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REPRESENTATIONS AND INTERPOLATIONS OF
HARMONIC BERGMAN FUNCTIONS ON
HALF-SPACES

BOO RIM CHOE! anp HEUNGSU YTI?

Abstract. On the setting of the half-space of the euclidean n-space, we prove
representation theorems and interpolation theorems for harmonic Bergman
functions in a constructive way. We also consider the harmonic (little) Bloch
spaces as limiting spaces. Our results show that well-known phenomena for
holomorphic cases continue to hold. Our proofs of representation theorems also
yield a uniqueness theorem for harmonic Bergman functions. As an application
of interpolation theorems, we give a distance estimate to the harmonic little
Bloch space. In the course of the proofs, pseudohyperbolic balls are used as
substitutes for Bergman metric balls in the holomorphic case.

§1. Introduction

Let H = H, (n > 2) denote the upper half-space R"™! x R, where R
denotes the set of all positive real numbers. For 1 < p < oo, we will write
bP for the harmonic Bergman space consisting of all harmonic functions u

on H such that
1/p
fully={ [ P v} <o
H

where V denotes the volume measure on H. The space bP turns out to be
a closed subspace of LP, the Lebesgue space on H, and thus d* is a Ba-
nach space. In particular, b% is a Hilbert space. Hence, there is a unique
Hilbert space orthogonal projection R: L? — b?, which is called the har-
monic Bergman projection. It is known (see Theorem 8.22 of [3]) that
this harmonic Bergman projection can be realized as an integral operator
against the harmonic Bergman kernel R(z,w). See Section 2.

In their recent paper [8], Ramey and Yi have studied these harmonic
Bergman spaces and have shown that many fundamental Bergman space
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properties, which are well known in the holomorphic case, remain true. In
this paper we continue to study further properties of these spaces. Here,
we are concerned with two properties of harmonic Bergman functions. One
property we are interested in is the representation of bP-functions and the
other is, its “dual” property, the interpolation by bP-functions.

Roughly speaking, by the representation property, we mean the discrete
version of the reproducing property of the harmonic Bergman kernel. That
is, we mean the property of bP-functions u that can be represented as sums
based on the harmonic Bergman kernel with weighted [P-coefficients, which
may take the following form:

(1.1) u(z) = Z)\mzfn(é_l/p)R(z,zm).

Here, 2, denotes the last coordinate of z,,, € H. For example, the following
is a special case of our representation results.

THEOREM 1.1. Suppose 1 < p < co. There ezist a sequence {zm} of
points in H and a constant C with the following properties: For (A,,) € IP,
the function u defined by the series (1.1) belongs to b with

/ (WP dV < O3 AnlP.
H

Conversely, given u € bP, there exists a sequence (Ap) € IP such that (1.1)

holds and
> PalP < C’/ |ulP dV.
H

The corresponding theorem for the space b! is also available with a
certain restriction. Note that this representation property amounts to the
“onto” property of the operator (\;,) — u(z) from [P into b” defined by
(1.1). By a consideration of the “onto” property of its adjoint operator,
one is naturally led to the interpolation property. Roughly speaking, the
interpolation property means that [P can be realized as a certain weighted
sequence spaces formed by values of bP-functions on a sequence of points in
H. The following is the interpolation counterpart of Theorem 1.1, which is
also a special case of our interpolation results.

THEOREM 1.2. Suppose 1 < p < oco. There exist a sequence {zn} of
points in H and a constant C with the following properties: For u € bP, we
have

S sl < € [ Jurav.
H
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Conversely, given (Ap) € [P, there exists a function u € bP such that

z?n/,fu(zm) = Ay, for all m and

ulPdV < C AmlP.
/Hll <3 Pl

These two properties of holomorphic Bergman spaces were studied on
various settings. See [5], [7] for the representation and [1], [9] for the interpo-
lation. In [5], the representation properties of harmonic Bergman functions,
as well as harmonic Bloch functions, are also proved on the unit ball of R™.
The interpolation for holomorphic (little) Bloch functions were studied in
2], [4]. We will also consider the harmonic Bloch space B and the harmonic
little Bloch space go on H as limiting spaces of b”. See Section 2 for defini-
tions of these spaces. The models for our arguments are taken from those
arguments in [5], [9] which are based on estimates of the Bergman kernel
in a more constructive way. However, those arguments cannot be simply
applied to the setting of the present paper. There are two fundamental
reasons. First, as pointed out in [8], the unboundedness of H causes certain
difficulties especially when dealing with the spaces b' and B. For example,
the kernel R(z,w) is not integrable in each variable. Secondly, the kernel
R(z,w) has zeros, which causes difficulties in our estimates.

In Section 2 we list some basic properties related to the spaces b7, B
and g().

In Section 3 we collect basic and computational lemmas which will
be used repeatedly in later sections. Especially, we introduce a metric p
on H which is very useful for our purposes. While euclidean balls with
radii proportional to the distance from their centers to the boundary could
be used as substitutes for Bergman metric balls in the holomorphic case,
the p-balls play the role of Bergman metric balls and simplify a lot of our
argument.

Section 4 is devoted to the proofs of the representation theorems for
the space bP, as well as the spaces B and B~0. We consider here normal
derivative versions of an arbitrary order. By a slight modification of our
proof of normal derivative versions of the bP-representation theorem, we
prove that the bP-norm is equivalent to the normal derivative lattice norm
(see Proposition 4.8). This yields an unexpected result: If a bP-function has
vanishing normal derivatives along a “sufficiently dense” sequence, then it
must vanish identically. This uniqueness theorem for bP-functions seems
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new for harmonic Bergman functions. The analogue for harmonic Bloch
functions is also proved (see Proposition 4.12).

Section 5 is devoted to the proofs of interpolation theorems for the space
b?, as well as the spaces B and Bo Using the BO mterpolatlon theorem, we
give an estimate for the distance between a given B-function and the space
go, which might have further applications.

§2. Preliminaries

In this section, we review some preliminary results from [3], [8]. Unless
otherwise stated, the full range 1 < p < o is intended when discussing b?.
By the mean value property and Jensen’s inequality, one can easily

verify that
(2.1) lu(2)|P < o7tz lullf

holds for all w € b and z € H. Here, we use the notation o, for the
volume of the unit ball of R® and z = (2/,2,) € R ! xR, for z € H. It
follows from inequality (2.1) that norm convergence in b” implies uniform
convergence on compact subsets of H. Thus, b is a Banach space and in
particular b? is a Hilbert space. Inequality (2.1) also implies that, for each
fixed 2 € H, the map z — u(z) is a bounded linear functional on % and
hence there exists a unique function R(z,-) € b% such that

u(z)z/Hu(w)R(z,w) dw

for all u € b2 where dw also denotes the volume measure on H, which we
will often write as dz, ds, etc. The function R(z,w) is called the harmonic
Bergman kernel for b2. It is known that R(z,w) = R(w, z) and that R(z,w)
is real valued; thus we can remove the complex conjugate in the integral
above. For this and related results see Chapter 8 of [3]. From this it is easily
checked that the harmonic Bergman projection R: L? — b? is the integral
operator against the kernel R(z, w):

(2.2) Rf(z) = /H F(w)R (2, w) dw

for all f € L?. The explicit formula for the harmonic Bergman kernel is
given by

4 n n 2 - — |2

(2.3) R(zw) = — Mentwn)” — |2~ T

nop, |z — w|nt?
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Here, we use the notation W = (w', ~w,) for w € H. Note that if n = 2,
then w is the usual complex conjugate of w. From this formula we easily
see that there is a constant C = C(n) such that

C

|z — @l

(2.4) |R(z,w)| <
for all z, w € H. It is not hard to see that the function w — |z —w|™™
is integrable for each 1 < ¢ < oo and for each fixed z. Also note that
|R(z,w)| < Cz,™ for all w € H. Hence, inequality (2.4) shows that the
harmonic Bergman projection R extends to an integral operator, defined
by (2.2), from LP into the space of harmonic functions on H for each 1 <
p < co. Moreover, R: LP — bP is a bounded projection for 1 < p < oo, but
for some f € L', Rf is not even integrable. See [8] for more details.

