at the bottom wall. The velocity at the cylinder wall is calculated with uw =
Ω × r, with r the vector from the rotational axis of the cylinder to the wall surfaces
and Ω the angular velocity vector. The standard OpenFoam implementation of the
zero-gradient boundary condition (∂p/∂n = 0) is applied to the pressure condition for
all wall boundaries. Here, n denotes the direction normal to the boundary. At the top of
the integration domain, a Dirichlet boundary is imposed for pressure p, and the following
directional mixed boundary conditions are imposed for velocity:

u
u∞

= 1, (2.3a)

∂v

∂n
= ∂w
∂n

= 0. (2.3b)

At the outlet, any possible reflection is eliminated by using the following advective
boundary condition:

Dq
Dt

= ∂q
∂t

+ u · ∇q = 0, (2.4)

where q(x, t) = {u, v,w, p}(x, t) are the flow quantities. In addition, the following sponge
zone utilising the SFD mechanism is applied at the outlet. The damping strength is
gradually increased towards the outlet

∂u
∂t

= Nu − χB(x∗)(u − ū), (2.5a)

B(x∗) =
⎧⎨
⎩1 − cos

(
π

x∗ − xs

xe − xs

)
, x∗ ∈ [xs; xe],

1, x∗ ∈ [xe,∞],
(2.5b)

where N is the Navier–Stokes operator, ū is the mean flow, B(x∗) is the ramp function
and xs, xe are the streamwise starting and ending positions of the ramp, respectively.
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Figure 2. The PSD of velocity fluctuation u′ downstream of rotating cylinder for cases (a) Ωu = 0.75 and
(b) Ωu = 1.5. Amplitude of experimental data is scaled for comparison with numerical data.

Also, χ is the feedback control coefficient from the SFD solver, i.e. (2.2b). Both velocity
and pressure at transverse planes are set to periodic conditions.

Investigations of the convergence of the above procedures in an unsteady DNS are
reported in the grid convergence study in Appendix A. Furthermore, a comparison
of the numerical computation with experimental measurement is performed. Hot-film
measurements have been conducted in the laminar water channel at the Institute of
Aerodynamics and Gas Dynamics of the University of Stuttgart. The channel provides a
reproducible measurement environment for flat-plate laminar boundary-layer studies. The
turbulence intensity is 0.05 % between 0.1 and 10 Hz (Wiegand 1996; Puckert, Wu & Rist
2020). A Dantec 55R15 hot-film probe is connected to a Dantec Streamware bridge, which
works according to the constant temperature anemometer principle. The analogue output
voltage of the bridge is converted with a 16-bit National Instruments USB-6216 A/D device
into a digital signal and then converted into velocity u through King’s law. A digital filter
between 0.1 and 10 Hz is applied. Each discrete measurement has a measurement time of
180 s with a sampling rate of 100 Hz. For the present investigations, rotating roughness
elements for the laminar water channel have been developed and used.

The hot-film probe is placed at the height of cylinder k behind the cylinder at spanwise
position z = 2 for both near- and far-wake measurements. The power spectral density
(PSD) of disturbance root-mean-square values for cases Ωu = 0.75 and Ωu = 1.5 are
shown in figure 2 for four streamwise positions. Very good agreement of the PSD
distribution is obtained for case Ωu = 1.5 with higher rotation speed and higher PSD
amplitudes, while discrepancies appear forΩu = 0.75. This can be explained by the lower
induced kinetic energy at lower rotation speed of the cylinder which then remains close to
the background eigen-disturbances of the experimental facility. It can be said that the PSD
levels between experimental and numerical data in caseΩu = 1.5 match perfectly, despite
some additional low-frequency signals (ω = 0.2–0.3) which stem from the water-channel
background disturbances in case Ωu = 0.75. Consequently, the numerical simulation
provides reliable results.

2.3. Dynamic mode decomposition
The DMD is a data-driven modal decomposition method with each identified mode
having a single characteristic frequency (Taira et al. 2017). It was first introduced by
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Schmid (2010) to extract the coherent features of fluid flow from a DNS or experimental
data. The Navier–Stokes operator is by nature nonlinear, but since DMD is demonstrated to
be closely related to the Koopman operator (Rowley et al. 2009), it is capable of providing
information about the dynamics of linear as well as nonlinear systems from snapshots
of data, i.e. qi. Here, the subscript denotes the ith time snapshot. In this decomposition
method, it is assumed that two consecutive snapshots can be approximated by a linear
constant projector A :

qi+1 = Aqi. (2.6)

Then, the time series of snapshots forms the following Krylov sequence:

QN
1 = {q1, q2, . . . , qN} = {q1,Aq1, . . . ,AN−1q1}, (2.7)

where the sub- and super-scripts of Q indicate the starting and ending snapshots. The
dynamics of the underlying systems is thus described by the linear projector A. The
procedure of DMD analysis is then to determine the eigenvalues and corresponding
eigenfunction of this projector, which can be approximated by the eigenvalues and
eigenmodes of the following companion matrix:

Ã = U∗QN
2 VΣ−1. (2.8)

Here, the right-hand side matrices/vectors are from singular value decomposition QN
1 =

UΣV ∗. The eigenvalues of the companion matrix Ã, i.e. Ãy = λy, are then taken as the
DMD eigenvalues. Based on a more efficient numerical procedure by Tu et al. (2013), the
DMD mode corresponding to λ is recovered from

ϕ = 1
λ

QN
2 VΣ−1y. (2.9)

As a last step, the complex frequency is computed from ω = log(λ)/�t. The real part
of the complex frequency ωr corresponds to the angular frequency of the DMD mode,
while the imaginary part ωi determines its temporal growth rates. Then, the time series of
snapshots QN

1 can be decomposed into the following general matrix form:

QN
1 = [ϕ1,ϕ2, . . . ,ϕN]︸ ︷︷ ︸

Φ

⎡
⎢⎢⎣

a1
a2

. . .

aN

⎤
⎥⎥⎦

︸ ︷︷ ︸
D

⎡
⎢⎢⎢⎣

1 λ1 · · · λN−1
1

1 λ2 · · · λN−1
2

...
...

...
...

1 λN · · · λN−1
N

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
Λ

, (2.10)

where Φ is the eigenfunction matrix and Λ is a Vandermonde matrix composed of the
eigenvalues λi. DMD extracts a reduced-order representation of the linear projector A,
which maps a snapshot from the time series onto its successive snapshot. The diagonal
amplitude matrix D determines the relative contribution of each mode to the particular
realisation of the system represented by the analysed snapshots, which is calculated by a
bi-orthogonal projection of the snapshots onto the DMD modes. More details can be found
in Rowley et al. (2009), Schmid (2010) and Belson, Tu & Rowley (2014), for instance.

The above numerical approach is provided from the parallelised python library modred
of Belson et al. (2014), which is object oriented and parallelised with mpi4py (Dalcín, Paz
& Storti 2005). Validation has been performed to confirm that DMD can recover the TS
instabilities accurately (including frequency, mode shape and growth rate), see Wu & Rist
(2020).
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2.4. PKE analysis
A physical understanding of the instability mechanisms can be obtained from a PKE
analysis. The basic idea is to calculate the energy transfer between perturbations and mean
flow. The rate of change of PKE per unit mass, i.e. ek = 0.5(�u′2 + �v′2 + �w′2), is governed
by the following non-dimensional perturbation kinetic energy transport equation:

Dek

Dt
= − u′

iu
′
j
∂�ui

∂xj︸ ︷︷ ︸
P

+ 1
2Rek

∂u′
iu

′
i

∂x2
j︸ ︷︷ ︸

Dν

− 1
2

∂u′
ju

′
ju

′
i

∂xi︸ ︷︷ ︸
Tt

− 1
Rek

∂u′
i

∂xj

∂u′
i

∂xj︸ ︷︷ ︸
εk

− ∂u′
ip

′

∂xi︸ ︷︷ ︸
Πk

. (2.11)

Here, D/Dt = ∂/∂t + u · ∇ is the material derivative, and the right-hand terms are:
production (P), viscous diffusion (Dν), turbulent transport (Tt), viscous dissipation (εk)
and pressure diffusion (Πk). Here, the symbols prime (′) and overbar (¯) denote perturbed
and mean states, respectively. It is found that the production terms P are of particular
interest. They represent the work of the Reynolds stress tensor against the mean-flow shear
components, which are

I1 = −u′2 ∂ ū
∂x
, I2 = −u′v′ ∂ ū

∂y
, I3 = −u′w′ ∂ ū

∂z
,

I4 = −v′u′ ∂v̄
∂x
, I5 = −v′2 ∂v̄

∂y
, I6 = −v′w′ ∂v̄

∂z
,

I7 = −w′u′ ∂w̄
∂x
, I8 = −w′v′ ∂w̄

∂y
, I9 = −w′2 ∂w̄

∂z
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.12)

The sign of Ii indicates a local production of PKE, with a positive sign denoting a
destabilising and a negative sign a stabilising effect. The same analyses have been
performed by Schmidt & Rist (2014). Similar analyses with the Reynolds–Orr equation,
where the nonlinear terms have been dropped from the PKE transport equation, have been
performed in the framework of local linear stability analysis (Cossu & Brandt 2004; Chu
et al. 2020; Wu et al. 2021) and global linear stability analysis (Loiseau et al. 2014).

