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Abstract

The concept of complete mixability is relevant to some problems of optimal couplings
with important applications in quantitative risk management. In this paper we prove new
properties of the set of completely mixable distributions, including a completeness and
a decomposition theorem. We also show that distributions with a concave density and
radially symmetric distributions are completely mixable.
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1. Introduction

A distribution function F is called n-completely mixable (n-CM) if there exist n random
variables X1, . . . , Xn, identically distributed as F, having constant sum, that is, satisfying

P(X1 + · · · + Xn = nk) = 1.

If F has finite first moment µ then k = µ. The concept of complete mixability is related to
some optimization problems in the theory of optimal couplings.

(i) Assume that F has finite first moment µ. For a (strictly) convex function f : R → R,
we have

inf{E[f (X1 + · · · + Xn)]; Xi ∼ F, 1 ≤ i ≤ n} ≥ f (nµ), (1.1)

and the equality holds if (and only if) F is n-CM.

(ii) Assume that F has finite first moment, and let F−1 be the generalized inverse of F .
Define the function �(a) = E[X | X ≥ F−1(a)] for a ∈ [0, 1] and X ∼ F . For any
s ∈ R, we have

sup{P(X1 + · · · + Xn ≥ s); Xi ∼ F, 1 ≤ i ≤ n} ≤ 1 − �−1
(

s

n

)
, (1.2)

and the sup is attained if and only if F is n-CM on the interval (F−1(�−1(s/n)), F−1(1)).
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For more details on the solutions of these problems and a brief history of the concept of the
complete mixability, we refer the reader to the recent papers Wang and Wang (2011) and Wang
et al. (2011).

Problems (1.1) and (1.2) have relevant applications in quantitative risk management, where
they are needed to assess the aggregate risk of a portfolio of losses for regulatory issues. For
more details on the motivation of these problems within quantitative risk management, we refer
the reader to Embrechts and Puccetti (2010). Other important applications are related to the
theory of dependence measures; see Nelson and Úbeda-Flores (2012).

In view of these applications, it would be of interest to characterize the class of completely
mixable distributions. Only partial characterizations, which we summarize in Section 2, are
known in the literature. In our paper we give a contribution in the direction of a complete
characterization of completely mixable distributions. In Section 3 we give a completeness and
a decomposition theorem for completely mixable distributions. In Sections 4 and 5 we prove
complete mixability for two new classes of distributions, namely continuous distributions with
a concave density and radially symmetric distributions.

2. Some preliminaries on complete mixability

In this section we give a summary of the existing results on completely mixable distributions
which we will use in what follows. Throughout the paper, we identify probability measures
with the corresponding distribution functions.

Definition 2.1. A distribution function F on R is called n-completely mixable (n-CM) if there
exist n random variables X1, . . . , Xn identically distributed as F such that

P(X1 + · · · + Xn = nk) = 1 (2.1)

for some k ∈ R. Any such k is called a center of F and any vector (X1, . . . , Xn) satisfying (2.1)
with Xi ∼ F, 1 ≤ i ≤ n, is called an n-complete mix.

If F is n-CM and has finite first moment µ, then its center is unique and equal to µ. We
denote by Mn(µ) the set of all n-CM distributions with center µ, and by Mn = ⋃

µ∈R
Mn(µ)

the set of all n-CM distributions on R. As proved in Wang and Wang (2011), the set Mn(µ)

is convex, while the set Mn is not. Some straightforward examples of completely mixable
distributions are given in Wang and Wang (2011).

Proposition 2.1. (Wang and Wang (2011).) The following statements hold.

(a) F is 1-CM if and only if F is the distribution of a constant.

(b) F is 2-CM if and only if F is symmetric, i.e. X ∼ F and a − X ∼ F for some constant
a ∈ R.

(c) Any linear transformation of an n-CM distribution is n-CM.

(d) The binomial distribution B(n, p/q), p, q ∈ N, is q-CM.

(e) The uniform distribution on the interval (a, b) is n-CM for any n ≥ 2 and a < b.

(f) The Gaussian and the Cauchy distributions are n-CM for n ≥ 2.

Some other families of completely mixable distribution are described in the following
theorems.
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Theorem 2.1. (Rüschendorf and Uckelmann (2002).) Any continuous distribution function
having a symmetric and unimodal density is n-CM for any n ≥ 2.

