RAMIFICATION THEORY FOR VALUATIONS OF ARBITRARY RANK

MURRAY A. MARSHALL

Throughout, we consider a finite Galois extension L|K of non-archimedian valued fields which are maximally complete [2, Chapter 2]. Let v denote the valuation on L and let L^* denote the group of non-zero elements of L. We may identify the value group $v(L^*)$ of L with a subgroup of D, where D denotes the minimal divisible ordered group containing $v(K^*)$. We denote the residue field of L by \overline{L} , and will always assume that the field extension $\overline{L}|\overline{K}$ is separable. The characteristic of \overline{K} will invariably be denoted by p; much of what follows is trivial in case p = 0. Let G denote the Galois group of L|K and let \overline{G} denote the Galois group of $\overline{L}|\overline{K}$. The kernel of the natural homomorphism of G onto \overline{G} is the ramification group.

$$G_0 = \left\{ \sigma \in G | v \left(rac{\sigma u}{u} - 1
ight) > 0 ext{ for all } u \in \mathscr{U}
ight\},$$

where \mathscr{U} denotes the unit group of L. The fixed field R of G_0 is the maximal unramified extension of K in L [2, p. 68]; the extension L|R is totally ramified. The higher ramification groups $G_x, x \in D, x \ge 0$ are defined by

$$G_x = \left\{ \sigma \in G_0 | v \left(\frac{\sigma a}{a} - 1 \right) \geqslant x \text{ for all } a \in L^* \right\}.$$

By the uniqueness of the extension of v from K to L we have that $v(\sigma x) = v(x)$ for all $x \in L^*$, $\sigma \in G$. Using this, one may verify readily that the ramification groups G_x , $x \ge 0$ are invariant subgroups of G. The ramification groups form a decreasing chain with $G_x = 1$ for x sufficiently large.

From Lemma 1 below it follows that for each ramification group $G_z \neq 1$ there is a largest $x \in D$ such that $G_x = G_z$. Such an x will be called a jump of the extension L|K. If $x \in D$, $x \ge 0$, let $0 = x_0 \le x_1 \le \ldots \le x_k = x$ be a sequence of elements of D containing all jumps of L|K which lie in the interval [0, x]. The quantity

$$\phi(x) = \sum_{s=1}^{k} \# G_{x_s}(x_s - x_{s-1})$$

is independent of the choice of sequence and thus defines a function $\phi: D^+ \to D^+$ called the Herbrand Function of L|K. The Herbrand Function is strictly increasing and piecewise linear (in the obvious sense), and is thus bijective. It will be convenient to extend this function to $D^+ \cup \{\infty\}$ by defining $\phi(\infty) = \infty$.

Received February 14, 1973 and in revised form, August 14, 1973.

We may define a new indexing of the ramification groups (called the upper numbering) by defining

$$G^x = G_{\phi^{-1}(x)}$$
 for $x \in D^+$.

We call an element $y \in D^+$ an upper jump if $G^y \supseteq G^{y+\epsilon}$ for all $\epsilon > 0$, $\epsilon \in D$. (Thus the upper jumps are just the values $\phi(x)$ where x is a lower jump).

The principal results in the classical rank 1 discrete case are:

(a) (Herbrand) If *E* is a Galois subextension of L|K then the natural homomorphism of $G_{L|K}$ onto $G_{E|K}$ carries $G_{L|K}^x$ onto $G_{E|K}^x$ for all $x \in D^+$.

(b) (Hasse-Arf) If L|K is abelian then the upper jumps of L|K all lie in $v(K^*)$. In this paper we show that (a) is true in general if and only if the value group quotient $\overline{\Gamma} = v(L^*)/v(K^*)$ has cyclic *p*-component. We also show that (b) holds in this case. The proof techniques are simple modifications of those in **[1**, Chapter 11], and **[3]** respectively.

1. Preliminaries. We begin with some elementary results on jumps.

LEMMA 1. For $\sigma \in G_0$, the set of values $\{v(\sigma a/a - 1) | a \in L^*\}$ has a minimum; further, this minimum is not achieved for $a \in \mathcal{U}$ (except in the trivial case $\sigma = 1$).