In [8] it is shown that there are many other bounded projections from
LP onto bP. Let D, denote the differentiation with respect to the last
component of w. In case there is no possibility of confusion, we will simply
write D for Dy, , D, , etc. One can easily check from (2.3) that

D, R(z,w) = Dy, R(z,w).

Now, for each integer k > 0, define
—9)k
Ry(z,w) = Lk—!)—wﬁDinR(zaw)

for z, w € H. Note that Ro(z,w) = R(z,w). This kernel Ry(z,w) also
has the following reproducing property as does R(z,w): If 1 < p < co and
u € bP, then

(2.5) u(z):/Hu(w)Rk(z,w)dw

for every z € H. In fact, the kernel Ri(z,w) has the following generalized
reproducing property: If 1 < p < co and u € bP, then

_(~2)mk!

(2.6) u(z) = o /H W[ D™u(w)] Rz, w) dw

for every integer m > 0. Associated with the kernel Ry (z, w) is the integral
operator Ry defined by the formula

Rif(z) = /H £ (w) Ry, w) dw
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whenever the above integral makes sense. For k > 1, the kernel Ri(z,w)
behaves better than the harmonic Bergman kernel R(z,w) in the sense that
Ry: LP — bP is a bounded projection for every 1 < p < oo. For the proofs
of these results, refer to [8]. In the same paper the Bergman norm is shown
to be equivalent to the normal derivative norm: If 1 < p < oo and £k > 0 is
an integer, then

2.7) ull2 ~ / wP* | DEw(w)[P dw
H

as u ranges over bP. Here, and later, the notation a(u) =~ b(u) means that
the ratio a(u)/b(u) is bounded above and below by some positive constants
independent of u. The analogous result for the tangential derivative norm
can also be found in [8].

We now summarize preliminary results on the harmonic Bloch space B.
For a harmonic function v on H, we say u € B if

llullg = sup wn|Vu(w)| < co.
weH

Let zo = (0,1) € H. We will let B denote the space of all functions v € B
such that u(zg) = 0. The space B is a Banach space by a standard argument.
We say that u € Eg, the harmonic little Bloch space, if u € B satisfies the
additional boundary vanishing condition

lim wy, |Vu(w)| =0

where the limit is taken as w — dH U {oo}. It is not hard to verify that
g@ is a closed subspace of B. Although we do not need here, we remark in
passing that B is identified with the dual of b! in [8]. Also, By is identified
with the predual of b! in [10]. In proving these dualities, Ramey and Yi [8]
introduced the modified kernel

R(z,w) = R(z,w) — R(z0,w)

to overcome the nonintegrability of R(z,w). In fact, the kernel R(z,w)
satisfies the estimate

~ |z — 20| lzo0 — @™ |20 — W|
2.8 R <C
28  (Rewso iRl (ot oo E

for some constant C' = C(n) and for all z, w € H. Thus, the function
w +— R(z,w) is integrable over H for each fixed z. This kernel R(z,w)
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turns out to be a reproducing kernel for the space B. More generally, for
an integer k > 0, let

Ri(2,w) = Re(2,w) — Ry(z0,w).

Then ﬁk(z,w) hai the following reproducing property for harmonic Bloch
functions: If u € B, then

(2.9) u(z)=/]LIu(w)ﬁk(z,w)dw

for all z € H. The generalized reproducing property of the kernel ﬁk (z,w)
is also available:

(=2)™k!

(2.10) we) =

/ W™ (D™ u(w)| B (2, w) dw
H

for every integer m > 0 and for every u € B. Also, the associated integral
operator Ry, defined by the formula

Ruf(z) = /H Fw) Rz, w) dw

takes L® onto B boundedly. These results were proved in (8] only for the
case k = 0. In order to prove the remaining cases, one can modify the ideas
of [8] which are used to prove the LP-boundedness of Ry and the generalized
reproducing property (2.6).

The Bloch norm is also equivalent to the normal derivative norm ([8]):
If £ > 1 is an integer, then

(2.11) llulls & sup we| D*u(w)|
weH

as u ranges over B. Also, for u € g, we have u € By if and only if
(2.12) lim w® DFu(w) = 0

where the limit is taken as w — 0H U {oo}. See [10].
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§3. Basic Lemmas

Words on Constants. In the rest of the paper the same letter C will
denote various positive constants, unless otherwise specified, which may
change at each occurrence. The constant C' may often depend on the di-
mension n and some other parameters like 6, p, k, or «, but it will be always
independent of particular functions, points or sequences under considera-
tion.

In this section we prove several basic lemmas which will be used in later
sections. We first introduce a distance function on H which is useful for
our purposes. In the hyperbolic geometry of H, the arclength element is
|dZ|/x, and geodesics are (i) vertical lines and (ii) semi-circles centered on
and orthogonal to R”~1. Thus, one can verify that the hyperbolic distance
between two points z, w € H is

1
log L p(z,w)
1- p(z,w)
where | |
Z —w
p(z,w) - |Z _ EI

We shall work with this pseudohyperbolic distance p. While the pseudohy-
perbolic distance is well known on the upper half-plane (see, for example,
[6]), it appears to be not widely known in general. Here, we include a direct
proof that p indeed defines a distance function on H. First, note that p is
horizontal translation invariant and dilation invariant. In particular,

(3'1) p(z,'w) = p(¢a(z)7 d’a(w)) (z"w € H)
where ¢, (a € H) denotes the function defined by

2 —d =z,

(3:2) bae) = (222 2)

an Qp,

for z = (2',2,) € H. Recall zp = (0,1).
LEMMA 3.1. p is a distance function on H.

Proof. Of course, we only need to check the triangle inequality. From
(3.1), we only need to show

(3-3) p(z, z0) < p(z, w) + p(w, ZO)
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for z,w € H. Fix z,w € H. Let ps denote the pseudohyperbolic distance
on the upper half-plane. Then we get

p(z, ZO) = p2((|z'|, Zn)a (07 1))
< p2((12], 2n), (Jw'], wr)) + p2((Jw'], wr), (0,1))
= P2((|2,|, Zn), (lwll7 wn)) + p(w, 20)'

Note that
o201, 20), ('], wa)) = o ( (L2120 0,1
2 yAn )y y Wn 2 W ,'wn ) 9
T
< p2 <<|_Z___L|az_n>a(0?1)>
W, Wn,

= p(Z, w)
so that (3.3) holds. The proof is complete.