3. Laminar base flows

The objective of this section is to present the characteristic vortical structures induced
by the rotating cylindrical roughness elements, particularly, how the vortical structures
behave as the rotation speed Ωu increases. This is better illustrated in a base flow than
in a time-averaged mean flow, where a forcing term due to Reynolds stresses acts on
the time-averaged Navier–Stokes equations and brings about the so-called mean-flow
distortion (Barkley 2006). In this section, the steady state base flow is obtained by
solving the governing (2.2b) with the SFD mechanism active until the streamwise velocity
fluctuation is below 10−5.

In figure 3, vortex structures are illustrated by means of λ2 isosurfaces (Jeong & Hussain
1995). Here, a complete pair of counter-rotating cylinders is shown for case Ωu = 1.5 to
illustrate the symmetry of the induced vortices, and the rest cases (Ωu = 0, 0.25, 0.5) are
only presented in the z-positive half-plane for comparison. The static case (Ωu = 0) can
be taken from the lowest panel, where two pairs of counter-rotating vortices are created
by the roughness element, i.e. the inner vortex (IV) and the horseshoe vortex (HV). Due
to the influence of the neighbouring roughness element, the IV is slightly asymmetric.
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Figure 3. Vortex visualisation for isolated roughness element (Rekk = 465.8, η = 1, xk = 99.2) by means of
λ2, coloured by streamwise velocity u. HV, horseshoe vortex; IV, inner vortex; DIV, dominating inner vortex;
SIV, secondary inner vortex; TV, tertiary vortex. Red arrows indicate rotation direction. Dashed line indicates
the symmetry plane of the counter-rotating cylinder pair with Ωu = 1.5. Horizontal solid dark lines separate
cases.

As the cylindrical roughness starts to rotate (Ωu = 0.25), a strong DIV is created. At
higher rotation speed, secondary inner vortices (SIV, Ωu = 1.0) and tertiary vortices (TV,
Ωu = 1.5) are created. The generation of the vortical system can be explained in the
following way: since the cylindrical element rotates at a constant angular velocity in the
boundary layer, a locally accelerated oblique flow is created close to the bottom wall which
travels in the spanwise direction to the other side of the cylinder and thereafter creates the
DIV. A more detailed discussion of the generation of this vortical system can be found in
Wu et al. (2021).

Figure 4(a–d) depicts another major feature of the steady flow result from the rotating
cylinder stub, i.e. the reversed-flow region, as visualised by ū = 0. As shown in figure 4(a),
an upstream and a downstream area of reversed flow is typical for boundary-layer flow
with static cylindrical roughness elements (Baker 1979), i.e. Ωu = 0. Once the cylinder
rotates, a very thin layer of reverse flow covering the upwind half of the cylinder is
created, while the downstream reverse-flow region is slightly tilted towards that side at low
rotation speedΩu = 0.25, see figure 4(b). At higher rotation speedΩu = 1.0 in figure 4(c),
the downstream reverse-flow region is compressed into a tube-like structure which is
connected to a protruding structure at the upwind side of the cylinder. This protruding
structure becomes more distinct for Ωu = 1.5 in figure 4(d).

Figure 4(e–h) demonstrates the formation of this protrusion with LIC (line integral
convolution, Cabral & Leedom 1993; Loring, Karimabadi & Rortershteyn 2014)
visualisation of the flow field at slice x = 0. The grey contours depict the streamwise
vortices, which are blended with the streamwise gradient ∂u/∂x. With the current colour
bar, the positive region is hardly discernible due to low amplitude, whereas the regions
with negative gradient become distinct. Although the thin reverse-flow region forms
on the upwind half of the cylinder stub as long as it rotates (Ωu > 0), the protrusion
structure does not appear untilΩu = 0.75 in figure 4(e). AtΩu = 1, it emerges at y ≈ 0.8.
Secondary streamwise vortices are observed above and below the protruding structure,
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Figure 4. Visualisation of upstream and downstream reversed-flow regions by ū = 0 isosurfaces for (a) Ωu =
0, (b)Ωu = 0.25, (c)Ωu = 1.0, (d)Ωu = 1.5. Curved arrow indicates rotation direction. Streamwise vortices at
x = 0 visualised by grey LIC for cases (e)Ωu = 0.75, ( f )Ωu = 1.0, (g)Ωu = 1.25, (h)Ωu = 1.5, coloured by
streamwise gradient ∂u/∂x. Thin dashed magenta lines are isolines of ux = −0.3, 0.3, 0.5, 0.7, 0.95. Red points
mark saddle points. Here, red arrows point to separating protruding structures. Black arrows to the emergence
of secondary streamwise vortices above and below these protruding reverse-flow regions. Downstream slices
at x = 40 in the last row show flow topology coloured by u for cases (i) Ωu = 0, ( j) Ωu = 0.75, (k) Ωu = 1.5.
Thick cyan lines visualise high shear stress regions by means of the I2-criterion (Meyer 2003).

which are indicated by black arrows and resemble Taylor–Couette vortices between two
rotating long cylinders (Taylor 1923). As the cylinder stub rotates at higher angular speed
(Ωu = 1.25, 1.5), this pair of vortices becomes stronger in figure 4(g,h), respectively.
Meanwhile, the region around the reverse-flow region is greatly decelerated, as shown
by the pseudocolour, i.e. ∂u/∂x. As the protrusion structure emerges and grows, the highly
decelerated region gets concentrated around it. As is known from investigations such
as that of Gad-El-Hak et al. (1984), boundary layer instability is typically promoted by
deceleration.

Further downstream, the fundamental topological differences between static and
rotating cases are illustrated in figure 4(i–k), which are exemplarily at x = 40. For the
static case Ωu = 0, the counter-rotating HV pairs created by each roughness element
are evident, whereas for rotating cases (Ωu = 0.75, 1.5) the DIV pairs generated by the
rotation dominate the streamwise cuts. A crescent of high shear stress region around the
DIV (identified by the I2-criterion of Meyer 2003) is noticeable, where inflectional points
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Figure 5. Wall-normal projection of local maximum vorticity production. Top row, Ωu = 0; middle row,
Ωu = 0.75; bottom row, (c) Ωu = 1.5. Left column, streamwise production Pωx ; middle column, wall-normal
production Pωy ; right column, spanwise production Pωz . Note that the colour bar consists of a linear
part (|Pωi| ≤ 1 × 10−2) and a logarithmic part (|Pωi| > 1 × 10−2) to capture the otherwise imperceptible
production in case Ωu = 0.

of the velocity profile are located and consequently inviscid inflectional instability could
be expected (Wu et al. 2021).

The influence of rotation on the generation of such vortices can be analysed with the
vorticity transport equation:

∂ω

∂t
= −(u · ∇)ω + (ω · ∇)u + ν(∇2ω), (3.1)

where the right-hand-side terms contain convection, production and dissipation,
respectively. The production term can be further decomposed into stretching and tilting
terms. The production of streamwise vorticity ωx is decomposed as an example:

(ωx · ∇)u = ωx
∂u
∂x

+ ωy
∂v

∂y
+ ωz

∂w
∂z
, (3.2)

where the first right-hand term is the stretching term and the other two right-hand terms are
the tilting terms. The same approach has been used to analyse a porous roughness element
in Axtmann (2020).

Figure 5 shows the wall-normal projection of the local maximum vorticity production
max(Pωi(x, z))|y for three cases, i.e.Ωu = 0, 0.75 and 1.5. For the static case (Ωu = 0), the
local production maxima for vorticity production in x, y and z directions are symmetric,
and they appear at the front edge of the cylinder. As the roughness element rotates, the
production terms are no longer symmetric and their maxima extend to the cylinder top.
The vorticity production in the near wake is also enhanced, although its magnitude is
secondary compared with that in the cylinder region.