Proof. Choose elements $1 = a_1, a_2, \ldots, a_n$ in L^* such that $v(a_1), \ldots, v(a_n)$ represent the distinct cosets of $\overline{\Gamma}$, each exactly once. Thus a_1, a_2, \ldots, a_n form a basis of L|R; each $a \in L^*$ can be written uniquely in the form $a = \sum_{i=1}^n c_i a_i$, where $c_i \in R$ and $v(a) = v(c_{i0}a_{i0}) < v(c_i a_i)$ for $i \neq i_0$. Also

$$\frac{\sigma a}{a} - 1 = \sum_{i=2}^{n} \frac{c_i a_i}{a} \left(\frac{\sigma a_i}{a_i} - 1 \right).$$

Thus $v(\sigma a/a - 1) \ge \min \{v(\sigma a_i/a_i - 1) | i = 2, 3, ..., n\}$. This inequality is strict when $a \in \mathcal{U}$, since then $i_0 = 1$.

In view of this result we see that for each $x \ge 0$, $G_x = \{\sigma \in G_0 | i(\sigma) \ge x\}$ where $i(\sigma)$ is defined by

(1)
$$i(\sigma) = \min \{v(\sigma a/a - 1) | a \in L^*\}.$$

Also the jumps of the extension L|K are just the values $i(\sigma), \sigma \in G_0, \sigma \neq 1$ (so they are actually in $v(L^*)$).

We will have cause to use the following refined form of Lemma 1.

LEMMA 2. If b_1, \ldots, b_s are elements of L^* such that $\overline{v(b_1)}, \ldots, \overline{v(b_s)}$ generate $\overline{\Gamma}$, then for each $\sigma \in G_0$,

$$i(\sigma) = \min \left\{ v \left(\frac{\sigma b_i}{b_i} - 1 \right) \mid i = 1, \ldots, s \right\}.$$

Proof. If $b \in L^*$ then

$$b = \prod_{i=1}^{s} b_{i}^{v_{i}} \cdot c \cdot u$$

where $c \in R$, $u \in \mathscr{U}$. Thus

$$\frac{\sigma b}{b} = \prod_{i=1}^{s} \left(\frac{\sigma b_{i}}{b_{i}} \right)^{v_{i}} \cdot \frac{\sigma u}{u} ,$$

so the result is clear from Lemma 1.

If *i* is a jump of L|K, let $j = \min \{i(\sigma)|i(\sigma) > i\}$. We examine the quotients $\overline{G}_i = G_i/G_j$ as in [2, Chapter 3]. Let $\overline{\mathscr{U}}_i$ denote the quotient group $\mathscr{U}_i/\mathscr{U}_{i^+}$, where

$$\mathscr{U}_i = \{1 + x \in \mathscr{U} | v(x) \ge i\}, \qquad \mathscr{U}_{i^+} = \{1 + x \in \mathscr{U} | v(x) > i\}.$$

If $a \in L^*$ and $\sigma \in G_i$, then $\sigma a/a \in \mathscr{U}_i$ and the class of $\sigma a/a$ in $\overline{\mathscr{U}}_i$ depends only on the class of $\mu = v(a)$ in $\overline{\Gamma}$ and the class of σ in \overline{G}_i . In this way we obtain a bilinear mapping $(\overline{\sigma}, \overline{\mu}) \to (\sigma a/a)$. \mathscr{U}_i of $\overline{G}_i \times \overline{\Gamma}$ into $\overline{\mathscr{U}}_i$. Since $v(\sigma a/a - 1) > i$ for all $a \in L^*$ implies $i(\sigma) \geq j$, we see that the derived homomorphism

 $\bar{G}_i \to \operatorname{Hom}\left(\bar{\Gamma}, \overline{\mathscr{U}}_i\right)$

is injective. Moreover, since

$$\overline{\mathscr{U}}_{i} \cong \begin{cases} \overline{L}^{*}, & \text{ if } i = 0, \\ \overline{L}, & \text{ if } i > 0 \end{cases}$$

the group \bar{G}_i is

(a) abelian of order prime to p if i = 0,

(b) an elementary p-group if i > 0. Consequently,

(c) G_0 is solvable.

(d) If T denotes the fixed field of G_j where $j = \min \{i(\sigma)|i(\sigma) > 0\}$, then T is the maximal tamely ramified extension of K in L [2, Chapter 3, § 2].

Using customary terminology, the extension L|T will be called wildly ramified.

2. The Herbrand relationship. Suppose E is a subextension of L|K. Denote by H the Galois group of L|E and by $H_x, x \in D^+$, the ramification groups of L|E. Then it is clear that

 $H_x = H \cap G_x$ for all $x \in D^+$.