Theorem 2.2. (Wang and Wang (2011).) Suppose that F is a distribution function on the real
interval [a, b] having mean µ, a = sup{t : F(t) = 0}, and b = inf{t : F(t) = 1}. A necessary
condition for F to be n-CM is that

a + b − a

n
≤ µ ≤ b − b − a

n
. (2.2)

If F is also continuous with a monotone density on [a, b], condition (2.2) is also sufficient.

For example, according to Theorem 2.2, the Beta(α, β) distribution with parameters α, β > 0
satisfying (α − 1)(β − 1) ≤ 0 and 1/n ≤ α/(α + β) ≤ (n − 1)/n is n-CM.

3. Completeness and decomposition theorems

In this section we show that any n-CM distribution can be obtained as the limit of a convex
combination of discrete n-CM distributions. First, we show that the sets Mn(µ) and Mn are
complete under weak convergence, that is, any n-CM distributions can be seen as the limit of
n-CM discrete distributions.

Theorem 3.1. The following statements hold for weak convergence.

(a) The limit of a sequence of n-CM distribution functions (with center µ) is n-CM (with
center µ).

(b) Any n-CM distribution function with center µ is the limit of a sequence of discrete n-CM
distribution functions with center µ.

(c) A distribution function is n-CM (with center µ) if and only if it is the limit of a sequence
of discrete n-CM distribution functions (with center µ).

Proof. (a) Denote by Fk, k ∈ N, a sequence of n-CM distributions having limit F . Since
Fk ∈ Mn for any k ∈ N, it is possible to find Xk

1, . . . , X
k
n such that Xk

i ∼ Fk, 1 ≤ i ≤ n, and

P(Xk
1 + · · · + Xk

n = ck) = 1 (3.1)

for some ck ∈ R. As Fk w−→ F , there also exist n random variables X1, . . . , Xn, identically
distributed as F, for which Xk

i

w−→ Xi, 1 ≤ i ≤ n, and, therefore, such that

(Xk
1 + · · · + Xk

n)
w−→ (X1 + · · · + Xn). (3.2)

Combining (3.1) and (3.2), we find that X1 + · · · + Xn = c = lim ck holds almost surely.
Since Xi ∼ F, 1 ≤ i ≤ n, this implies that F is n-CM. If we have ck = nµ for all k ∈ N then
c = nµ.

(b) Let X = (X1, . . . , Xn) be an n-complete mix on R
n with Xi ∼ F, 1 ≤ i ≤ n, and

X1 + · · · + Xn = nµ almost surely.

As X is supported on the set Sn(µ) = {x ∈ R
n : ∑n

i=1 xi = nµ} ⊂ R
n, we can find a sequence

Fk, k ∈ N, of discrete distributions on Sn(µ) converging weakly to the distribution of X. The
theorem follows by noting that Fk

1 , the first marginal of Fk , is n-CM since Fk is supported on
Sn(µ) and the sequence Fk

1 , k ∈ N, converges weakly to F .
(c) This is a corollary of points (a) and (b).
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Now, we prove a decomposition theorem for n-CM distributions. In the following, we call
an n-discrete uniform distribution a uniform distribution on n points, that is, giving mass 1/n

at each of the n points in its support

Lemma 3.1. An n-discrete uniform distribution is n-CM.

Proof. Let F be an n-discrete uniform distribution on the points y1, . . . , yn. Let X =
(X1, . . . , Xn) be a random vector uniformly distributed on the n! vectors

(yπ(1), . . . , yπ(n)), π ∈ Pn,

where Pn is the set of all permutations of {1, . . . , n}. In the support of X, there are exactly
(n − 1)! vectors having the value yj as the ith component. Therefore, we have

P(Xi = yj ) = (n − 1)!
n! = 1

n
, 1 ≤ i, j ≤ n.

As a consequence, X has marginal distributions identically distributed as F . Since
∑n

i=1 yπ(i)

is constant on π , X is an n-complete mix and F is n-CM.

Let MS
n (µ) be the set of all n-discrete uniform distributions with mean µ, and let L(MS

n (µ))

be the set of all countable convex combinations of elements in MS
n (µ), that is,

L(MS
n (µ)) =

{ ∞∑
k=1

akF
k; Fk ∈ MS

n (µ), ak ≥ 0,

∞∑
k=1

ak = 1

}
.

We show that any discrete n-CM distribution can be obtained as the countable convex combi-
nation of n-discrete uniform distributions.