For z € H and 0 < § < 1, let Es(z) denote the pseudohyperbolic ball
centered at z with radius 6. Note that ¢,(Es(z)) = Es(z¢) by the invariance
property (3.1). Also, a straightforward calculation shows that

1+ 62 26
(3.4 E) = B ((# 1o ) gz

so that B(z,6z,) C Es(z) C B(z,26(1 — 6)~12,) where B(z,7) denotes
the euclidean ball centered at z with radius r. We first prove two simple

consequences of (3.4).
LEMMA 3.2. For z, w € H, we have
T S S T
Proof. Assume p(z,w) < é. Then, by (3.4),
Zn 1+6

w, 1-—6
This implies the lemma.
LEMMA 3.3. For z, w € H, we have

1-p(z,w) _ |23  1+4p(zw0)
1+ p(z,w) =~ |Jw—=3] = 1-p(z,w)

for all s € H.
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Proof. Assume p(z,w) < § and let s € H. Then
(3.5) |z =3 —Jw—3] < |Jw — z|.

On the other hand, since Es(w) C B(w,26(1 — 8) " wy,), we have

| < 26 < 25| 3|
w— 2z w w — 3.
T1-6 "T1-6
Insert this into (3.5) and get
lz—§|<1+5.
lw—3 —1-6

This proves the lemma.

Note that the kernel R(z,w) has zeros on H x H. Thus, some estimates
on holomorphic Bergman kernels in [5], [9] have no harmonic analogue.
Instead we have the following estimate.

LEMMA 3.4. Let k > 0 be an integer and o be real. Then

zk+a

« _ o3 < n
lank(S’ Z) wan(s,w)I = Cp(zaw) |Z — §|n+k

whenever p(z,w) < 1/2 and s € H.

Proof. Assume p(z,w) < 1/2 and let s € H. We first show that

k

z
(3.6) |Ri(s,2) — Ri(s,w)| < Cp(z,w) |z — ;'n+k'

By induction one can check that Ri(s,z) can be written in the form

k2 m
k (S + 2 )
m=0

for some coefficients ¢,,. Note that this implies

2k

(37) ‘Rk(S,Z)‘ S Cm
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Now, to prove (3.6), it is sufficient to show

Sz Z%_HC s w%—i—k zT];;
(3:8) Z sk o= gk | S O W) Ty

for 0 <i+47 =m < k+ 2. The left side of the above is less than or equal to

5t w%-Hc s w%+k

|z — s[ntktm  Jw — g[ntktm

(wn Jj+k ~ lZ _ EI n+k+m
= |z — §|nthtm Zn |z — §[nthtm |w — 3|

j+k k - k
< 2711: - wp J+ N Wy L lz _3 n+k+m ‘
= |z =3tk Zn Zn |lw — 3]

Since p(z,w) < 1/2, by Lemma 3.2, we have 1/3 < wy/2, < 3 and hence
the first term inside the parenthesis of the above is dominated by some
constant independent of z, w. Similarly, it follows from Lemma 3.3 that
the second term inside of the parenthesis of the above is dominated by some
constant independent of z, w. This proves (3.8) and thus (3.6).

Now, let a be a given real number. By (3.6) and (3.7), we have

i _7+k ; w%-}-kl
Sn
|z _ §ln+k+m

stz

i, Jtk

si o j+k

SWn
+

|2p R (s, 2) — wy Ry (s, w)|
< zy|Ri (s, 2) — Ri(s,w)| + z5| Ri (s, w)| |1 - (ﬂ)

n

At
<C C
- |z — §|n+k + |w _ 'gln-}-k
k+a
Z
<C—2——— |
lz — 5|n+k

The last two inequalities of the above hold by Lemma 3.2 and Lemma 3.3.
The proof is complete.

Estimate like (2.1) and Cauchy’s estimates yield the following lemma
whose proof can be found in Corollary 8.2 of [3]. The notation d(E, F)
denotes the euclidean distance between two sets £ and F'.

LEMMA 3.5. Suppose u ts harmonic on some proper open subset Q0 of
R™ Letl1<p< oo and a= (a1, ,an) be a multi-index of nonnegative
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wntegers. Then

dlely,
Oz - - Oz

P
(a)

¢ oo [y
d(a', 8Q)n+p|a} Q

for all a € Q. The constant C depends only on n, p and a.

Taking Q = Es(a) in the above lemma, we have the growth estimate
for normal derivatives of harmonic functions on H.

LEMMA 3.6. Let1 < p < o0, 0< é <1, and k > 0 be an integer.
Then

C
a7 K Dru(a) P < / fu(w)lP dw
6n+pk Es(a)

for all a € H and for every u harmonic on H. The constant C = C(n, k,p)
15 independent of 0.

Proof. Let u be a harmonic function on H and fix a € H. From (3.4),
it is easily seen d(z9,0Fs(20)) = 26/(1 + 8). Thus, by Lemma 3.5, we have

= /
< = |u(w)|? dw
ek Es(20)

for some constant C = C(n,p, k). Given a € H, apply the above inequality
to uo ¢7! where ¢, is the map defined in (3.2) and then make a change of
variables z = ¢! (w). The result is

|D*u(z0)? <

C

aﬁkaua”S———/ u(z)|P dz,
D@ S e [ @)

which completes the proof.

By Lemma 3.5, derivatives of harmonic functions cannot grow arbi-
trarily, and neither can integrals of their oscillations. In what follows | K|
denotes the Lebesgue measure of a Borel subset K of H.

LEMMA 3.7. Suppose u s harmonic on some proper open subset Q0 of
R™ and let 1 < p < 0o. Then, for a given open ball E C €2,

E 1+p/n
/E |lu(z) —u(a)Pdz < C lE lag)n+p / |ulP dV

for all a € E. The constant C depends only on n and p.
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Proof. Fix a € E. Then, we have

lu(z) — u(a)| < |z — af sup [Vu(w)]
wekl

for all z € E. Note that, for w € E,

C 1/p
|Vu(w)| < m—d(w, PR (/Q lul? dV)

C 1/p
< PdVv
= d(E, 0Q)1 /e (/a 5 )

by Lemma 3.5. Hence,

(3.9) fu(z) - w(@)P < cd(}'z—;m'—+ [ rurav.

Since |z — a|® < C|E| for every a, z € E, we conclude from (3.9)

C
L'U(z) - u(a)lp dz S W/ |Z - alp dZ/Q I’u,lp dVv

_|B|tAem
d(E oQ)n+rp | 7 v,

as desired. The proof is complete.

Remark 1. By the fact that |u|P is almost subharmonic (see Lemma 3.5
of [5]) for 0 < p < 1, Lemma 3.5, Lemma 3.6, and Lemma 3.7 are actually
true for all 0 < p < co. However, we will not need this fact in the present

paper.

We now close this section with two simple integral formulas which are
useful in understanding the integral behaviour of various kernels.

LEMMA 3.8. For a > 0, we have

dw _
[H IZ _mln+a = Czna

for every z € H.
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Proof. Fix z and substitute w = ¢;(s) = (2,8' + 2/, 2,5,,) to see that

/ dw _a/ ds
——— T 2 —_—,
mglz =@t " g |s = Zo|mte

Now, the lemma follows from the estimate

/ ds < / ds C/°° -l i <
— <. = e (AT < 00.
" |$ — go|n+a ~Jy {1 + |S|2]("+°‘)/2 0 [1 + 7.2](n+a)/2

The proof is complete.

For a proof of the following lemma, see Lemma 3.1 of [§].

LEMMA 3.9. For 0 < a < 1, we have

/ _Wn_ dw = Cz*
H

|z — |
for every z € H.

§4. Representations ‘

For a motivation, consider a sequence {zm} of distinct points in H with
zm — OH U{oo} and pick a pairwise disjoint covering {E;,} of H such that
zm € En,. For an integer £ > 0 and u € b?, we see from the reproducing
property (2.5)

u(z) = Z /Em u(w)Ri(z, w) dw.