We now assume that the extension E|K is also Galois, and study the more complicated relationship between the ramification groups G_x and $(G/H)_x$. To avoid a lot of essentially trivial reductions we shall assume throughout this section that L|K is totally ramified. The reader may verify that Theorems 1 and 2 are true as stated in the general case. For $\sigma \in G$, let $\bar{\sigma}$ denote its coset in G/H, and let $\bar{\imath}(\bar{\sigma})$ denote the function as defined by (1), but with respect to the extension E|K. That is, $\bar{\imath}(\bar{\sigma}) = \min \{\imath(\sigma a/a - 1)|a \in E^*\}$

LEMMA 3. For all $\sigma \in G$, $\tilde{\imath}(\tilde{\sigma}) \leq \sum_{\gamma \in H} i(\sigma \gamma)$.

2/1

910

Proof. Using the solvability of $G = G_0$ we may assume # H = l is prime. We also assume $\bar{\imath}(\bar{\sigma}) > i(\sigma\gamma)$ for all $\gamma \in H$, since otherwise the result is trivially true. Thus the quantity $v(\sigma\gamma b/b - 1)$ never achieves the minimum value $i(\sigma\gamma)$ for $b \in E^*$. Choose any $a \in L^*$ such that v(a) generates $v(L^*)$ modulo $v(E^*)$. In view of Lemma 2 plus what has just been said, we have

(2)
$$i(\sigma\gamma) = v(\sigma\gamma a/a - 1)$$
 for all $\gamma \in H$.

Let

$$f(x) = \prod_{\gamma \in H} (x - \gamma a) = b_0 + b_1 x + \ldots + b_{l-1} x^{l-1} + x^l$$

be the minimum polynomial of a over E. Since v(a) generates $v(L^*)$ modulo $v(E^*)$ and since f(a) = 0 we have

(3)
$$lv(a) = v(a^{l}) = v(b_{0}) < v(b_{i}a^{i}), \quad i = 1, 2, ..., l-1.$$

Since $f^{\sigma}(x) = \prod_{\gamma \in H} (x - \sigma \gamma a) = \sigma b_0 + \sigma b_1 x + \ldots + \sigma b_{l-1} x^{l-1} + x^l$, we have

$$\prod_{\gamma \in H} (a - \sigma \gamma a) = f^{\sigma}(a) = f^{\sigma}(a) - f(a) = \sum_{i=0}^{l-1} (\sigma b_i - b_i)a^i,$$

or

(4)
$$a^{i}\prod_{\gamma\in H}\left(1-\frac{\sigma\gamma a}{a}\right)=\sum_{i=0}^{l-1}\left(\frac{\sigma b_{i}}{b_{i}}-1\right)b_{i}a^{i}.$$

Also by (3)

(5)
$$\begin{aligned} v(\sigma b_0 - b_0) &\geq \overline{\imath} \ (\overline{\sigma}) + l \, v(a) \\ v((\sigma b_i - b_i)a^i) > \overline{\imath} \ (\overline{\sigma}) + l \, v(a), \, i = 1, 2, \dots, l-1. \end{aligned}$$

Combining (2), (4), and (5) yields

$$\sum_{\gamma \in H} i(\sigma \gamma) + lv(a) \geqslant \overline{i}(\overline{\sigma}) + l v(a),$$

so the lemma is proved.

LEMMA 4. If the p-component of $\overline{\Gamma}$ is cyclic, then

$$\sum_{\gamma \in H} i(\sigma \gamma) = ar{\imath}(ar{\sigma}), \ \ \sigma \in G$$

holds for all Galois subextensions E of L|K, and conversely.

Proof. First assume $\overline{\Gamma}$ has cyclic *p*-component. As in Lemma 3, we may assume # H = l is prime. Let *T* denote the maximal tame extension of *K* in *L*. Then $E \cap T$ is the maximal tame extension of *K* in $E.v(L^*)/v(T^*)$ is cyclic by assumption. If l = p, then $E \cap T = T$ so $v(L^*)/v(E \cap T^*)$ is cyclic. This is true in any case, since $l \neq p$ implies