Theorem 3.2. The following statements hold.

(a) The countable convex combination of n-CM distribution functions with center µ is n-CM
with center µ.

(b) If F is discrete then F ∈ Mn(µ) if and only if F ∈ L(MS
n (µ)).

(c) If F ∈ L(MS
n (µ)) with F = ∑

k∈N
akF

k , the joint distribution G of an n-complete mix
with marginals F is given by

G(x1, . . . , xn) =
∑
k∈N

ak

n!
n∏

i=1

[nFk(x[i]) − i + 1]+,

where x[i] is the ith order statistic of {x1, . . . , xn}.
Proof. (a) The statement for finite convex combinations follows by induction from Proposi-

tion 2.1(3) of Wang and Wang (2011). Now let ak, k ∈ N, be a sequence of nonnegative values
with

∑+∞
k=1 ak = 1, and let Fk ∈ Mn(µ), k ∈ N, be a sequence of n-CM distributions having

center µ. Without loss of generality, we can assume that a1 > 0 and define the new sequence

Gk =
∑k

i=1 aiF
i

∑k
i=1 ai

, k ∈ N.
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Any Gk is the finite convex sum of n-CM distributions; thus, it is n-CM. Since Gk w−→ G =∑+∞
k=1 akF

k, G is n-CM by Theorem 3.1(a).
(b) The inclusion L(MS

n (µ)) ⊂ Mn(µ) follows from (a). Then it is sufficient to show that
Mn(µ) ⊂ L(MS

n (µ)). Let X = (X1, . . . , Xn) be a complete mix with center µ and discrete
marginals identically distributed as F . Denoting by {xj , j ∈ A ⊂ N} the countable support of
X, we have

F(s) = 1

n

n∑
i=1

P(Xi ≤ s)

= 1

n

n∑
i=1

∑
j∈A

P(Xi ≤ s | X = xj ) P(X = xj )

=
∑
j∈A

P(X = xj )

(
1

n

n∑
i=1

P(Xi ≤ s | X = xj )

)

=
∑
j∈A

aj

(
1

n

n∑
i=1

1{xj
i ≤s}

)
,

where x
j
i denotes the ith component of the vector xj and aj = P(X = xj ), j ∈ A. Note that

the aj s are nonnegative,
∑

j∈A aj = 1, and, for any j ∈ A, the function
∑n

i=1 1{xj
i ≤s} is the

distribution function of a random variable uniformly distributed on {xj
1 , . . . , x

j
n}. With X being

an n-complete mix, we have
∑n

i=1 x
j
i = nµ when aj > 0. As a result, F can be written as a

countable convex sum of distributions in MS
n (µ), that is, F ∈ L(MS

n (µ)).
(c) First, note that G has marginals identically distributed as F since

lim
xi→+∞, i 	=j

R(x1, . . . , xn) =
∑
k∈N

akF
k(xj ) = F(xj ), 1 ≤ j ≤ n.

In order to show that G is the distribution of an n-complete mix, we prove that

Gk(x1, . . . , xn) = 1

n!
n∏

i=1

[nFk(x[i]) − i + 1]+

is the distribution of an n-complete mix with center µ for any k ∈ N.
Since Fk ∈ MS

n (µ), there exist yk
1 ≤ · · · ≤ yk

n such that
∑n

i=1 yk
i = nµ and Fk(yk

i ) =
(1/n)

∑n
j=1 1{yk

j ≤yk
i }. Noting that

1

n!
n∏

i=1

[nFk(x[i]) − i + 1]+ = 1

n!
∑

π∈Pn

1{yk
π(i)

≤xi , 1≤i≤n},

we deduce that, for any k ∈ N, Gk is uniformly distributed on the n! vectors

(yk
π(1), . . . , y

k
π(n)), π ∈ Pn, k ∈ N.

Thus, Gk is the distribution of an n-complete mix with center (1/n)
∑n

i=1 yk
i = µ, from which

it also follows that G = ∑
k∈N

akG
k is the distribution of an n-complete mix with center µ.
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Remark 3.1. There are some points to remark about Theorem 3.2.

(a) Similarly to as in the proof of Theorem 3.2(b), we can show that an arbitrary n-CM
distribution with center µ can be written as an integral of n-discrete uniform distributions
with center µ.