Let g be the conjugate exponent of p. Then, the series
(4.1) Z U(zm)lEmll/p ) 'Emll/qu(Z, Zm)

can be considered as an approximating Riemann sum of the above integral.
Note that the sum

Y [u(zm)P| B

can be viewed as an approximating Riemann sum of ||u||b. In this section
we find a sufficient condition on the sequence {z, } for which every function
u € bP can be represented in this way. By intuition, points of such a sequence
are expected to be sufficiently dense so that approximating Riemann sums
get very close to actual integrals. This intuition has been already made
precise for holomorphic Bergman functions. See [5], [7]. We will prove
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that “sufficient density” remains still sufficient for representation on the
setting of the present paper. Also, we consider an analogous representation
property on the limiting spaces B and B,.

In the holomorphic case ([5], [7]), representation theorems were proved
under the lattice density condition. Representation theorems for harmonic
Bergman functions on the setting of the unit ball are also proved in [5]
under the similar lattice density condition. The analogous lattice density
condition will turn out to be sufficient for representation of bP-functions.
The argument of [5] is a constructive one, while that of [7] extensively
uses dualities. We will take the more constructive idea of [5]. To be more
precise, let us introduce some terminology. Let {z,,} be a sequence in H
and 0 < § < 1. We say that {z,} is é-separated if the balls Es(zy) are
pairwise disjoint or simply say that {z,,} is separated if it is §-separated
for some 6. Also, we say that {z,} is a 6-lattice if it is §/2-separated and
H = UFEg(2y,). Note that any “maximal” §/2-separated sequence is a 6-
lattice. Also, one can explicitly construct a é-lattice by using almost the
same argument of [5]. We will prove that é-lattices, with § sufficiently small,
are representing sequences. The main tool in proving such representation
results is the following covering lemma. One can also prove it by using
almost the same argument of [5].

LEMMA 4.1. Fiz a1/2-lattice {an,} and let 0 < § < 1/8. If{2;,} is a 6-

lattice, then we can find a rearrangement {z;; | i =1,2,...,7 =1,2,...,N;}
of {zm} and a pairwise disjoint covering {D;;} of H with the following
properties:

(a) Es;a(zij) C Dij C Eg(2i5)

(b) Ey/4(as) C U Dyj C Eyg(as)

(c) zij € Ey9(ai)

forallt=1,2,---, and j =1,2,..., N;.

By property (c¢) of the above, the sequence N; must have an upper
bound, because pseudohyperbolic balls centered at lattice points cannot
intersect too often as the following lemma shows.

LEMMA 4.2. Let o > 0 and assume 0 < (1 +a)p < 1. If {zpm} is an
n-separated sequence, then there 1s a constant M = M(n,a,n) such that
more than M of the balls Eqy(zm) contain no point in common.
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Proof. The proof is a standard volume argument. So, first note from
(3.4) that there exists a positive constant C = C(n) such that

(4.2) C~l" < aZ"|Ep(a)| < C ( - . r)

for all 0 < r < 1 and a € H. Fix z and let J, be set of all indices m
such that p(zm,z) < an. Note that E,(zm) C E(14q)y(2) for each m € J,.
Therefore, by the disjointness of the balls E,(zy,), we have

(4.3) 3" 1By (zm)] < [Bsap(2)]-

med,

Also, for each m € J,, we have by Lemma 3.2

4.4 Zmn
(4.4) 1+an Zn
Letting M, denote the cardinality of J,, we obtain from (4.2), (4.3), (4.4)
that

ISAY (I+a)n \"

Mn"zy ( ) <C Z n"zp, < C (——————— zy

14+ an ovsd 1-1+a)
so that n n
(4.5) M, <C 1+« 1+an

1-(1+a) 1—an

for some constant C' depending only on n. The proof is complete.
LEMMA 4.3. Let N; be the sequence defined in Lemma 4.1. Then

supN; < cé™

for some constant C depending only on n.

Proof. By (c), each a; is contained in E j5(2;;) foreach j = 1,2,---, N;.
Hence, by Lemma 4.2 with n = §/2 and o = 1/, we obtain from (4.5) (recall
0<6<1/8)

N, <Cc+6Ha-6)T"<ce™

for some constant C' depending only on n.
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Representation on bP
Let {z,} be a sequence in H. Let 1 < p < oo and k > 0 be an integer.
For (Am) € [P, let Qx(An) denote the series defined by

(4.6) Qk(Am)(2) =Y Amzma P Ri(z,2m) (2 € H).

Here, we restrict k¥ > 1 for p = 1. For a sequence {z,} good enough,
Qr(Am) will be harmonic on H. We say that {z,} is a bP-representing
sequence of order k if Qx(IP) =

Of course, the motivation for the series (4.6) is the approximating Rie-
mann sum (4.1) where F,, is pretended to be the ball Fs(z,,) for some
fixed 6. However, it might not be clear from the very definition that the
series (4.6) defines a bP-function under the separation condition. To make
this clear, we need a lemma which is proved in the course of the proof of
Theorem 3.2 and Theorem 4.2 of [8]. We prove it here for the reader’s
convenience.

LEMMA 44. Let1 < p < oo and k > 0 be an integer. For f € LP,

define
k

B f(z) = /f( ~J1Fmd (z € H).

Then, for 1 < p < oo, ®x: LP — LP is bounded for each k > 0. Also,
®p: L' — L' is bounded for each k > 1.

Proof. First assume p > 1 and k > 0. Since |Drf| < |Po|fll, it is
enough to show ®¢: LP — LP is bounded. Let ¢ be the conjugate exponent
of p. Note that

lf(w)| B ,wrll/m w;I/Pq

|z — o

Thus, taking absolute values, and then applying Holder’s inequality and
Lemma 3.9, we obtain

w9 wy, /P =
|0 f(2)IP < {/H|f(w)|”|z—_—-ﬂ—)_—|;dw} {/I{rz—:‘ﬁﬁdw}

l/q

<Cz_1/q/ |7 ( w)|P = dw.
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Integrate both sides of the above. After interchanging the order of integra-
tion, we see from Lemma 3.9 once more

-1
z /9

/|<1>0f(z)|1’dzgc/ If (w)Pw}/? | L dzdw
H H

u Tz -]
<c /H ()P duw.

Next, for p =1 and k > 1, it is enough to show ®;: L' — L' is bounded.
By using Fubini’s theorem and Lemma 3.8, we have

[rsena< [ [ i) —t dwds
:/H|f(w)|/HWdzdw

<c /H | (w)] du.

The proof is complete.

The following shows Qx(IP) C P if the underlying sequence is separated.
In other words, every separated sequence represents a part of the whole
space.

PROPOSITION 4.5. Let 1 < p < o0 and k > 0 be an integer. Suppose
{zm} is a b-separated sequence. Let Qy be the associated operator as in
(4.6). Then, for1l < p < 0o, Q: P — b is bounded for each k > 0. Also,
Qr: 1 — b is bounded for each k > 1.

Proof. By (3.7), Lemma 3.2 and Lemma 3.3, there exists a constant
C = C(n,k,6) such that

k k
(4.7) |Rk(z, 2m)| < C—|Z T < C—_|Z S

for all s € Eg(zy,) and z € H. Let x,, denote the characteristic function of
Es(zm) and, for (Ay,) € [P, put

f =3 Palzpa VP Bs(zm)| ™ xom.
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Then, by (4.7), we have

k

S
QkAm)( S CY Pnl2p =P Eg(2n) / — s
1Qk(Am)(2)] Am| Esl ™ [ e

= C®f(2).