$$v(L^*)/v(E \cap T^*) \cong v(L^*)/v(E^*) \times v(L^*)/v(T^*).$$

Let $a \in L^*$ be such that v(a) generates $v(L^*)$ modulo $v(E \cap T^*)$. If σ fixes $E \cap T$, then by Lemma 2, $i(\sigma\gamma) = v(\sigma\gamma a/a - 1)$ for all $\gamma \in H$. Reexamining the proof of Lemma 3 we see that $v(b_0) = lv(a)$ so $v(b_0)$ generates $v(E^*)$ modulo $v(E \cap T^*)$. Again applying Lemma 2, we have equality in (5) in the case i = 0. On the other hand, if $\bar{\sigma}$ does not fix $E \cap T$, then $\bar{\iota}(\bar{\sigma}) = 0 = i(\sigma\gamma)$ for all $\gamma \in H$. Thus the result is true in any case.

To prove the converse let T be the maximal tame extension of K in L, and let $p^n = [L:T]$. We prove a stronger result : namely we prove that if the formula holds for all extensions $L|E_i|K$, i = 1, 2, ..., n-1, where $K \subset T =$ $E_0 \subset E_1 \subset \ldots \subset E_n = L$ is some special sequence of Galois subfields such that $[E_i:T] = p^i$, then $v(L^*)/v(T^*)$ is cyclic. When n = 1, the assumption is vacuous, but the result is obvious. In general, we choose $E = E_1$. By assumption, the formula holds for $L|E_i|K$, i = 1, ..., n - 1, and hence certainly for $L|E_i|E, i = 2, \ldots, n-1$. Thus, by induction, $v(L^*)/v(E^*)$ is cyclic. Choose $a \in L^*$ such that v(a) generates $v(L^*)$ modulo $v(E^*)$, and choose any $\sigma \in G$ fixing T but not E (i.e. $0 < \overline{i}(\overline{\sigma}) < \infty$). For $\gamma \in H$, $v(\sigma \gamma x/x - 1)$ is never the minimal value $i(\sigma\gamma)$ when $x \in E^*$, for this would imply $\bar{\imath}(\bar{\sigma}) = i(\sigma\gamma)$, contradicting $\bar{\imath}(\bar{\sigma}) = \sum_{\gamma \in H} i(\sigma \gamma)$. Thus, by Lemma 2, $i(\sigma \gamma) = \imath(\sigma \gamma a/a - 1)$ for all $\gamma \in H$. Using the terminology of Lemma 3, we see that the condition $\bar{\imath}(\bar{\sigma}) =$ $\sum_{\gamma \in H} i(\sigma \gamma)$ forces $\bar{\imath}(\bar{\sigma}) = v(\sigma b_0/b_0 - 1)$. Clearly this implies that $v(b_0) = v(\sigma b_0/b_0 - 1)$. $v(N_{L|E}(a)) = p^{n-1}v(a)$ generates $v(E^*)$ modulo $v(T^*)$. In particular p^{n-1} $v(a) \notin v(T^*)$, so the order of v(a) in $v(L^*)/v(T^*)$ must be p^n .

For $\sigma \in G$, let

$$i_{\sigma} = \max \{ i(\sigma\gamma) \mid \gamma \in H \} = \max \{ x \mid \sigma H \cap G_x \neq \phi \}.$$

Let $\tilde{\phi}$ denote the Herbrand Function as previously defined, but with respect to the extension L|E.

LEMMA 5. $\sum_{\gamma \in H} i(\sigma \gamma) = \tilde{\phi}(i_{\sigma}).$

Proof. Let $0 = x_0 \leq x_1 \leq x_2 \leq \ldots \leq x_k = i_{\sigma}$ be any set of elements of D containing all the jumps of L|K (and hence of L|E) in the interval $[0, i_{\sigma}]$. Let δ be the Kronecker Symbol:

$$\delta \ (x,S) \ = \ \begin{cases} 0, \ ext{if} \ x
otin S. \ 1, \ ext{if} \ x
otin S. \end{cases}$$

Then

$$\sum_{\gamma \in H} i(\sigma \gamma) = \sum_{\gamma \in H} \sum_{v=1}^{k} \delta(\sigma \gamma, G_{xv}) (x_v - x_{v-1})$$
$$= \sum_{v=1}^{k} \sum_{\gamma \in H} \delta(\sigma \gamma, G_{xv}) (x_v - x_{v-1}) = \sum_{v=1}^{k} \# (\sigma H \cap G_{xv}) (x_v - x_{v-1}).$$

However, if $\sigma H \cap G_x \neq \phi$, say $\sigma \gamma_0 \in \sigma H \cap G_x$, then $\sigma \gamma \to \gamma_0^{-1} \gamma$ defines a

1 - 1 correspondence between the elements of $\sigma H \cap G_x$ and the elements of $G_x \cap H = H_x$; thus the result.