The overall effect of rotation on the vorticity budget is evaluated by volume integrals
in the streamwise range −2 ≤ x ≤ 10, as shown in figure 6. Here, the constituent parts of
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Figure 6. Volume integral of vorticity budget terms in the (a) x-direction, (b) y-direction and (c) z-direction,
non-dimensionalised by the corresponding dissipation Di of case Ωu = 0. Here, P, production; Str, stretching;
Tilt, tilting; Cv, convection; D, dissipation terms of vorticity budgets.

the vorticity production, i.e. stretching and tilting terms, are also presented. It is obvious
that the convection effect makes almost no contribution to the growth of vorticity in all
three directions. The streamwise production Px grows almost linearly with the rotation
speed in the range Ωu < 1.0, and then decays gradually from Ωu > 1.5, see figure 6(a).
In the linear growth range, the production term is mostly caused by streamwise stretching.
Beginning fromΩu = 1.5, both the magnitudes of stretching and tilting grow significantly,
however, the negative tilting effect counteracts the positive contribution of stretching to
the production of ωx. The viscous dissipation grows slowly with increasing Ωu at a low
magnitude. Figure 6(b) shows that both stretching and tilting contribute to the production
of the wall-normal vorticity ωy. However, the viscous dissipation grows at the same pace.
As a result, the total contribution remains at a low level. The spanwise vorticity budget
terms, as shown in figure 6(c), are several magnitudes lower than the streamwise and
wall-normal counterparts, and are hence unimportant.

The DIV-induced velocity streak is effective in pulling high-speed fluid towards the wall
and pushing low-speed fluid to the outer region of the boundary layer, i.e. the lift-up effect
(Landahl 1980). Following the definition of Groskopf & Kloker (2016), the amplitude of
velocity streaks is quantified as

ust(x) = 1
2

(
max

yz
[u(x, y, z)− 〈u〉(x, y)] − min

yz
[u(x, y, z)− 〈u〉(x, y)]

)
, (3.3)

where 〈u〉 is the spanwise mean value, which represents the three-dimensional base-flow
deformation caused by the low- and high-speed streaks. In figure 7, the streak amplitude
ust is presented along with the velocity gradient ∇u maxima, streamwise vorticity ωx
maxima and spanwise velocity w maxima in y–z planes. For the velocity gradient, the
gradients of streamwise velocity u are emphasised in bold to highlight their dominance of
the wall-normal ∂u/∂y and spanwise ∂u/∂z terms. In general, all the presented parameters
are promoted by rising rotation speedΩu, especially in the near wake. Meanwhile, they all
reach saturation atΩu = 0.75−1.0 at around x ≈ 50. The saturation is probably influenced
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Figure 7. Evolution of (a) streamwise base-flow gradient maxima in y–z planes, (b) velocity streak amplitude
ust, (c) streamwise vorticity ωx maxima in y–z planes and (d) spanwise velocity w maxima in y–z planes. In
(a), components of ∇u are distinguished by different markers. Shaded regions mark extent of the cylindrical
roughness. Note that the x-axis is a combination of linear (x ≤ 10) and logarithmic regions (x > 10).

by the neighbour DIV pairs. As illustrated in figure 4(k), the DIV pairs have been pushed
almost to the spanwise boundaries at streamwise station x = 40 for case Ωu = 1.5. It can
also be observed that, whereas the max(∇u)|yz, max(ωx)|yz and max(wx)yz decay in the
downstream direction, the streak amplitude ust persists for a long streamwise extent. No
tendency of decay can be observed within x < 170 for the saturated curve. With further
increase of the rotation speed beyond the saturation case Ωu = 0.75, the velocity streak
amplitude ust becomes oscillatory. Note that the streak amplitude can reach a maximum
of 50 % in the near wake, and a maximum of 35 % in the far wake. For comparison,
the maximum streak amplitude created by the wing-type miniature vortex generators in
(Fransson & Talamelli 2012; Shahinfar et al. 2012) is 32 %.

4. Controlled transition

In this section, results of the laminar–turbulent transition controlled by gradually
increasing the rotation speed Ωu of the cylinder stubs around their central, wall-normal
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Figure 8. Bifurcation diagram of the global instability for Rekk = 465.8. Perturbation data obtained at
(x, y, z) = (10, 1, 2). Solid grey line represents best least-squares fit. Dashed line represents unstable
equilibrium. The dash-dotted and dotted lines for Ωu ≥ 1.0 are unrelated to the dynamics; their purpose is
to connect data.

axis are presented. Here, only the long-term behaviour of the flow under the influence of
numerical background noise is discussed, transient effects are not considered.

4.1. Bifurcation diagram
In order to investigate the dynamic behaviour as the rotation speed Ωu of the cylinder
increases, the perturbation velocities (u′, v′,w′) at downstream locations are recorded. As
the DIV rotates with increasing cylinder rotation rate Ωu, the perturbation’s maximum in
the y–z plane changes its spatial location accordingly. Therefore, in figure 8 the maximum
streamwise velocity perturbation u′ at x = 10 is presented. Three distinctive dynamical
regions are identified: laminar (0 < Ωu ≤ 0.65), transitional (0.65 ≤ Ωu ≤ 1.31) and
chaotic (Ωu ≥ 1.375). The corresponding flow features at different stages of transition
are visualised by instantaneous contours of streamwise velocity u, as shown in figure 9. It
is found that, below Ωu = 0.65, the flow is stable and remains laminar despite a certain
level of initial perturbations. The laminar flow is featured by stable velocity streaks with
a high-speed streak in the centre, see figure 9(a). Beginning from the critical rotation
speed Ωc

u = 0.65, a self-sustained global instability is observed. The grey line in figure 8
is the best least-squares fit using

√
Ωu −Ωc

u as the fitting function. This means that an
increase of the cylinder rotation speed results in a supercritical Hopf bifurcation. The
equilibrium state in the low Ωu region is broken and turns into a periodic limit-cycle
oscillation at 0.65 ≤ Ωu ≤ 1.31. The transitional flow is characterised by braid-like
structures between the low- and high-speed steaks, resembling the K–H instability, see
figure 9(b). Interestingly, the boundary layer relaminarises in the range of 1.06 ≤ Ωu ≤
1.25. Although the streamwise velocity perturbation at x = 10 for Ωu = 1.0 is still larger
than that for Ωu = 0.75, the overall relaminarisation effect is already distinctive, leaving
the braid-like structure confined to the near-wake region, see figure 9(c). On further
increase the rotation speed to Ωu = 1.25 in figure 9(d), the perturbation structure near the
cylinders recedes to an almost imperceptible level. However, the perturbation amplitude for
case Ωu > 1.25 climbs rapidly to follow the least-squares fitted level. The near-wake flow
structure of caseΩu = 1.31 in figure 9(e) is similar to that of caseΩu = 1.0. With a further
increase of the rotation speed toΩu = 1.375, the flow becomes chaotic. In figure 9( f ), the
regular braid-like patterns in both the near wake and far wake are broken, indicating that
laminar–turbulent transition has already happened.
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Figure 9. Instantaneous contours of streamwise velocity u at y = 0.99: (a) Ωu = 0.25, (b) Ωu = 0.75,
(c) Ωu = 1.0, (d) Ωu = 1.25, (e) Ωu = 1.31, ( f ) Ωu = 1.375. Yellow curves in the near wake (x ≤ 3) indicate
reverse-flow regions.

Figure 10 shows phase portraits of the perturbation velocities at probe location
(x, y, z) = (20, 1, 2), and the corresponding PSD of the streamwise perturbation velocity
u′ for several characteristic Ωu, as already used in figure 9. The cases Ωu = 0.25 and
Ωu = 1.25 are illustrated in figures 10(a,b) and 10(g,h), where a fixed point in the phase
portrait indicates that the flow is in a steady state. Although the perturbations in both cases
are not absolutely zero, the dynamical energies as exhibited in the PSD are negligible. For
Ωu = 0.75, an ‘8’-shaped limit cycle in the phase portrait and a fundamental frequency
(ω1 ≈ 0.9) accompanied by its higher harmonics in the PSD plot indicate that the system
undergoes a periodic limit-cycle oscillation. The rapid rise of perturbation u′ at 1.26 <
Ωu < 1.285 in figure 8 is the result of a period-halving bifurcation and an amplification
of the higher-harmonic components, as displayed in figures 10(i,j) and 10(k,l). It will be
discussed in § 4.2 that the primary frequency ω1 is associated with hairpin vortex shedding
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Figure 10. Three-dimensional phase portraits of perturbations (u′, v′,w′) and their corresponding PSD at
probe location (x, y, z) = (20, 1, 2); (a,b) Ωu = 0.25, (c,d) Ωu = 0.75, (e,f ) Ωu = 1.0, (g,h) Ωu = 1.25,
(i,j) Ωu = 1.2673, (k,l) Ωu = 1.285, (m,n) Ωu = 1.31, (o,p) Ωu = 1.375. Colours in phase portraits vary with
sampling time.

induced by the rotating cylinders and the higher harmonics are an indication of nonlinear
effects. At rotation speed Ωu = 1.31, a second frequency ω2 = 0.47 begins to emerge in
figure 10(n), albeit of low PSD magnitude. The incommensurate frequencies (ω2/ω1 is
irrational) lead to a quasi-periodic motion of the perturbations, turning the limit cycle
into a limit torus in figure 10(m). Further increasing the rotation speed to Ωu = 1.375, a
cascade of period-halving and period-doubling bifurcations led to a chaotic attractor of
the phase portrait in figure 10(o). Its PSD spectrum is dominated by the second basic
frequency ω2 = 0.465.