Now assume k£ > 0 for 1 < p < co and assume k > 1 for p = 1. Then,
from Lemma 4.4, it follows that

1Qk(Am)If < CIIFI
=CY Pl Es(zm)|' 7

<CY Pl

which shows that Qg: P — LP is bounded and the series in (4.6) converges in
norm. Since every term in the series (4.6) is harmonic, the series converges
uniformly on compact subsets of H. It follows that Q; maps [P into bP. The
proof is complete.

We are now ready to prove our bP-representation theorem under the
lattice density condition. Roughly speaking, it states that every sufficiently
dense lattice represents the whole space. We first consider the case 1 < p <
00.

THEOREM 4.6. Let 1 < p < oo and let k > 0 be an integer. Then
there exists a positive number &g with the following property: Let {zmn} be
a 6-lattice with § < 8y and let Qp:IP — VP be the associated linear operator
as in (4.6). Then there is a bounded linear operator Py:b — IP such that
QP 1s the identity on bP. In particular, {zm} is a bP-representing sequence
of order k.

This should be compared with Theorem 3 of Coifman and Rochberg
[5]. While their theorem (on the ball) has the advantage of being valid for
p < 1, it contains the restriction k£ > 1 for 1 < p < oo.

Proof. We may assume § < 1/8. Fix a 1/2-lattice {a}. Find a

rearrangement {z;} of {zn}, as well as a pairwise disjoint covering {D;;}
of H, for which all properties of Lemma 4.1 are satisfied.
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For u € P, let Tu denote the sequence whose components are u(z;;)
]Dijlzi;n/q where ¢ is the conjugate exponent of p. By (a) and Lemma 3.6

we haVe
/
D lu(u‘)l d w
I "'JI Dij

Ju(zi) P <

and therefore
48) YDy Pz <€y / [u|P dV = C / ul? 4V,
Dij H

which means the operator T: 5?7 — [P is bounded and thus QT is bounded
on b? by Proposition 4.5.

Now, we show that QT is invertible on b for all § sufficiently small.
Let x;; denote the characteristic function of D;;. The reproducing property
(2.5) then gives

u= Ryu= R [Z uXij] = ZRk[UXij]-

Notice that
QkTu(z) = Y _ u(zij) Ri(2, 2i;)| Dij].

Thus, we have v — QrTu = u; + uy where
w1(2) = Ri [ D (u = ulzi5))xis | (2)
ug(z) = ZU(Zij) A Ry(z,w) — Ri(z, zi5) dw.

To estimate these functions, first note that

|z — 3 <5

(4.9) 1/5< %<5, 1/5<

Qin lz - Ei]
for all s € Ey/3(a;) and z € H by Lemma 3.2 and Lemma 3.3. Put E;; =
Es(2;5) and Ef = Ey;3(a;) for simplicity. Note E;; C Ey/5,5(ai) C Es/s(a;)
by (c). Hence, by (4.9),

d(Eij,0E}) > d(Es/s(a;), 0E]) > Cain > Czijn
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for some absolute constant C. Thus, by (a) and Lemma 3.7, we find

[ ) = P dw s [ futw) - utes)pu

5 Eij
| By P/ /
<C—r——"r0m—— Pd
> d(EzJ, BE;)""H’ B IU('LU)' w

< Cé"+p/ |u(w)|?P dw

for all ¢, j. Here, the constant C is independent of ¢, j, §. Thus, for each
fixed i, we obtain from Lemma 4.3

N;

(4.10) > / [u(w) — u(zi) [P dw < C&P / [u(w)P duw.
j=1"Dij 24

Now, since Ry is LP-bounded, we have

lually < €[ = (i) |
]
> / o) = ula )P
< C&”E_:/w w)|P dw

< Cé”/ |u(w)|P dw.
H

The last inequality of the above holds by Lemma 4.2. In summary, we have
the following estimate of the norm of u;:

(4.11) luallp < Cllullp

for some constant C independent of é.
Now we estimate ug. By Lemma 3.4, (a) and (4.9),

k
Z;
R - R i) dw < C . -——Ld
/ijl k(z’w) k(‘z?Z])‘ W > »/Dij p(waz.‘l)lz__z |n+k
k
< C8\D. ;| —1m™
— ' 1JI|Z_Eij‘n+k
ak
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Also, by (a) and Lemma 3.6,

)| S gy [, It

Combining these observations, we have by (b) and Holder’s inequality

<Cé d
(€ C8 Y o [ ot

J

k

(412) 1/p |E*l1/qak
< caz{/* Iu(w)|1’dw} lzfﬁl"_ﬁc
n/q i
<C<52:>\2 Tin R
where

1/p
|u(w)|? dw} :

w={

i

Note that, by (4.9),

k k k
Cin___ = |E;‘1—1/ R — <C|E*|“1/ s
E;

[z =@ = a B 2= 5"
and hence, by (4.12),
fua ()] < @ [€6 3 NiallY|E7| 7 xi] (2)

where @, is the operator defined in Lemma 4.4 and x; denotes the charac-
teristic function of E}. Now, the LP-boundedness of ®; gives

luzlz < €8 37 [NifPafP D By |1
<Y NP
=CoP Y / w)[P dw

<ceP / lu(w)[? duw.
H
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The last inequality of the above holds by Lemma 4.2. Here, the constant
C is independent of §. Thus we have the following estimate of the norm of
ug:

(4.13) lluzlly < Collullp

for some constant C independent of §. We therefore conclude from (4.11)
and (4.13) that

lQxT — Il < C6

where I denotes the identity on b” for some constant C independent of 6.
Accordingly, QT is invertible for all § sufficiently small. For such §, set
P, = T(QT)™!. The proof is complete.

The b'-representation theorem takes exactly the same form as the above
bP-representation theorem except for the restriction ¥ > 1. The proof is also
almost the same and thus omitted.

THEOREM 4.7. Let k > 1 be an wnteger. Then there exists a positive
number 8y with the following property: Let {z,} be a é-lattice with § < &
and let Qy: 1 — b be the associated linear operator as in (4.6). Then there
is a bounded linear operator Py:b' — 1! such that Qi Py is the identity on
bl. In particular, {zm} is a b'-representing sequence of order k.

The above proof of Theorem 4.6 also gives some other information on

norm representation of bP-functions. Namely, one can conclude from (4.8)
and (4.10)

/H ()P dw = 3 [uzm) P2

as u ranges over bP. Such norm representation remains true with normal
derivatives of an arbitrary order.

PROPOSITION 4.8. Let1 < p < oo and k > 0 be an integer. If {z;m} 1s
a 6-lattice with § sufficiently small, then

/H ()P dw ~ 3 [ DFu(z) P2t

as u ranges over bP.
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Proof. Let u € b?. We continue to use the notations defined in the
proof of Theorem 4.6. Note that

/H Wl | DFu(w)P dw — 3 22 | Dru(zi;)P| Dy

1,J
< C’Z/ |wk D*u(w) — zfjnDku(zij)lp dw
— JD.
1,7 v
< cz / fuwk — 25 [P| DFu(w) P duw
+CZ / 22 | DFu(w) — DFu(zig)|P duw

=I+II.