If E is any Galois subextension of L|K, let H denote the Galois group of L|E and let ϕ , $\tilde{\phi}$, $\bar{\phi}$ denote the Herbrand Functions for L|K, L|E, and E|K. With these notations we have the following result.

THEOREM 1. For all $x \in D^+$,

(i) $G_x H/H \supset (G/H)_{\tilde{\phi}(x)}$,

(ii) $\phi(x) \ge \overline{\phi}(\overline{\phi}(x)),$

(iii) $G^{x}H/H \supset (G/H)^{x}$.

Proof. (i) By Lemmas 3 and 5, if $\sigma \in G$, then $\bar{\imath}(\bar{\sigma}) \leq \tilde{\phi}(i_{\sigma})$. Hence $\bar{\sigma} \in (G/H)_{\tilde{\phi}(x)} \Leftrightarrow \bar{\imath}(\bar{\sigma}) \geq \tilde{\phi}(x) \Rightarrow \tilde{\phi}(i_{\sigma}) \geq \tilde{\phi}(x) \Leftrightarrow i_{\sigma} \geq x \Leftrightarrow \bar{\sigma} \in G_x H/H$.

(ii) Since the functions ϕ , $\bar{\phi} \circ \tilde{\phi}$ are piecewise linear on D^+ , and $\phi(0) = 0 = \bar{\phi}(\tilde{\phi}(0))$, it is enough to show that the left-hand derivatives satisfy $\phi_i(x) \ge (\bar{\phi} \circ \tilde{\phi})_i(x)$ for all $x \in D^+$:

$$\begin{aligned} (\bar{\phi} \circ \tilde{\phi})_{i}(x) &= \bar{\phi}_{i}(\tilde{\phi}(x)) \cdot \tilde{\phi}_{i}(x) = \#(G/H)_{\tilde{\phi}(x)} \cdot \#H_{x} \leq \#(G_{x}H/H) \cdot \\ & \#H_{x} = \#(G_{x}/G_{x} \cap H) \cdot \#(G_{x} \cap H) = \#G_{x} = \phi_{i}(x). \end{aligned}$$

(iii) Let $x = \phi(y)$. Then $x \ge \overline{\phi}(\overline{\phi}(y))$ by (ii); hence

$$G^{x}H/H = G_{y}H/H \supset (G/H)_{\tilde{\phi}(y)} \supset (G/H)_{\tilde{\phi}^{-1}(x)} = (G/H)^{x}.$$

THEOREM 2. For a given Galois subextension E of L|K, the following conditions are equivalent:

(i) $G_xH/H = (G/H)_{\tilde{\phi}(x)}$ holds for all $x \in D^+$,

(ii) $\phi = \bar{\phi} \circ \tilde{\phi}$,

(iii) $G^{x}H/H = (G/H)^{x}$ holds for all $x \in D^{+}$.

Further, these conditions hold for all Galois subextensions E of L|K if and only if $\overline{\Gamma}$ has cyclic p-component.

Proof. (i) \Leftrightarrow (ii). We have $G_x H/H \supset (G/H)_{\tilde{\phi}(x)}$ by Theorem 1. Thus $G_x H/H = (G/H)_{\tilde{\phi}(x)} \Leftrightarrow \#(G_x H/H) = \#(G/H)_{\tilde{\phi}(x)} \Leftrightarrow \phi_i'(x) = (\bar{\phi} \circ \tilde{\phi})_i'(x)$ as we see from the proof of Theorem 1.

(i), (ii) \Leftrightarrow (iii). The result is immediate on examination of the proof of Theorem 1, (iii).

Finally, if we examine the proof of Theorem 1(i), we see that $G_xH/H = (G/H)_{\tilde{\phi}(x)}$ for all $x \in D^+ \Leftrightarrow \bar{\imath}(\bar{\sigma}) = \tilde{\phi}(i_{\sigma})$ for all $\sigma \in G \Leftrightarrow \bar{\imath}(\bar{\sigma}) = \sum_{\gamma \in H} i(\sigma\gamma)$ for $\sigma \in G$. Hence the last assertion follows from Lemma 4.