The dynamic behaviour of the perturbations as they evolve spatially is presented in
figure 11. The transitional case Ωu = 1.31 is compared with the chaotic case Ωu = 1.375.
For Ωu = 1.31, its closed loop phase portrait in figure 11(a) and the single dominant
frequency ω1 = 1.81 at x = 1 in figure 11(b) indicate that the perturbations undergo a
period-1 limit-cycle oscillation. As the flow evolves downstream, the local perturbations
undergo a period-halving bifurcation at x = 10, resulting in the amplification of higher
harmonics 2ω1 and 3ω1. Further downstream at x = 40, a quasi-periodic oscillation of the
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Figure 11. Three-dimensional phase portraits of perturbations (u′, v′,w′) and their corresponding PSD
at different probe locations: 1st row, (x, y, z) = (1, 1, 2); 2nd row, (x, y, z) = (10, 1, 2); 3rd row,
(x, y, z) = (40, 1, 2); 4th row, (x, y, z) = (90, 1, 2). Left columns (a,b,e, f,i,j,m,n) Ωu = 1.31; right columns
(c,d,g,h,k,l,o,p) Ωu = 1.375. Colours in phase portraits vary with sampling time.

perturbation is identified by the appearance of a second and a third frequency ω2 = 0.465
and ω3 = 2.28, respectively, in figure 11(j) and the limit torus in the phase portrait of
figure 11(i). At x = 90, the dominating frequency of the perturbations transits to the
secondary mode ω2 in figure 11(n). The incommensurate frequencies turn the phase
portrait into a non-overlapping limit torus in figure 11(m), while the primary frequency
ω1 declines to an almost unnoticeable level, indicating a changeover of the flow feature
from the near-wake vortex shedding to a low-frequency secondary instability in the far
wake. Whereas for case Ωu = 1.375, the strange attractor at x = 1 in figure 11(c) implies
that the system experiences a chaotic motion in the very near wake, nevertheless, its
PSD in figure 11(d) is still dominated by the primary frequency ω1 = 1.81, which is
related to vortex shedding, along with low energy harmonic 2ω1 and low frequency
component modulations. As the flow evolves to x = 10, a cascade of period-doubling and
period-halving bifurcations of the local perturbations are observed, which bring about
the energy amplification of higher harmonic 2ω1, a second frequency ω2 and a third
frequency ω3, as shown in figure 11(h). In addition to its fractal structure in the phase
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Figure 12. Streamwise evolution of skin-friction coefficient Cf compared with 1/7 power law with
experimental calibration (Schlichting & Gersten 2003). Colour of the plots are kept in accordance with figure 8:
blue (laminar), red (transitional), black (chaotic). Note that the x-axis is a combination of linear (x ≤ 10) and
logarithmic regions (x > 10).

portrait which is still observable in figure 11(g), the orbit is blended by irregular loops,
demonstrating the chaotic nature of the perturbations. At x = 40, a tertiary instability
identified by ω3 dominates the PSD spectrum in figure 11(l), whereas the primary
frequency ω1 diminishes. Further downstream, the discrete frequency spectrum converges
rapidly to a continuous one in figure 11(p), indicating an evolution of the aforementioned
quasi-periodic deterministic perturbations into a turbulent state (Borodulin & Kachanov
2013).

Typically, laminar–turbulent transition is accompanied by an increasing drag coefficient.
Figure 12 shows the streamwise evolution of the skin-friction coefficient Cf =
2τwall/(ρu2∞) for various rotation speedsΩu. The three dynamical regions as distinguished
in figure 8 are marked by contrasting colours. For laminar cases (Ωu = 0, 0.25, 0.46),
Cf rises behind the roughness elements and decays gradually after reaching a mild
peak at around x = 20 ∼ 30. The transitional cases (Ωu = 0.65 ∼ 1.25) are characterised
by a two-peak wavy progression of Cf , with the first peak at around x ≈ 5 and the
second peak at around x ≈ 20. Starting from the near wake, the skin-friction coefficients
of chaotic cases (Ωu ≥ 1.375) rise monotonically towards the value of a turbulent
boundary-layer correlation. Here, the 1/7 power law with experimental calibration
(Schlichting & Gersten 2003) is given for reference. The different qualitative features of
the skin-friction coefficient Cf evolution substantiate the aforementioned categorisation of
the boundary-layer flow, and are a consequence of symmetry breakings in the evolution of
the vortical systems induced by the rotating cylindrical roughness elements.

4.2. Instantaneous flow-field structures
Having discussed the dynamic behaviour of the perturbations, the instantaneous flow
structures as visualised by isosurfaces of λ2 (Jeong & Hussain 1995) will be analysed
in this section. Figure 13 shows instantaneous snapshots of vortices emanating from the
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Figure 13. Instantaneous isosurface of flow pattern for case Ωu = 0.75 by means of λ2 = −200, coloured by
streamwise velocity u. (a) Top view, ejection (Q2, coloured yellow) and sweep (Q4, coloured green) events are
shown by u′v′ = −0.003, (b) side view. Depicted frames are enlarged in figure 14.

cylinders at a dimensionless rotation speed of Ωu = 0.75. The depicted frames denote
the positions where the near-wake regions are extracted, and are shown in figure 14.
For illustration purposes, an additional half-unit of the flow domain is added at z > 6.
The vortices obtained with SFD, which remain laminar, are included in blue colour for
reference. In the very near wake (x ≤ 5), the instantaneous vortices almost overlap with
the laminar base-flow vortices. The flow is characterised by a DIV surrounded by a SIV,
as shown in the enlarged figure 14. Unsteady behaviour appears first on the SIV at around
x ≈ 5, it develops into a tiny hairpin vortex with its head rotated around the DIV, which
decays quickly at around x = 23. Wavy structures are observed on the DIV from x ≈ 5
as well, and the DIV meanders in the direction normal to the streamwise direction. Such
a meandering dynamics is well reported in the initial stage of hairpin vortex generation
(Schoppa & Hussain 2002; Wang, Huang & Xu 2015). Slightly downstream at x ≈ 23,
an arch-shaped structure forms, which is tilted towards the high-speed streak. Its stronger
leg is rooted in the DIV and its weaker leg stretches towards the low-speed streak. The
slight cross-flow w induced by the DIV, as shown in figure 7(d), pushes the tilted hairpin
vortex packets away from the centre high-speed region. Thus, they merge at the spanwise
boundary with the neighbour packets at x ≈ 50, see figure 13. Further downstream, higher
harmonics are triggered and quasi-streamwise vortices are generated. Another vortex
combines at the periodic boundary and then evolves into a new packet of hairpin vortices at
x ≈ 72. Since the spanwise velocity w is cancelled out by the neighbouring vortices here,
this new hairpin vortex is symmetric with legs of identical strength. The primary frequency
ω1, as plotted in figure 10(d), therefore, corresponds to the periodic shedding of the tilted
hairpin vortices. Moreover, it turns out that the frequency and wavelength of the near-wake
tilted hairpin vortex packet are identical to those of the far-wake symmetric hairpin vortex.
In addition, the ejection (Q2, u′ < 0, v′ > 0) and sweep (Q4, u′ > 0, v′ < 0) events of a
hairpin vortex are shown as well (Adrian 2007). The strength of both Q2 and Q4 events
grows in the streamwise direction, proving that the hairpin vortex generation for this case is
a streak-instability-based scenario (Schoppa & Hussain 2002). As shown in figure 14(a),
the interaction of DIV and SIV in the near wake (x ≤ 25) resembles the dynamics of
a vortex pair (Leweke, Le Dizes & Williamson 2016), where a short wave 3-D elliptic
instability (Kerswell 2002) is responsible for the breakdown into turbulent motion.
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Figure 14. Enlarged views of the frames in figure 13. (a) Perspective view, (b) top view and (c) side view.
Red curve indicates the rotation direction.
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Figure 15. Instantaneous isosurface of flow pattern for case Ωu = 1.31 by means of λ2 = −200, coloured by
streamwise velocity u. (a) Top view, ejection (Q2, coloured yellow) and sweep (Q4, coloured green) events
are shown by u′v′ = −0.003, (b) side view. The mean reverse-flow zone ū0 = 0 is marked by cyan colour.
Depicted frames are enlarged in figure 16.