It follows from (a) and Lemma 3.2 that |1 — z;jn/wn| < 26/(1 — 6) for
w € D;; and therefore

1<C8y / wP*| DR u(w)[P dw = C6P /H wP*| DR (w)|P dw

for some constant C independent of § small. Also, as in the proof of (4.10),
we have

sz . 1Dtute) ~ Doutegpaw < cov Z IR
<cs / wP*| Dk u(w) P dw,
so that
nm<oey / wP*| DR u(w)|P dw < C6P / wP*| DR u(w)|P duw,
Here, the constant C is also independent of § small. It follows that
(1-c8) [ wpkiD uw)r du < AL

< CZ'D U zm)lpznﬂok.

ijn
t,J
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Now, since C is a constant independent of § small, we see from (2.7) that
one inequality holds for é sufficiently small. The other inequality easily
follows from Lemma 3.6.

Remark 2. Proposition 4.8 yields an interesting consequence. Namely,
if the normal derivative of a bP-function u vanishes on a é-lattice with é
sufficiently small, then u must vanish identically. This seems a new unique-
ness result for harmonic Bergman functions. This property also extends to
harmonic Bloch functions. See Proposition 4.12 below.

Now, we turn to the analogous representation property for the spaces
B and Bo

Representation on B and g@

Recall that we also have the reproducing formula (2.9) for harmonic
Bloch functions. Thus, a consideration of approximating Riemann sum
leads us to a similar definition of representing sequences for the spaces B

and By. Let {zm} be a sequence in H and k > 0 be an integer. For
() € 1, let

(4.14) Qk(Om)(2) = AmzpaRi(z,2m) (2 € H).

We say that {zp,} isa B-representing sequence of order k if Qk(l“) =B. We
also say that {z,} is a Bo-representing sequence of order k if Qx(co) = B

As in the case of bP-representation, we begin with an observation that
a separated sequence represents a part of the whole space.

PROPOSITION 4.9. Let k > 0 be an integer and suppose {zm} is a 6-
separated sequence. Let Qk be the associated operator as in (4.14). Then,
Qk 1°° — B is bounded. In addition, Qk maps co into B()

Proof. Note Ry(z,w) = (—2)k (k) lwEDk R(z,w). We first show that
the series in (4.14) converges uniformly on compact subsets of H. Let K

be a compact subset of H. Then, by (2.8) and Lemma 3.3, there exists a
constant C = C(K) such that

C

o
1R w)| < o

for all z € K and w € H. Thus, it follows from Lemma 3.6 that

P = dw
Zmn | BE(2, 2m)| < C/ |R(z,w)| dw < C/ e
" Es(zm) Es(zm) |W — Zo|*t!
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for all z € K. Since |w — Zo|~("*V) is integrable, it follows that the series
in (4.14) converges uniformly on K. Note that D, R(z,w) = D, R(z,w).
Now, after differentiating term by term, apply Lemma 3.6, (3.7), Lemma 3.8,
to obtain

DQ(m)(2) < C Y Amleit*IDE D, R(z, 2|

Zmn

<O 3 /E  IDe R
§\Zm

dw
< ke
< nglu()‘m)“om

In other words, by (2.11),

(4.15) 1G5 < ClHAm oo

which shows the first part of the proposition.
Next, assume (Ay,) € ¢p and put

Z)‘J ]an z Z]) (N: 1a23"')'

Since Dznﬁk(z‘,‘w)z —(k+1)27 w1 Ry (z,w), it is easily checked Ri(-, w)
€ By for each fixed w and therefore uy € By for all N. By (4.15), for every
N, we have

1Qx(Am) — unlls < C ( sup |)\j|>
J>N+1

so that uy converges to ék()\m) in norm. Hence @k(/\m) € I§0. The proof
is complete.

Having Proposition 4.9, one can modify the proof of Theorem 4.6 to
obtain a similar B-representation theorem. As a substitute for integral
estimates in the proof of Theorem 4.6, we need the following lemma.

LEMMA 4.10. Let k > 1 be an integer. Then
|2nD*u(z) ~ wy D*u(w)| < Cp(z, w)llulls

forallz,wGHanduég.
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Proof. Let u € B and fix z, w € H. We may assume p(z,w) <
1/2. By passing differentiation through the integral sign in the generalized
reproducing formula (2.10), we have

2FD*u(z) — w* DFu(w)
= —2/ sn[Du(s)](zﬁDfnﬁ(z, s) — wﬁDﬁ,nﬁ(w, s))ds
H

= kI(—2)'7* /H sn[Du(s)](Rk(s,2z) — Ri(s,w))ds

and therefore, after taking absolute values, we obtain from Lemma 3.4 and
Lemma 3.8 that

k
|5 DFu(z) — wh DFu(w)| < Cplz,w)ulls / _ g,
g |z =3t

< Cp(z, w)|lulls,
which completes the proof.

The following is the limiting version of the b”-representation theorem
(Theorem 4.6). For a similar result on the ball, see Theorem 3’ of [5].

THEOREM 4.11. Let k > 0 be an integer. Then there exists a posilive
number 8o with the following property: Let {zm} be a 8-lattice with § < &g
and let Qi:1® — B be the associated linear operator as in (4.14). Then
there exists a bounded linear operator Pk B — 1% such that QkP;c is the
zdentzty on B. Moreover, Pk maps BO into co. In particular, {z,,} is a both
B- -representing and Bo- -representing sequence of order k.

Proof. The proof is similar to that of Theorem 4.6. Any unexplained
notation will have the same meaning as in the proof Theorem 4.6. For
u € B, let Tu denote the sequence whose components are z ~" Du(z5)| Dyl
Then, by (a), T: B — I is bounded. Since the sequence {zm} is separated,
we have z,,, - 0H U {oo} Thus T maps Bo into cg. It follows that QkT is
bounded on B and maps By into 1tself by Proposition 4.9. As in the proof of
Theorem 4.6, it suffices to show QkT is invertible on B for all § sufficiently
small.

Note that

QkTu(2) = ) zijnDulzij) Bi(2, 2i5)| Dij|
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and Ri[w,Du(w)] = —(k + 1)u/2 by the generalized reproducing property
(2.10). Hence we can decompose —(k + 1)u/2 — QxTu = uj + uy where

w(2) = By [ 3 (wnDu(w) = zi5nDulzi))xis] (2)
ug(z) = Z zijnDu(zij) /D ﬁk(z,'w) - Ek(z, Zij) dw

For w1, since Ri: L™ — Bis bounded, we have, by Lemma 4.10 and (a),
the following norm estimate of u;:

fuslls = || [ 3 (unDu(w) ~ 25 Dutzig)xs |

< C”Z(wnDu(w) = ZijnDu(2i5)) x5 o

(4.16)

1,7 weD;;

< Cllulls (S}lp sup p(w, Zijn))

< Collulls.

Note that the above constant C is independent of §.
Differentiating term by term and then differentiating under the integral
sign, we have

D’U,g(z) = Zz,-jnDu(zij)/ Dznﬁk(z,w) - Dznﬁk(z,zi]—) dw
D;;

k+1 _ _
=-— zijnDu(zij)/ w;  Req1(2z,w) — zij:tRk_H(z, zij) dw.
D;;

After taking absolute values, we see from (a) and Lemma 3.4
k

w
| Dua(2)| < C”“”BZ/ P(w,zz'j)l—:—mﬁ:m dw
< Céllulls Y / w|n+1

<ol

where the last inequality holds by Lemma 3.8. This, together with (2.11),
yields the following norm estimate of us:

(4.17) luzlls < Céllulls.
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Here, the constant C is also independent of §. Now, letting I denote the
identity on B, we conclude from (4.16) and (4.17) that

~ ~ k41
|G4T + 1) < 8

for some constant C independent of §. Accordingly, Qkf is invertible on B
for all § sufficiently small, as desired. The proof is complete.