(b) Using the notation introduced in the proof of Theorem 3.2(c), the distribution G can be
seen as the distribution of the random variable

∑
k∈N

1{Z=k} Gk , where Z is a discrete
random variable giving mass ak to k ∈ N and independent from the Gks. Note, however,
that the distribution of an n-complete mix for a discrete F may not be unique.

(c) A number of the n points of the support of an n-discrete distribution can be chosen to
be equal. The set of n-discrete uniform distributions therefore includes all distributions
giving masses (k/n), k ∈ N, to at most n different points.

(d) The convex combination of n-discrete distributions with different centers may fail to be
n-CM. For example, the Bernoulli distribution F(s) = (1{0≤s} + 1{1≤s})/2 is the convex
sum of two 1-CM distributions but it is not 1-CM. Therefore, the assumption of a common
center cannot be dropped in Theorem 3.2(a)–(c).

As a corollary of Theorem 3.1(c) and Theorem 3.2(b), we present the main result of this
section.

Corollary 3.1. A distribution is n-CM with center µ if and only if it is the limit of a sequence
of countable convex combinations of n-discrete uniform distributions with center µ.

4. Distributions with a concave density

In this section we show that any continuous distribution with a concave density is completely
mixable. Similarly to the method used in the proof of Theorem 2.4 of Wang and Wang (2011),
we will first prove complete mixability of a particular class of discrete distributions with concave
mass function.

Theorem 4.1. Suppose that F is a discrete distribution on the set

SN,M = {−N, −N + 1, . . . ,−1, 0, 1, . . . , M − 1, M}, N, M ∈ N0,

having mean µ = 0 and mass function f : SN,M → [0, 1] satisfying f (−N), f (M) > 0 and

f (i − 1) + f (i + 1) ≤ 2f (i), −N + 1 ≤ i ≤ M − 1. (4.1)

Then, F is n-CM for any n ≥ 3.

In order to prove Theorem 4.1, we need the following lemma.

Lemma 4.1. Under the assumptions of Theorem 4.1, we have

M ≤ 2N and N ≤ 2M.

Proof. We need to only prove that M ≤ 2N , as N ≤ 2M follows by symmetry. The
condition µ = 0 implies that M = 0 if and only if N = 0; thus, we can assume that both M

and N are positive. It is easy to see that (4.1) is equivalent to

A(v) ≥ (w − v)A(u) + (v − u)A(w)

w − u
(4.2)
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for all u, v, w ∈ SN,M such that u ≤ v ≤ w and u < w. For instance, the two inequalities

f (v) ≥ f (v − 1) + f (v + 1)

2
and f (v − 1) ≥ f (v − 2) + f (v)

2

imply that

f (v) ≥ f (v − 2) + 2f (v + 1)

3
.

As particular cases of (4.2), we obtain

f (i) ≥ (M − i)f (0) + if (M)

M
>

M − i

M
f (0), 0 ≤ i ≤ M, (4.3a)

f (0) ≥ Mf (−j) + jf (M)

M + j
>

M

M + j
f (−j), 0 ≤ j ≤ N. (4.3b)

Since µ = ∑
i∈SN,M

if (i) = 0, (4.3) implies that

f (0)M(M − 1)(M + 1)

6M
= f (0)

M

M∑
i=1

i(M − i)

<

M∑
i=1

if (i)

=
N∑

j=0

jf (−j)

<
f (0)

M

N∑
j=1

j (M + j)

= f (0)N(N + 1)(3M + 2N + 1)

6M
,

from which we have

M(M + 1)(M − 1) < N(N + 1)(3M + 2N + 1).

In the above equation, the right-hand side is increasing in N and equality holds when N =
(M + 1)/2. Therefore, we have N > (M − 1)/2, namely, M ≤ 2N.

Proof of Theorem 4.1. We will prove the theorem by induction over M + N , the cardinality
of the set SN,M . Note that, if M = N = 0, F is the unit mass at 0 and is thus completely
mixable for any n. Moreover, the case M + N = 1 is not allowed by the zero-mean condition.
Therefore, the first step of the induction will be M+N = 2. In this case the zero-mean condition
combined with (4.1) forces F to be supported on {−1, 0, 1} with masses f (−1) = f (1) = a

and f (0) = 1 − 2a with a < 0 ≤ 1
3 . We can write F as

F = (3a)G + (1 − 3a)H, (4.4)

where G is the uniform distribution on {−1, 0, 1} and H is the unit mass at 0. Being a
unit mass, H is n-CM for any n ∈ N, while G satisfies the assumptions of Lemma 2.8 of

https://doi.org/10.1239/jap/1339878796 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1339878796