The instantaneous flow organisation of case Ωu = 1.31, which is closer to a chaotic
state, is shown in figure 15. For clarity, the near-wake region is also enlarged in figure 16.
As discussed above, the hairpin vortices for case Ωu = 0.75 shed from the quasi-steady
DIV. Here, the hairpin vortex is generated directly on the decelerating side of the rotating
cylindrical roughness elements and regenerates into a hairpin packet. The hairpin packet
has an interlaced structure which clearly proves its parent–offspring origin (Zhou et al.
1999), i.e. hairpin vortices are regenerated from the preceding parent hairpin vortex. The
accompanying Q2 and Q4 events confirm their regeneration mechanism as well. The
enlarged views in figure 16 clearly show the spatial organisation of the hairpin vortex
packet. The mean reverse-flow zone, as shown by ūx = 0, has a structure protruding into
the decelerated boundary layer at height y = 0.6 ∼ 0.85, see the enlarged side view in
figure 16(c). This protrusion splits the unsteady vortex on the decelerated side into two
parts, which then develop into streamwise oriented legs of the first hairpin vortex. Due
to a K–H instability, the inflectional shear flow rolls up into a spanwise vortex which
bridges the two legs and forms the hairpin head. The local ejection events near the head
and legs of the first hairpin vortex then regenerate the next pair of legs, thereafter an
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ūx = 0
Q2

Q4
Zoom in (1)

x
(a)

(b)

(c)

Figure 16. Enlarged views of the frames in figure 15. (a) Perspective view, (b) top view and (c) side view.
Red curve in (b) indicates the rotation direction.

offspring hairpin vortex is created. Further downstream, this hairpin packet gradually
decays, whereas a low-frequency hairpin starting at x ≈ 68 is formed with its two legs
rising from neighbouring units, see figure 14(a). It is to be noted that these far-wake
low-frequency hairpin vortices exhibit asymmetry, i.e. symmetry breaking, which is a
precursor of chaos.

The flow statistics of the chaotic cases (Ωu = 1.5, 2) are presented together with
mean-flow profiles in figure 17. The streamwise mean-flow velocity profiles, which are
non-dimensionalised by ū+ = ū/uτ with regards to wall coordinate y+ = yuτ /ν, are
given in figure 17(a,d). The theoretical curves for the viscous sublayer ū+ = y+ and the
logarithmic layer ū+ = 1/κ ln y+ + C with κ = 0.41 and C = 5.2 are plotted with dashed
lines. For reference, the fully developed turbulent data of Schlatter & Örlü (2010) are
depicted with solid red lines as well. The mean-flow profiles of both cases evolve gradually
towards a turbulent one, with case Ωu = 1.5 in an oscillatory manner and case Ωu = 2 in
a gradual manner. The streamwise components of Reynolds normal stress τ+

xx as well as
shear stress τ+

xy are given. At x = 1, a very high peak of both Reynolds stresses is observed
at height y+ = 30, which corresponds to the height of the cylinder. For the streamwise
normal stress τxx, this peak quickly decays and shifts to y+ = 45 at station x = 10. Further
downstream at x = 20, a second peak appears and grows in height y+ ≈ 13. Whereas this
location conforms to the peak of the fully developed turbulence, the magnitude grows to
approximately two times larger at x = 100. For the shear stress τ+

xy , the peak at y+ = 30
gradually spreads out towards the fully developed turbulent profile.

4.3. DMD analysis
In this section, the transitional flows controlled by the rotating cylindrical roughness
elements are investigated by DMD (Schmid 2010; Belson et al. 2014). The spatio-temporal
process of the 3-D boundary-layer flow can be decomposed into a set of coherent spatial
modes which feature corresponding frequencies. At high rotation speed, nonlinear modal
interactions can develop. In such a case, the resulting DMD mode should be interpreted
as one particular representative phase-dependent dynamical mode determined by the
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Figure 17. Evolution of mean velocity profiles (a,d) and turbulence statistics (b,c,e, f ) along streamwise
direction. Upper row corresponds to case Ωu = 1.5 and lower row to case Ωu = 2. Red solid line is from
DNS data of Schlatter & Örlü (2010). For clarity, shear stresses of near-wake (x ≤ 20) and far-wake (x ≥ 40)
locations are plotted with offset.

nonlinear interactions of the snapshots employed. In low rotation speed cases, however,
such nonlinear effects can be neglected. The obtained DMD modes are therefore identical
to a global mode as obtained from a global stability analysis (Loiseau et al. 2014). Since
only the asymptotic behaviour of the perturbations are considered in the current work,
DMD is performed with equilibrium state snapshots. Approximately 200 snapshots are
used to perform DMD for the investigated cases, which results in a temporal sampling
rate that is more than twice the highest dominant frequency of instability. Figure 18(a)
shows the complex DMD eigenvalues for case Ωu = 1.31. Here, almost all modes are
located on the unit circle by virtue of the equilibrium flow state. The few low amplitude
modes inside the unit circle are most likely nonlinearly generated higher harmonics and
numerical artefacts. The non-dimensional physical frequency ωr and its corresponding
mode amplitude coefficients ai are plotted in figure 18(b). The primary frequency ω1 and
its higher harmonics as well as the second frequencyω2 as shown in figure 11 are recovered
by DMD.

Figure 19 shows the leading DMD modes of the selected cases from the bifurcation
diagram in figure 8. The modes consist of positive and negative patches of velocity mostly
localised around the central low-speed region, i.e. the DIV structure in the laminar cases.
In case Ωu = 0.75, the leading DMD mode is a low-frequency spatially growing mode,
whose mode amplitude is shown in figure 25(b,c) in Appendix A to saturate at x ≈ 50.
For Ωu = 1.0, the leading DMD mode is a high-frequency mode which fades away after
x = 50, whereas the DMD mode for the relaminarised caseΩu = 1.25 only emerges in the
far wake (x ≈ 50). It is to be noted that the amplitude of the leading mode inΩu = 1.25 is
several orders of magnitude lower than the DMD modes of other cases. Further increase
of the rotation speed to Ωu = 1.31 leads to the occurrence of two leading DMD modes
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Figure 18. The DMD spectrum of case Ωu = 1.31. Colour and size in (a) are related to coefficient amplitude.
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(c) ωr = 0.66, (d) primary mode ω1 = 1.8 with isosurface in red/blue and second mode ω2 = 0.46 with
isosurface in white/black. Isosurfaces depict û = ±10 % (in colour red/blue or white/black) of maximum
amplitude of mode.

as shown in figure 18, i.e. a high-frequency mode (coloured red/blue, ω1 = 1.8) in the
near wake and a low-frequency mode (coloured white/black, ω2 = 0.47) in the far wake.
The asymmetrical spatial structure of the low-frequency mode implies the onset of chaotic
flow.

The structures of the leading modes and their spatial locations relative to the mean
flow are visualised in slices at x = 10 in figure 20. Here, only the positive-z half of
the modes is shown due to the symmetry of the DMD modes with regard to the z = 0
axis. The 3-D high shear region is identified by the I2-criterion (Meyer 2003). For
cases Ωu = 0.75, 1.0, 1.25, the mean flow is characterised by a tilted high shear region
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Figure 20. Real part of leading DMD modes with primary frequency ωr in x = 10 plane shown by red/blue
contours for cases (a) Ωu = 0.75, (b) Ωu = 1.0, (c) Ωu = 1.25, (d) Ωu = 1.31. Red/blue contours show
positive/negative values of normalised spatial eigenfunction. Thin dash-dotted lines are isolines of mean
streamwise velocity ū = 0.1−0.99. Thick cyan solid lines visualise high shear stress regions by means of
I2-criterion (Meyer 2003).

surrounding the strong streamwise vortex, i.e. the DIV. Typical instability modes behind
a static cylindrical roughness element can be categorised by their spanwise symmetries,
i.e. varicose or sinuous, with respect to the vertical axis where the cylinder is located.
As shown in figure 20, such spanwise symmetrical characteristic is no longer a feature of
the induced modes. Nevertheless, the DMD modes presented here are exclusively located
within the high shear stress regions, indicating their inflectional nature. Similarly tilted
modes are observed with skewed (oblique) roughness elements in Groskopf & Kloker
(2016), with distributed surface roughness in Di Giovanni & Stemmer (2018) and more
intensively with cross-flow instability in Malik, Li & Chang (1994); Wassermann & Kloker
(2002) and Shi, Mader & Martins (2021). As for case Ωu = 1.31, the mean flow has
already been distorted by the interaction of its leading modes, which are identified in
figure 18.