Lemma 4.10 also yields the following result for B analogous to Propo-
sition 4.8.

PROPOSITION 4.12. Let k > 1 be an integer. If {zm} is a §-lattice with
6 sufficiently small, then

llulls = sup 2,0 | D*u(zm)|
m

as u ranges over B.

Proof. Let {z,} be a é-lattice with 6§ < 1/8 and let {D;;} be the
pairwise disjoint covering of H associated with {zm} as in Lemma 4.1.
Then, for u € B and for w € D;;, we have by (a) and Lemma 4.10

lwk D*u(w) — 255 D*u(zi5)| < Cél|uls
and hence

sup wy|D*u(w)| = Céllulls < 255, | D u(zij)|.
weD;;

Taking supremum over all ¢, j, we have from (2.11)

Cllulls - C8llulls < sup zf;,| D u(z;),
17_7

which implies the proposition.

A result for holomorphic Bloch functions (on the disk) similar to the
above proposition can be found in [2].
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85. Interpolations

Consider a §-separated sequence {z,}. Let k& > 0 be an integer and
1 < p < oco. By Lemma 3.6 we have

S i PH Deu(z) P < CZ/

for all u € bP. In other words, if we let Tpu denote the sequence whose m-th
component is zn/p+kau(zm), then the operator Ty:b” — [P is bounded.
However, having seen representation theorems in the previous section, one

P AV < c/ lufP AV
H

E(Zm

cannot expect that such T} is onto in general. In fact, by Proposition 4.8,
Ty, is one-to-one for 6 sufficiently small and T cannot be expected to be an
isomorphism in general. This “interpolating” operator T} is closely related
with the “representing” operator Qi (studied in the previous section) in
the sense that, for 1 < p < oo and its conjugate exponent ¢, the adjoint
of Qk:19 — b? can be identified (up to a constant factor) with Tj: o — [P
under the standard integral pairing if the underlying sequence is separated.
For the duality (b°)* = b4, see [8].

In view of interpolation results of [1], [9] for holomorphic Bergman
functions on various domains, a good candidate condition for “onto” is
“sufficient separation.” In this section we prove that the same phenomenon
persists to hold on the setting of the present paper. As a limiting case, we
will also consider interpolation on the spaces B Bo and get similar results.
In the holomorphic case, such interpolation property on the Bloch space
was studied in [2], [4].

Interpolation on bP

Let {zy,} be a sequence in H. Let £ > 0 be an integer and 1 < p < oo.
For u € b?, let Tru denote the sequence of complex numbers defined by

(5.1) Tru = (2MP* DFu(z,,)).

Thus T} is a linear operator taking &” into the space of all sequences of
complex numbers. We say that {z,,} is a bP-interpolating sequence of order
k if Tje(b7) =

We first show that separation is necessary for bP-interpolation. We need
a couple of lemmas.

LEMMA 5.1. Let {zy} be a bP-interpolating sequence of order k. Let
Ty, denote the associated operator as in (5.1). Then, Ty:bP — [P is bounded.

https://doi.org/10.1017/50027763000025174 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000025174

HARMONIC BERGMAN FUNCTIONS 81

Proof. Assume u; — u in b” and Tpu; — (M) in IP. By the closed
graph theorem, we only need to show Tyu = ()A,,). By Lemma 3.6, for any
positive integer N, we have

1Tkw — (Am)li7
(e o)
= Z lz,ril/,{""kau(zm) = Aml?
1
N N

< CY ZpiPH D u(zm) — DFuj(zm)lP + C Y |zpi o DFuj(zm) — AP
1 1

. .
+ Z |Z?n/1f+kau(zm) = Am/P
N+1

oo
< ONllu = wllp + CllTeuj = QB+ Y |2 ™ DFulzm) — AmP.
N+1

Now, taking first the limit j — oo and then N — oo, we obtain Tpu = (An).
The proof is complete.

The following can be viewed as a bP-version of Lemma 4.10. |

LEMMA 5.2. Let1<p < oo and k > 0 be an integer. Then
|zn/P* DPu(z2) — wit/PH* DFu(w)| < Cp(z,w)|lullp
for all z, w € H and u € V.

Proof. Let u € bP and fix z, w € H. By Lemma 3.6, we may assume
p(z,w) < 1/2. First, by the reproducing formula (2.5) and differentiation
under the integral sign, we have

PR DR (z) — wi/PHE DRy (w)

— k(=2)"* /H w(s) (P Ry (s, 2) — WP Ri(s, w)) ds.

Note that

n/p+k

n n -
Izn/ka(s, z) — wn/ka(sawN < CP(Zaw)m
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by Lemma 3.4. Since zt*|z — 5|=(*tk) < 1, this proves the lemma for
p = 1. For p > 1, after taking absolute values apply Holder’s inequality
and then Lemma 3.8 to obtain

|2/PHE DRy (2) — w/PTE DRy (w))]
Plans
< Cp(z,w / Ju( s)| T ds

n+k)—n 1/q
< Cp(z, w)l|ullp

where ¢ is the conjugate exponent of p. The proof is complete.

PRroPOSITION 5.3. FEvery bP-interpolating sequence of order k is sepa-
rated.

Proof. Let a bP-interpolating sequence of order k be given. Then, by
Lemma 5.1, the associated linear operator T: b — [P is bounded and onto.
Hence, by the open mapping theorem, one can find a uniformly bounded
sequence u; in b” such that Tju; is the sequence whose components are
all 0 except for the j-th component 1. Now, the proposition follows from
Lemma 5.2.

Before proceeding to the proof that “sufficient separation” is sufficient
for bP-interpolation, we first prove a lemma.

LEMMA 5.4. Letl <p < oo and k > 0 be an integer. Suppose {2} is
a b-separated sequence. Then, for (Ay,) € IP, we have

(5.2) IZ AmzM9 Ry (zm, w) : < csp-1)y-1/4 Z Am P 229 Ry (2m, w)|

for w € H where q is the conjugate erponent of p. The constant C is
independent of 6.

Proof. Note that
A2 | Rk (2 w)] = | M| 20t 2| R (2my w)| P - 221t /P%) R (2, w) /9.

mn “mn

Thus, by Holder’s inequality, the left side of (5.2) is less than or equal to

S Dhl? 228 Rz )] (3 P B )

https://doi.org/10.1017/50027763000025174 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000025174

HARMONIC BERGMAN FUNCTIONS 83

Note that 1/3 < zmn/sn < 3 for s € Ej/3(2m) by Lemma 3.2. Thus, by
Lemma 3.6 and (3.7), the sum inside the parenthesis of the above is less
than or equal to

C6 Y zal? / |Ri(s,w)| ds

E&/z(zm)

wk —l/p
<Cc&™ / _Wnfn___ ds
Z Es/3(zm) s — |n+k

wks—l/P
—n n
<Cé /H ————-————Is T ds

L/
< ca*n/ " ds

s —o"

< Cs5 P

where the last inequality holds by Lemma 3.9. Here, the constant C =
C(n,p, k) is independent of §. The proof is complete.

Now we prove our bP-interpolation theorem. Recall that the interpola-
tion is the dual property of representation in a certain sense. Thus, even
though we do not use any duality argument here, it is not too surprising to
see that the following bP-interpolation theorem takes a very similar form to
the bP-representation theorem of the previous section. Duality does provide
some motivation for the proof, however.