Advances in complete mixability 437

Wang and Wang (2011) with d = n − 1 and is thus n-CM for any n ≥ 2. Equation (4.4) states
that F is the convex sum of two n-CM distributions with center µ = 0. By Theorem 3.2(a), F

is n-CM for any n ≥ 2.
We now assume that the theorem holds for any distribution H satisfying the assumption of

the theorem with N + M ≤ K − 1 points in SN,M and prove that it holds for any distribution
F with K points in SN,M , K ≥ 3. As illustrated for N + M = 2, the idea of the proof is to
decompose F as the convex sum of such an H and another n-CM distribution G.

Let F be a distribution satisfying the assumption of the theorem with N +M = K, K ≥ 3.
Without loss of generality, in what follows we assume that M ≥ N (the theorem holds
symmetrically for M ≤ N ). We denote by G the discrete distribution having mass function
g : SN,M → [0, 1] given by

g(−N) = M − N + 1

M + N + 1
, g(−N + 1) = · · · = g(M) = 2N

(M + N + 1)(M + N)
.

Elementary calculations show that the distribution G has first moment µ = 0 and, since M ≥ N ,
that g is decreasing. From Lemma 4.1, we have M ≤ 2N ≤ (n − 1)N for any n ≥ 3 and,
so, the distribution G satisfies the assumption of Lemma 2.8 of Wang and Wang (2011) with
d = n − 1. As a consequence, G is n-CM. Now, we define the function f̂ : SN,M → R as

f̂ = f − k1g, (4.5)

where

k1 = min

{
f (−N)

g(−N)
,
f (M)

g(M)

}
> 0.

Note that we have

f̂ (−N) = f (−N) − k1g(−N) ≥ f (−N) − f (−N)

g(−N)
g(−N) = 0, (4.6a)

f̂ (M) = f (M) − k1g(M) ≥ f (M) − f (M)

g(M)
g(M) = 0. (4.6b)

Since g is convex on SN,M , the function f̂ is the sum of two concave densities and, therefore,
is concave. The concavity of f̂ , combined with (4.6), implies that f̂ is also nonnegative on
SN,M . At this point, it is possible to define the discrete distribution H as the distribution having
concave mass function

h = f̂

k2
, (4.7)

where
k2 =

∑
i∈SN,M

f̂ (i).

Note that the distribution H has mean µ = 0 as

M∑
i=−N

ih(i) = 1

k2

( M∑
i=−N

if (i) − k1

M∑
i=−N

ig(i)

)
= 0.

Moreover, at least one of the values f̂ (−N) and f̂ (M) is equal to 0. In conclusion, H is a
distribution function on a subset of SN,M containing at most K − 1 points, having mean µ = 0
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and concave mass function h. By the induction assumption, H is n-CM. Combining (4.5)
and (4.7), we obtain

F = k1G + k2H with k1 + k2 = 1.

Thus, F is the convex combination of two n-CM distributions and, so, F is n-CM.

Theorem 4.2. Any continuous distribution on a bounded interval (a, b) having a concave
density is n-CM for any n ≥ 3.

Proof. The proof is analogous to the part of the proof of Theorem 2.4 of Wang and Wang
(2011) following Lemma 2.8. For any F with a concave density, we find a sequence of discrete
concave distributions that goes to F . Note that a distribution with concave density on (0, 1) is
n-CM for all n ≥ 3; hence, the mean condition

1

n
≤ µ ≤ 1 − 1

n

is automatically satisfied for n ≥ 3.

According to Theorem 4.2, The Beta(α, β) distribution with parameters 1 ≤ α, β ≤ 2 is
n-CM for n ≥ 3. Any triangular distribution has a concave density and, is hence n-CM for
n ≥ 3.

5. Radially symmetric distributions

In this section we show that any n-radially symmetric distribution is completely mixable.
The following definition of an n-radially symmetric distribution is an extension of the definition
introduced in Knott and Smith (2006).

Definition 5.1. Suppose thatU is a random variable uniformly distributed on (0, 1), and letA =
(A1, . . . , An) and B = (B1, . . . , Bn) be two random vectors on R

n independently distributed
from U . A random variable X and its distribution are called n-radially symmetric if

X = a +
n∑

k=1

(Ak cos(2πkU) + Bk sin(2πkU)) (5.1)

for some constant a ∈ R.