4.4. Instability mechanisms
The PKE analysis is performed to get an insight into the instability mechanisms for
the above identified DMD modes, particularly, how the modes obtain their energy
from the work of Reynolds stress against the mean-flow shear. Figure 21 presents
the streamwise evolution of perturbation productions

∫
y,z Ii dy dz scaled by the local

dissipation
∫

y,z |D| dy dz. The purpose is to magnify the otherwise imperceptible energy
production at the initial stage of the instability. It is evident that the energy production
is dominated by the

∫
y,z I2 dy dz and

∫
y,z I3 dy dz terms for almost all cases, which is

reasonable and common for a streaky boundary layer, see Cossu & Brandt (2004), Loiseau
et al. (2014) and Wu et al. (2021) as well. However, it should be noted that in the roughness
region (−0.5 ≤ x ≤ 0.5) the term

∫
y,z I1 dy dz dominates the energy production for cases

with Ωu ≥ 1.0. As shown in (2.12), the term I1 represents the production of ek from the
normal Reynolds stress u′2 against the streamwise gradient of the mean-flow streamwise
component ∂ ū/∂x. Since the sign of the normal shear u′2 is always positive and the sign
for the gradient ∂ ū/∂x on the reverse-flow side of the cylinder is negative due to the
deceleration effect, the production term I1 then turns out to be invariably positive. The
mechanism is hereafter termed a deceleration mechanism. The crucial importance of the
deceleration effect on intensifying the growth rate of the shear-layer instability has been
addressed by Gad-El-Hak et al. (1984) and Shtern & Hussain (2003).

The real parts of the leading modes at slice x = 0 are shown in the first row of
figure 22, the second and third rows represent the local total energy production at slices
x = 0.3 and x = 2, respectively. For higher rotation speed cases Ωu = 1, 1.25, 1.31,
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Figure 21. Streamwise evolution of production terms
∫

y,z Ii/|D| dy dz of leading DMD modes for (a) Ωu =
0.75, (b) Ωu = 1.0, (c) Ωu = 1.25, (d) Ωu = 1.31. Dissipation D is plotted at Ii/D = −1 for reference. Note
that x-axis contains linear (x ≤ 10) and logarithmic ranges (x > 10). Vertical shaded region in the insets indicate
the location of cylinders.

both the DMD modes and the local total energy productions
∑

Ii are localised around
the protruding structures as marked by the reverse-flow region (ux = 0), where the
deceleration mechanism gives birth to the DMD modes shown in figure 19(b–d).
Nevertheless, the total energy production for case Ωu = 0.75 is counterbalanced by a
positive region (contribution of I1) and a negative region (contribution of I3), which
implies a different instability mechanism for the DMD mode as shown in figure 19(a).

The third row of figure 22 shows the total energy productions at slice x = 2, which is
a position across the downstream reverse-flow region. For case Ωu = 1.31 in figure 22(l),
the flow has curved streamlines around the cylinder and the velocity is decelerated at
the region of total energy production, which are flow conditions prone to a centrifugal
instability (Floryan 2002; Lanzerstorfer & Kuhlmann 2012). The argument is supported by
the sufficient condition of Sipp & Jacquin (2000), that a 2-D inviscid flow is centrifugally
unstable if the following parameter is negative along a closed streamline ψ = const.

γ := |ū|ω
R

< 0, (4.1)

where ω is the vorticity of the mean flow, and R is the local algebraic radius of curvature,
defined as

R = |ū|3
∇ψ · (ū · ∇ū)

. (4.2)

Figure 23(c) compares the regions where γ < 0 at height y = 1.07 for case Ωu = 1.31
with the mean flow. It can be observed that negative γ occurs in regions of flow divergence
and convergence in the tilted wake, exactly at the edges of the vortex train in figure 15(b).
The total energy production in figure 22(h) is also observed to overlap with this region.
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Figure 22. Real part of leading DMD modes in x = 0 plane shown by red and blue contours for case (a)Ωu =
0.75, (b) Ωu = 1.0, (c) Ωu = 1.25, (d) Ωu = 1.31. Thin dash-dotted lines are isolines of mean streamwise
velocity ū = 0.1 − 0.99. Recirculating region is marked by black solid lines. Total local energy production∑

Ii at x = 0.3 (second row) and x = 2 (third row) for (e,i) Ωu = 0.75, ( f,j) Ωu = 1.0, (g,k) Ωu = 1.25, (h,l)
Ωu = 1.31. Yellow dash-dot lines mark the phase speed cph of the corresponding mode. Recirculating regions
are marked by magenta thick solid lines. Thin magenta dash-dotted lines are isolines of ū = 0.99. Thick cyan
solid lines visualise shear regions by means of I2-criterion (Meyer 2003). Yellow line in (h) for comparison
with figure 23(c).
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Figure 23. Elliptic flow regions (β < 1, coloured blue) at x = 2 for cases (a) Ωu = 0.75 and (b) Ωu = 1.
Centrifugally unstable regions (γ < 0, coloured red) at y = 1.07 for case (c) Ωu = 1.31. The dashed circle in
(c) marks the location of the cylinder. Yellow line in (c) for comparison with figure 22(h).

For better comparison, reference spatial locations are marked by a short yellow line in
figures 22(h) and 23(c).

The cases withΩu = 0.75 and 1.0 are slightly different because the perturbation kinetic
energy is produced in two regions: the high shear region as identified by the I2-criterion
and the centre of the elliptic vortex of the mean flow, see figure 22(i,j). The latter
is an indication of an elliptic instability (Pierrehumbert 1986; Sipp & Jacquin 1998).
This interpretation is supported by the theory of elliptic instability proposed by
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Pierrehumbert (1986) and Waleffe (1990), that a strained vortex is subject to elliptic
instability if the eccentricity parameter β of the flow is less than 1, i.e.

β := 2ε
|ω| < 1. (4.3)

Here, ε is the magnitude of strain and ω is the vorticity. Figure 23(a,b) shows the
elliptic flow regions at x = 2 for cases Ωu = 0.75 and Ωu = 1, respectively. Further, the
maximum of the perturbation, which is located in the crescent-shaped high shear region
(see figure 20a,b for instance) and the maximum of perturbation energy production

∑
Ii

approximately coincide with the location of the critical layers as marked by the phase
velocities cph. A criterion that meets the Rayleigh–Fjortøft necessary condition for inviscid
inflectional instability (Schmid & Henningson 2001). Therefore, the cases Ωu = 0.75 and
1.0 are subject to a combination of inviscid instability and elliptic instability in the near
wake. The case forΩu = 1.25 in figure 22(k) exhibits the same inviscid instability feature.
However, the case is unique in that it is dominated by a relaminarisation effect which is not
the topic of the current investigation. In the far wake, both centrifugal and elliptic effects
fade away.

5. Conclusions

The transition of a laminar boundary layer controlled by counter-rotating wall-normal
cylindrical roughness pairs has been investigated numerically by increasing the rotation
speed Ωu incrementally. Unsteady simulations demonstrate that the boundary layer
undergoes a supercritical Hopf bifurcation, as the rotation speedΩu is gradually increased.
The braid-like leading DMD modes, which are located mainly within the crescent-shaped
high shear regions, are associated with hairpin vortex shedding. Flow visualisations
with λ2 isosurfaces have shown that the hairpin vortex regeneration for the low rotation
speed case Ωu = 0.75 is a streak-instability-based mechanism, and for the large rotation
speed case Ωu = 1.31 a parent–offspring mechanism. The symmetry breaking which is
already observed at Ωu = 1.31 eventually triggers transition to turbulence with larger
rotation speed. Interestingly, a relaminarisation effect is observed in the rotation range
1.06 ≤ Ωu ≤ 1.25, which is probably due to the influence of neighbour vortices and needs
further investigation.

Regarding instability mechanisms, a combination of centrifugal instability (Ωu = 1.31)
and elliptic instability (Ωu = 0.75, 1.0) in the near wake is found to trigger the DMD
mode, while a deceleration mechanism directly located on the upwind side of the rotating
cylinder is found to initiate the instability. Unlike the much more common scenario with
static cylinders, where the formations of near-wake horseshoe vortices, inner vortices
and far-wake velocity streaks are ascribed to blockage effects induced by the roughness
elements, the rotating cylinder stubs cause local deceleration on one side of the cylinder
and local acceleration on the other side. It turns out that both the downstream macro-scale
vortical structures, i.e. the long-lived DIV and the surrounding SIV, and the micro-scale
instabilities as well as the consequent transition are related to this local boundary-layer
deceleration. A major flow structure, i.e. a protruding reverse-flow region which is created
by Taylor–Couette-like streamwise vortices above and below it, forms at the upwind side
of the cylinder as the rotation speed increases beyond Ωu = 1. The decelerated region
is further accumulated around this protruding structure and is found effective in kinetic
energy production, which nurtures the flow instability and consequently triggers transition
to turbulence.
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Overall, the current investigations have presented an active method for flow tripping.
A gear-driven rotation apparatus has been constructed in the laminar water channel
by the present authors, which demonstrated its feasibility of construction. Technically
speaking, micro-rotors rotating at a million rpm are already practicable (Gong & Habetler
2017), which makes the current flow control method applicable for a wide range of fluid
mechanical applications. Furthermore, based on the fact from Wu et al. (2021) that low
rotation cylinder pairs (Ω ≤ 0.5) can attenuate TS instabilities more effectively than
static cylinders, one may also propose to use it for laminar flow control. Moreover, the
wall-normal counter-rotating cylindrical roughness pairs are observed in another DNS
study to act as micro-vortex generators (MVGs), similar to the winglet-type MVGs of
Shahinfar et al. (2012) and Lin et al. (1994). Therefore, this method is also considered
applicable to controlling boundary-layer separation in a turbulent flow.
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Appendix. Grid convergence study