3. The abelian case. The proof of the Hasse-Arf Theorem given below is a simple generalization of the proof given in [3] for the rank 1 discrete case.

THEOREM 3. Assume L|K is abelian and that the p-component of $\overline{\Gamma}$ is cyclic. Then the upper jumps of L|K all lie in $v(K^*)$.

MURRAY A. MARSHALL

Reduction of proof. Let x be an upper jump of L|K. By replacing L by a subfield if necessary, we may assume that x is the largest upper jump of L|K. Choose cyclic extensions L_1, \ldots, L_s of K in L such that $[L_i:K]$ is a prime power for each i and such that L is the compositum of these subfields. Let G(i) denote the Galois group of L_i over K. By Theorem 2, the natural surjective homomorphism $G \to G(i)$ carries G^{y} onto $G(i)^{y}$ for all $y \in D^+$. Hence the natural injection $G \to G(1) \times \ldots \times G(s)$ carries G^{y} into $G(1)^{y} \times \ldots \times G(s)^{y}$. In particular, $G^{x} \neq 1$ so there exists i_0 such that $G(i_0)^{x} \neq 1$. On the other hand, $G^{x+\epsilon} = 1$ for all $\epsilon > 0$, so $G(i_0)^{x+\epsilon} = 1$ for $\epsilon > 0$. Thus x is an upper jump of $L_{i_0}|K$. Now suppose $[L_{i_0}:K] = l^n$. If $l \neq p$, then $x = 0 \in v(K^*)$. Thus we have reduced the proof to the case where L|K is wildly ramified and cyclic.

Now assume L|K is wildly ramified cyclic and let $p^n = [L:K]$, $G = \langle \sigma \rangle$. If $\tau \in G$, $m \in Z$, then $i(\tau) \leq i(\tau^m)$ with equality if and only if $p \nmid m$. Thus the jumps of L|K are precisely the values $i_0 < i_i < \ldots < i_{n-1}$ where $i_k = i(\sigma^{pk})$. The upper jumps are the values

$$\phi(i_k) = p^n i_0 + p^{n-1}(i_1 - i_0) + \ldots + p^{n-k}(i_k - i_{k-1}),$$

$$k = 0, 1, 2, \ldots, n-1.$$

Thus, the conclusion of the Hasse-Arf Theorem in this case is equivalent to the statement

(6)
$$p^{n-k}(i_k - i_{k-1}) \in v(K^*), \quad k = 1, 2, ..., n-1.$$

We can rephrase this in yet another way: If $\mu \in v(L^*)$, let $\bar{\mu}$ denote the coset of μ in $\bar{\Gamma}$, and define $o(\mu) = s$ where p^s is the index of the cyclic subgroup $\langle \bar{\mu} \rangle$ in $\bar{\Gamma}$. Since $\bar{\Gamma}$ is cyclic, this also measures the *p*-divisibility of $\bar{\mu}$. Then (6) is equivalent to the statement

(7)
$$o(i_k - i_{k-1}) \ge k, \quad k = 1, 2, \ldots, n-1.$$

If $\mu \in v(L^*)$, we define $\sigma^{\mu} = \sigma^{p^{o(\mu)}}$. An element $x \in L^*$ will be called *Special* (for σ) if

$$v(\sigma x/x - 1) = i(\sigma^{v(x)}).$$

LEMMA 6. For each $\mu \in v(L^*)$, there is a special element $x \in L^*$ satisfying $v(x) = \mu$.

Proof. If $o(\mu) = n$, then $\mu \in v(K^*)$. In this case any $x \in K^*$ for which $v(x) = \mu$ will serve. Now suppose $o(\mu) = s < n$. Then $\mu = p^s \alpha + \beta$ where $\alpha \in v(L^*), \beta \in v(K^*)$. Moreover $o(\alpha) = 0$, so $\bar{\alpha}$ generates $\bar{\Gamma}$. Choose any $a \in L^*$ such that $v(a) = \alpha$, and any $b \in K^*$ such that $v(b) = \beta$. If we define

$$x = b \prod_{i=0}^{p^s-1} \sigma^i a,$$

then clearly $v(x) = \mu$. Moreover $\sigma x/x = \sigma^{ps}a/a$, so the result is clear by Lemma 2.

LEMMA 7. Every element $x \in L^*$ can be written as a finite sum of special elements whose values are distinct modulo $v(K^*)$.