In Definition 5.1, the random vectors A and B can be chosen to have an arbitrary distribution
on R

n.

Theorem 5.1. Any n-radially symmetric distribution is m-CM for any m ≥ n + 1.

Proof. Let F be the n-radially symmetric distribution of a random variable X of the form
(5.1) for some U uniformly distributed on (0, 1) and A and B distributed independently from U .
Fix an integer m ≥ n + 1, and let the m random variables X1, . . . , Xm be defined as

Xi = a +
n∑

k=1

(
Ak cos

(
2πk

(
V + i

m

))
+ Bk sin

(
2πk

(
V + i

m

)))
, 1 ≤ i ≤ m,

where V is a random variable uniformly distributed on (0, 1) and independent from A and B.
Note that

cos

(
2πk

(
V + i

m

))
∼ cos(2πkU)
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and

sin

(
2πk

(
V + i

m

))
∼ sin(2πkU)

for 1 ≤ i ≤ m and 1 ≤ k ≤ n. Therefore, the Xis are identically distributed as F . To complete
the proof, we show that their sum is, almost surely, the constant ma.

For 1 ≤ i ≤ m, let ξi = ei2πki/m, where i is the imaginary unit. We denote by dk = gcd(k, m)

the greatest common divisor of k and m. Since m ≥ n + 1, we have k ≤ n ≤ m − 1 and, thus,
dk < m for 1 ≤ k ≤ n. When dk = 1, the m values ξ1, . . . , ξm are the roots of the equation
ξm = 1 and, therefore,

∑m
i=1 ξi = 0. If, instead, 1 < dk < m, then the m/dk values

ξ1, . . . , ξm/dk
are the roots of the equation ξm/dk = 1 and, again, we have

m∑
i=1

ξi = dk

m/dk∑
i=1

ξi = 0.

From this, it easily follows that

m∑
i=1

(
cos

(
2πk

(
V + i

m

))
+ i sin

(
2πk

(
V + i

m

)))
=

m∑
i=1

ei2πk(V +i/m)

= ei2πkV
m∑

i=1

ξi

= 0.

The above equality implies that

k∑
i=1

cos

(
2πk

(
V + i

m

))
=

k∑
i=1

sin

(
2πk

(
V + i

m

))
= 0,

and, therefore, that

m∑
i=1

Xi = ma +
m∑

i=1

n∑
k=1

(
Ak cos

(
2πk

(
V + i

m

))
+ Bk sin

(
2πk

(
V + i

m

)))

= ma +
n∑

k=1

(
Ak

m∑
i=1

cos

(
2πk

(
V + i

m

))
+ Bk

m∑
i=1

sin

(
2πk

(
V + i

m

)))

= ma.

An interesting example of a radially symmetric distribution is given by the continuous random
variable X = cos(2πU), where U is uniformly distributed on (0, 1). By Theorem 5.1, the
distribution of X is n-CM for n ≥ 2. As illustrated in Figure 1, the density of X is a convex
function on the interval [−1, 1]. Therefore, Theorem 5.1 indicates that there exist continuous
n-CM distributions with a large density at both endpoints of their support. This result is
new if compared with Theorem 2.1 and Theorem 2.2, where complete mixability is stated for
general classes of monotone or unimodal symmetric densities. As the set of n-CM distributions
with a given center is convex, Theorem 5.1 is no doubt useful for constructing new classes of
completely mixable distributions.
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−1 0 1

Figure 1: The density of the random variable X = cos(2πU).

6. Final remarks and open problems

In this paper we have stated three main results concerning complete mixability. First, a
distribution function is n-completely mixable (n-CM) if and only if it is the limit of a sequence
of countable convex combinations of n-discrete uniform distributions with the same center;
see Corollary 3.1. Then, in Theorem 4.2, we stated that a continuous distribution function
with a concave density is n-CM. Finally, in Theorem 5.1, we showed that radially symmetric
distributions are n-CM.

In view of the relevant applications to quantitative risk management illustrated in Section 1,
we believe that the above results would be useful in proving, for instance, the complete
mixability of unimodal asymmetric distributions. As all the conditions implying the n-complete
mixability of distributions becomes less strict when the dimension n increases, we also conjec-
ture that any distribution F on a finite interval is n-CM for large enough n. Finally, we remark
that the uniqueness of the center of n-CM distributions with infinite mean is still unproven.
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