In this appendix, the influence of the mesh size on the computed instability is highlighted.
Two special cases are chosen for the grid convergence study, i.e.Ωu = 0.75 andΩu = 1.5.
In case Ωu = 0.75, a dominant DMD mode is observed, while the case Ωu = 1.5 is a
chaotic scenario. Figure 24(a) illustrates the integration domain used for this investigation,
and the grid topology around the cylinder is depicted in figure 24(b). The integration
domain dimensions Ly and Lz are kept constant (i.e. Ly = 40 and Lz = 12) for all cases,
while the streamwise size is truncated from Lx = 200 for the coarsest case to Lx = 85
in the finest case so as to minimise the total cell number. Four grids with refinement in
all three directions are studied, as listed in table 1. The cell size of the finest grid G4
is �y+

0 = 0.15, �z+ = 1.1 and �x+ stretches from �x+
min = 0.15 near the cylinder to

�x+
max = 2.9 at the outlet, which results in a total of 112 million cells. For all cases, the

integration time steps are adjusted to ensure that the Courant numbers are kept below
Co = 0.35. Flow statistics are evaluated after five flow-through times, which corresponds
to tu∞/k = 450 time units. For evaluation of the statistics, a sampling time period of at
least tu∞/k ∼ 1000 is used.

Figure 25 shows the grid convergence study from case Ωu = 0.75, which is
characterised by a dominant DMD mode with ω = 0.92. The natural logarithm of the
spatial maximal modal amplitude and the n-factor calculated as n = ln(|û(x)|/|û(x0)|) are
shown in figures 25(b) and 25(c), respectively. Although the initial amplitudes of this
mode are different between grids, the n-factors referring to the rear edge of the cylinder
overlap with each other in the near wake for all grids. The discrepancy of n-factors is only
discernible in the far wake, i.e. at x > 20. Nevertheless, the overlap of grids G3 and G4 in
the whole domain confirms the grid convergence.
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Figure 24. (a) Sketch of integration domain. (b) Grid topology around cylinder.

No. �x+
min ∼ �x+

max �y+
0 �z+ Grid points in boundary layer Total grid points

G1 0.48 ∼ 21 0.67 2.7 90 25.2 million
G2 0.3 ∼ 6.0 0.5 1.5 125 46.3 million
G3 0.3 ∼ 3.6 0.33 1.3 140 75 million
G4 0.15 ∼ 2.9 0.15 1.1 150 112 million

Table 1. Numerical set-ups for grid convergence study.
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Figure 25. Results of grid convergence study showing (a) real part of dominant DMD mode (ω = 0.92) from
case Ωu = 0.75 of G3, isosurfaces depict û = ±10 % of maximum amplitude of mode, (b) natural logarithm
of spatial maximal modal amplitudes normalised by free-stream velocity, and (c) n-factors. Shaded region in
(b) and (c) marks extent of cylindrical roughness. Note that x-axis in (b) and (c) contains linear (x ≤ 10) and
logarithmic regions (x > 10).
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Figure 26. Results of grid convergence showing (a) mean velocity profiles at z = −2.75, (b) mean streamwise
shear stresses at y = 1.3, and (c) mean spanwise skin-friction coefficients. Vertical lines in (a) mark location
of the first cell y+

0 for each grid. Coloured vertical lines in (c) mark streamwise sampling positions used in (a)
and (b). Shaded region in (c) marks extent of cylindrical roughness.

Figure 26 shows the comparison of wall-normal mean velocity u+ at z = −2.75,
streamwise component of Reynolds stress τxx at y = 1.3 and the averaged skin-friction
coefficient cf for the chaotic case Ωu = 1.5. The locations (z = −2.75 and y = 1.3) are
chosen to capture the region affected by the instabilities. Strong cf gradients are confined
to locations close to the cylinder, while they smear out in both y and z directions further
downstream. Both, the first-order (cf ) and second-order (τxx) statistics converge with
respect to each other with grids G3 and G4. Therefore, grid G3 has been used for all
investigations presented in this paper.

REFERENCES

ACARLAR, M.S. & SMITH, C.R. 1987 A study of hairpin vortices in a laminar boundary layer. Part 1. Hairpin
vortices generated by a hemisphere protuberance. J. Fluid Mech. 175, 1–41.

ADRIAN, R.J. 2007 Hairpin vortex organization in wall turbulence. Phys. Fluids 19 (4), 041301.
ÅKERVIK, E., BRANDT, L., HENNINGSON, D.S., HŒPFFNER, J., MARXEN, O., AND SCHLATTER, P. 2006

Steady solutions of the Navier–Stokes equations by selective frequency damping. Phys. Fluids 18 (6),
068102.

ANDERSSON, P., BERGGREN, M. & HENNINGSON, D.S. 1999 Optimal disturbances and bypass transition in
boundary layers. Phys. Fluids 11 (1), 134–150.

ANDERSSON, P., BRANDT, L., BOTTARO, A. & HENNINGSON, D.S. 2001 On the breakdown of boundary
layer streaks. J. Fluid Mech. 428, 29–60.

AXTMANN, G. 2020 Exploration of the effect of fibre patterns on transitional and turbulent flow. PhD
dissertation, Universität Stuttgart.

BAKCHINOV, A.A., GREK, G.R., KLINGMANN, B.G.B. & KOZLOV, V.V. 1995 Transition experiments in a
boundary layer with embedded streamwise vortices. Phys. Fluids 7 (4), 820–832.

BAKER, C.J. 1979 The laminar horseshoe vortex. J. Fluid Mech. 95 (2), 347–367.
BARKLEY, D. 2006 Linear analysis of the cylinder wake mean flow. Europhys. Lett. 75 (5), 750.
BARKLEY, D. & HENDERSON, R.D. 1996 Three-dimensional floquet stability analysis of the wake of a

circular cylinder. J. Fluid Mech. 322, 215–241.
BAYLY, B.J. 1988 Three-dimensional centrifugal-type instabilities in inviscid two-dimensional flows. Phys.

Fluids 31 (1), 56–64.
BELSON, B.A., TU, J.H. & ROWLEY, C.W. 2014 Algorithm 945: modred a parallelized model reduction

library. ACM Trans. Math. Softw. (TOMS) 40 (4), 30.
BLACKBURN, H.M. & SHEARD, G.J. 2010 On quasiperiodic and subharmonic Floquet wake instabilities.

Phys. Fluids 22 (3), 031701.
BOIKO, A.V., WESTIN, K.J.A., KLINGMANN, B.G.B., KOZLOV, V.V. & ALFREDSSON, P.H. 1994

Experiments in a boundary layer subjected to free stream turbulence. Part 2. The role of TS-waves in
the transition process. J. Fluid Mech. 281, 219–245.

945 A20-31

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

54
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.546


Y. Wu, T. Römer, G. Axtmann and U. Rist

BORODULIN, V.I. & KACHANOV, Y.S. 2013 Experimental evidence of deterministic turbulence. Eur. J. Mech.
(B/Fluids) 40, 34–40.

BRANDT, L., SCHLATTER, P. & HENNINGSON, D.S. 2004 Transition in boundary layers subject to
free-stream turbulence. J. Fluid Mech. 517, 167–198.

BUCCI, M.A., PUCKERT, D.K., ANDRIANO, C., LOISEAU, J.-C., CHERUBINI, S., ROBINET, J.-C. &
RIST, U. 2018 Roughness-induced transition by quasi-resonance of a varicose global mode. J. Fluid Mech.
836, 167–191.

BUTLER, K.M. & FARRELL, B.F. 1992 Three-dimensional optimal perturbations in viscous shear flow. Phys.
Fluids A: Fluid Dyn. 4 (8), 1637–1650.

CABRAL, B. & LEEDOM, L.C. 1993 Imaging vector fields using line integral convolution. In Proceedings of
the 20th Annual Conference on Computer Graphics and Interactive Techniques, pp. 263–270. Association
for Computing Machinery.

CHOMAZ, J.-M. 2005 Global instabilities in spatially developing flows: non-normality and nonlinearity. Annu.
Rev. Fluid Mech. 37, 357–392.