Proof. Using Lemma 6, we can form a basis of L|K by choosing special elements of L^* whose value classes in $\overline{\Gamma}$ are distinct. Since the product of a special element with an element of K^* is again special, the result is obvious.

LEMMA 8. If 0 < j < n-1 implies $o(i_j - i_{j-1}) \ge j$, then the values $\mu + i(\sigma^{\mu})$, $o(\mu) < n-1$ are all distinct. They are also distinct from i_{n-2} .

Proof. Suppose $\mu + i(\sigma^{\mu}) = \lambda + i(\sigma^{\lambda})$. If $o(\mu) = o(\lambda)$, then $\sigma^{\mu} = \sigma^{\lambda}$ and therefore $\mu = \lambda$. Otherwise we see that $o(\mu - \lambda) = \min \{o(\mu), o(\lambda)\}$. But from the assumption, one also has $o(i(\sigma^{\lambda}) - i(\sigma^{\mu})) > \min \{o(\mu), o(\lambda)\}$, so that $\mu - \lambda \neq i(\sigma^{\lambda}) - i(\sigma^{\mu})$. As long as $o(\mu) < n - 1$ we have $o(i_{n-2} - i(\sigma^{\mu})) > o(\mu)$ and therefore $i_{n-2} \neq \mu + i(\sigma^{\mu})$.

Proof of Theorem 3. If L|K is the extension of least degree for which the assertion fails, then by the proof reduction we may assume that L|K is wildly ramified cyclic, and that the failure occurs at the largest jump only. Thus we have $o(i_k - i_{k-1}) \ge k$, $k = 1, 2, \ldots, n-2$, but $o(i_{n-1} - i_{n-2}) < n-1$. Further, if E denotes the subfield of L fixed by σ^p , then by the minimality of n, the assertion is true for L|E, so $o(i_{n-1} - i_{n-2}) \ge n-2$. Thus $o(i_{n-1} - i_{n-2}) = n-2$. Put $s = i_{n-2} - i_{n-1}$ and apply Lemma 6 to choose $z \in L^*$ special for σ^p such that v(z) = s. Thus $v(\sigma^p - 1)z) = s + i(\sigma^{ps}) = s + i_{n-1} = i_{n-2}$. Let $x = (\sigma^{p-1} + \sigma^{p-2} + \ldots + 1)z$. The operator $A = \sigma^{p-1} + \sigma^{p-2} + \ldots + 1$ is congruent to $(\sigma - 1)^{p-1}$ modulo p. Thus:

(8)
$$v(x) = v(A(z)) > v(z) = s$$
,

(9)
$$v((\sigma - 1)x) = v((\sigma^p - 1)z) = i_{n-2}$$
.

Expand x as in Lemma 7, $x = \sum_{\mu} x_{\mu}$, $v(x_{\mu}) = \mu$. Then set $y = \sum_{\mu} y_{\mu}$ where $y = (\sigma - 1)x$, $y_{\mu} = (\sigma - 1)x_{\mu}$. Break this expansion into two parts:

(10)
$$y = \sum_{0(\mu) < n-1} y_{\mu} + \sum_{0(\mu) \ge n-1} y_{\mu}.$$

By Lemma 8, the $v(y_{\mu})$ occurring in the first sum are all distinct and $v(y) = i_{n-2}$ is also distinct from these. As for the second sum, notice that if μ occurs in it, one has $v(y_{\mu}) \ge v(x_{\mu}) + i_{n-1}$ since $o(\mu) \ge n - 1$. Since the values $v(x_{\mu}) = \mu$ lie in distinct cosets by choice, $v(x_{\mu}) \ge v(x)$. Finally, by (8), v(x) > s. Hence $v(y_{\mu}) > s + i_{n-1} = i_{n-2}$ for terms in the second sum. Hence, if we write (10) in the form

$$y - \sum_{0(\mu) \ge n-1} y_{\mu} = \sum_{0(\mu) < n-1} y_{\mu}$$

and compare values, we obtain a contradiction.

MURRAY A. MARSHALL

References

- 1. E. Artin and J. Tate, Class field theory (Benjamin, New York, 1967).
- 2. O. F. G. Schilling, *The theory of valuations*, Math. Surveys No. 4 (Amer. Math. Soc., Providence, 1950).

3. S. Sen, On automorphisms of local fields, Ann. of Math. 90 (1969), 33-46.

University of Saskatchewan, Saskatoon, Saskatchewan