CHU, X., WU, Y., RIST, U. & WEIGAND, B. 2020 Instability and transition in an elementary porous medium.
Phys. Rev. Fluids 5 (4), 044304.

COSSU, C. & BRANDT, L. 2004 On Tollmien–Schlichting-like waves in streaky boundary layers. Eur. J. Mech.
(B/Fluids) 23 (6), 815–833.

DALCÍN, L., PAZ, R. & STORTI, M. 2005 MPI for python. J. Parallel Distrib. Comput. 65 (9), 1108–1115.
DENISSEN, N.A. & WHITE, E.B. 2013 Secondary instability of roughness-induced transient growth. Phys.

Fluids 25 (11), 114108.
DI GIOVANNI, A. & STEMMER, C. 2018 Cross-flow-type breakdown induced by distributed roughness in the

boundary layer of a hypersonic capsule configuration. J. Fluid Mech. 856, 470–503.
EL AKOURY, R., BRAZA, M., PERRIN, R., HARRAN, G., AND HOARAU, Y. 2008 The three-dimensional

transition in the flow around a rotating cylinder. J. Fluid Mech. 607, 1–11.
ERGIN, F.G. & WHITE, E.B. 2006 Unsteady and transitional flows behind roughness elements. AIAA J.

44 (11), 2504–2514.
FLORYAN, J.M. 2002 Centrifugal instability of Couette flow over a wavy wall. Phys. Fluids 14 (1), 312–322.
FRANSSON, J.H.M. & TALAMELLI, A. 2012 On the generation of steady streamwise streaks in flat-plate

boundary layers. J. Fluid Mech. 698, 211–234.
FRANSSON, J.H.M., TALAMELLI, A., BRANDT, L. & COSSU, C. 2006 Delaying transition to turbulence by

a passive mechanism. Phys. Rev. Lett. 96 (6), 064501.
GAD-EL-HAK, M., DAVIS, S.H., MCMURRAY, J.T. & ORSZAG, S.A. 1984 On the stability of the

decelerating laminar boundary layer. J. Fluid Mech. 138, 297–323.
GIANNETTI, F. & LUCHINI, P. 2007 Structural sensitivity of the first instability of the cylinder wake. J. Fluid

Mech. 581, 167–197.
GONG, C. & HABETLER, T. 2017 A novel rotor design for ultra-high speed switched reluctance machines over

1 million rpm. In 2017 IEEE International Electric Machines and Drives Conference (IEMDC), pp. 1–6.
IEEE.

GREGORY, N.T. & WALKER, W.S. 1956 The Effect on Transition of Isolated Surface Excrescences in the
Boundary Layer. HM Stationery Office.

GROSKOPF, G. & KLOKER, M.J. 2016 Instability and transition mechanisms induced by skewed roughness
elements in a high-speed laminar boundary layer. J. Fluid Mech. 805, 262–302.

JACKSON, C.P. 1987 A finite-element study of the onset of vortex shedding in flow past variously shaped
bodies. J. Fluid Mech. 182, 23–45.

JEONG, J. & HUSSAIN, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 69–94.
JOSLIN, R.D. & GROSCH, C.E. 1995 Growth characteristics downstream of a shallow bump: computation

and experiment. Phys. Fluids 7 (12), 3042–3047.
KACHANOV, Y.S. 1994 Physical mechanisms of laminar-boundary-layer transition. Annu. Rev. Fluid Mech.

26 (1), 411–482.
KACHANOV, Y.S. & TARARYKIN, O.I. 1987 An experimental study of the stability of a relaxing boundary

layer. Akademiia Nauk SSSR Sibirskoe Otdelenie Izvestiia Seriia Tekhnicheskie Nauki, pp. 9–19.
KANG, S., CHOI, H. & LEE, S. 1999 Laminar flow past a rotating circular cylinder. Phys. Fluids 11 (11),

3312–3321.
KERSWELL, R.R. 2002 Elliptical instability. Annu. Rev. Fluid Mech. 34 (1), 83–113.
KLEBANOFF, P.S. & TIDSTROM, K.D. 1972 Mechanism by which a two-dimensional roughness element

induces boundary-layer transition. Phys. Fluids 15 (7), 1173–1188.
KLEBANOFF, P.S., TIDSTROM, K.D. & SARGENT, L.M. 1962 The three-dimensional nature of

boundary-layer instability. J. Fluid Mech. 12 (1), 1–34.

945 A20-32

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

54
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.546


Rotating cylindrical roughness element-induced transition

KUMAR, B. & MITTAL, S. 2006 Effect of blockage on critical parameters for flow past a circular cylinder. Intl
J. Numer. Meth. Fluids 50 (8), 987–1001.

LANDAHL, M.T. 1980 A note on an algebraic instability of inviscid parallel shear flows. J. Fluid Mech. 98 (2),
243–251.

LANZERSTORFER, D. & KUHLMANN, H.C. 2012 Global stability of multiple solutions in plane
sudden-expansion flow. J. Fluid Mech. 702, 378–402.

LEE, C. & JIANG, X. 2019 Flow structures in transitional and turbulent boundary layers. Phys. Fluids 31 (11),
111301.

LEWEKE, T., LE DIZES, S., & WILLIAMSON, C.H.K. 2016 Dynamics and instabilities of vortex pairs. Annu.
Rev. Fluid Mech. 48, 507–541.

LIN, J.C., ROBINSON, S.K., MCGHEE, R.J. & VALAREZO, W.O. 1994 Separation control on high-lift
airfoils via micro-vortex generators. J. Aircraft 31 (6), 1317–1323.

LOISEAU, J.-C., ROBINET, J.-C., CHERUBINI, S. & LERICHE, E. 2014 Investigation of the
roughness-induced transition: global stability analyses and direct numerical simulations. J. Fluid Mech.
760, 175–211.

LORING, B., KARIMABADI, H. & RORTERSHTEYN, V. 2014 A screen space GPGPU surface LIC algorithm
for distributed memory data parallel sort last rendering infrastructures. Tech. Rep. Lawrence Berkeley
National Laboratory.

LUCHINI, P. 2000 Reynolds-number-independent instability of the boundary layer over a flat surface: optimal
perturbations. J. Fluid Mech. 404, 289–309.

MALIK, M.R., LI, F. & CHANG, C.-L. 1994 Crossflow disturbances in three-dimensional boundary layers:
nonlinear development, wave interaction and secondary instability. J. Fluid Mech. 268, 1–36.

MEYER, D. 2003 Direkte numerische Simulation nichtlinearer Transitionsmechanismen in der Strömungsgren-
zschicht einer ebenen Platte. PhD dissertation, Universität Stuttgart.

MITTAL, S. & KUMAR, B. 2003 Flow past a rotating cylinder. J. Fluid Mech. 476, 303–334.
MONKEWITZ, P.A., HUERRE, P. & CHOMAZ, J.-M. 1993 Global linear stability analysis of weakly

non-parallel shear flows. J. Fluid Mech. 251, 1–20.
MORKOVIN, M.V. 1994 Transition in open flow systems–a reassessment. Bull. Am. Phys. Soc. 39, 1882.
MORKOVIN, M.V. 1990 On roughness–induced transition: facts, views, and speculations. In Instability and

Transition, pp. 281–295. Springer.
PIERREHUMBERT, R.T. 1986 Universal short-wave instability of two-dimensional eddies in an inviscid fluid.

Phys. Rev. Lett. 57 (17), 2157.
PRALITS, J.O., GIANNETTI, F. & BRANDT, L. 2013 Three-dimensional instability of the flow around a

rotating circular cylinder. J. Fluid Mech. 730, 5–18.
PUCKERT, D.K., WU, Y. & RIST, U. 2020 Homogenization of streaks in a laminar boundary layer. Exp. Fluids

61 (5), 1–15.
RAO, A., LEONTINI, J., THOMPSON, M.C. & HOURIGAN, K. 2013a Three-dimensionality in the wake of a

rotating cylinder in a uniform flow. J. Fluid Mech. 717, 1–29.
RAO, A., LEONTINI, J.S., THOMPSON, M.C. & HOURIGAN, K. 2013b Three-dimensionality in the wake of

a rapidly rotating cylinder in uniform flow. J. Fluid Mech. 730, 379–391.
RAO, A., RADI, A., LEONTINI, J.S., THOMPSON, M.C., SHERIDAN, J. & HOURIGAN, K. 2015 A review

of rotating cylinder wake transitions. J. Fluids Struct. 53, 2–14.
RESHOTKO, E. 2001 Transient growth: a factor in bypass transition. Phys. Fluids 13 (5), 1067–1075.
RICHARDS, E.J. 1950 A review of aerodynamic cleanness. Aeronaut. J. 54 (471), 137–186.
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