THEOREM 5.5. Let 1 < p < oo and k > 0 be an integer. Then there
exists a positive number 8y with the following property: Let {z,} be a é-
separated sequence with 6 > 69 and let Ty: P — [P be the associated linear
operator as in (5.1). Then there is a bounded linear operator Sy:IP — bP
such that Ty Sk is the identity on IP. In particular, {zm} is a bP-interpolating
sequence of order k.

Proof. Fix an integer k£ > 0. First, it is not hard to verify (by
induction) that the function w — k!(—2)"*w!Ry(w,w) is constant on
H. We will let ¢ (# 0) denote this constant (one may compute ¢y =
4(=1)*(n + k — 1)!/no,2"+*(n — 2)!). The proof is splitted into two cases.

The case 1 < p < oo: Fix (A;) € IP. Let Q(Ay,) denote the function
defined by

Om) (W) =Y AmzliR(w,zm)  (w € H)
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where ¢ is the conjugate exponent of p. Then, by Proposition 4.5, Q: [P — b
is a bounded linear operator. Thus T Q@ is bounded on IP.

We claim that T3@Q is invertible on [P for all § sufficiently close to
1. Let I denote the identity on /? and let o; denote the j-th component
of the sequence (Tx@ — cxI)(A\y,). Note that the j-th component of the
sequence TpQ(Ay,) is z;{p +kaQ()\m)(Zj). Thus, by term-by-term differen-
tiation (justified by uniform convergence on compact sets), one has

a; = k!(——2)“kz%p Z )\mz:‘n/,?Rk(zm, zj).
mAj

Thus, by Lemma 5.4, we have
o P < C8=D TN A P28 R (2, 29)]

m#j
so that -
(5.3) Z oy |P < (ol pit Z |Am|? B
m=1
where

B = 208 3 25 7| Ri(om, ).
j#m
On the other hand, by Lemma 3.6, we have (as in the proof of Lemma 5.4)

B < C5~ (018 5™ 10 / ERLCARIEE
5/2\%j

J#Em
< Csm R le N / s Y9 R(zm, s)| ds
m / (21)
(5.4) e
< 05‘(”""“)2,1,{,‘{/ Sn—_ ds
- H\Es(zm) |5 — Zm|™

5—1/«1
_ C5—(nHh) / S g
H\Es(z0) |5 — Zo|”

for all m. Here, the constant C depends only on n, p and k. Consequently,
from (5.3) and (5.4), we conclude

—1/q 1/p
ITeQ — exll| < C5=(n+¥/P) { / st ds}
H

\Es(z0) 15 — Zo|™
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for some constant C independent of §. It follows from the fact that s, Y Ys—
Zo| ™™ is integrable (Lemma 3.9) that the integral of the above tends to 0 as
6 /' 1. Thus Ty Q is invertible on [P for all § sufficiently close to 1. For such
8, put Sy = Q(T,Q)~}. This completes the proof for the case 1 < p < oo.

The case p = 1: The proof is similar. The auxiliary operator is slightly
different. Fix (A,) € I'. Let Q(An) denote the function defined by

(5.5) QUm)(w) =D AmPu(w,zm)  (w € H).
Then, by Lemma 4.5, Q:1' — b! is bounded and thus TxQ is bounded on
A

We now prove T;Q is invertible on ! for all § sufficiently close to 1. Let
I denote the identity on ! and let «; be the j-th component of the sequence

(TxQ + 2¢g4+11)(Am). Since the j-th component of the sequence TxQ(\y,) is
”+k DFQ(Am)(2;), after differentiating term-by-term, we obtain

aj = =220 Y " Anzmn DY, D.; R(zm, 25)
m#j

and therefore by Lemma 3.6

> oyl < C8” <"+k>ZZ|Amg/ Zmn| D, R(2m, w)| dw

mj#m
—(n Zmn
SO Y Pl [ e
m ];ﬁm E5(ZJ) Zm
< s~ ST SN
Z,; H\Es(2) |2m — 0|1

dw
=06 (Sl [
<2m: PAnd H\Bs(z0) [w = Zo|" ™

where C is a constant independent of 8. Since |w — Zo|~("*1) is integrable
(Lemma 3.8), one can see as above that the operator TxQ is invertible on
I! for all § sufficiently close to 1. For such §, put Sp = Q(TxQ)~!. This
completes the proof.

As a limiting case of bP-interpolation, we now consider interpolations
on the spaces B and By.
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Interpolation on B and go

Let k > 1 be an integer and let {z,} be a sequence in H. For u € B,
let Tru denote the sequence of complex numbers defined by

(5.6) Tiu = (28, D*u(zp)).

Then Ty: B — I is clearly bounded. We say that {zm} is a B-interpolating
sequence of order k if Ty(B) = 1®°. We also say that {z,} is a Bg-
wnterpolating sequence of order k if T, (go) = ¢p.

As in the case of bP- mterpolatlon separation turns out to be necessary
for B—mterpolatlon or Bg interpolation.

PROPOSITION 5.6. Ewvery g—interpolating sequence of order k is sepa-
rated. Also, every By-interpolating sequence of order k is separated.

Proof. Having Lemma 4.10, one can proceed as in the proof of Propo-
sition 5.3.

The followmg theorem shows that “sufficient separation” is also suffi-
cient for B—lnterpolatlon or Bo- interpolation.

THEOREM 5.7. Let k > 1 be an integer. Then there exists a positive
number &y with the followmg property: Let {zm} be a 6-separated sequence
with § > 8y and let Ty: B — 1 be the associated linear operator as in (5.6).
Then there exists a bounded lmear operator Sk 1° — B such that TkSk 18
the identity on °°. Moreover, Sy, maps co into By. In particular, {zm} is a
both B- interpolating and Bo- interpolating sequence of order k.

Proof. Fix a positive integer k and let {2z} be a §-separated sequence.
For (Ap,) € 1, let Q()\,) denote the function defined by

QO W) =Y AmzpR(w,zm) (€ H).

By Proposition 4.9, Q: 1°° — B is bounded and Q maps ¢g into By. Since
the sequence {z,,} is separated, we have z,, — 8HU{co} and thus T} maps
go into ¢g. It follows that Tvké is bounded on [*° and maps ¢y into itself.
As in the proof of Theorem 5.5, it remains to show kaN) is invertible on [*°
for all 6 sufficiently close to 1.
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Let ¢ be the constant defined in the proof of Theorem 5.5 and let
I denote the identity on [*°. Since the j-th component of the sequence
T Q(Am) is z;?nDkQ()\m)(zj), term-by-term differentiation yields

Qj = k!(‘“z)_k Z )‘mzszk(zma zj)
m#j

where o denotes the j-th component of the sequence (TkQ — ckl)(Am).
Thus, by Lemma 3.6 and (3.7), "

g < C6™ "||<Am>uooz / |Ri(z, 2;)| d

m#j
<COnle Y [ md
mj / Ps(2m)
k
< 5| () lloo / g,
H\Es(z;) |2 — Z|"F
dz
= G5 (Am)lloo —
" H\Es(z0) |2 — Zo["+*

for all j. Here, C' is a constant depending only on n and k. Now, as in the
proof of Theorem 5.5, we conclude that the operator TkQ is invertible for
all é sufficiently close to 1, as desired. The proof is complete.

We now close the paper by giving a distance estimate from a given
function u € B to the space By as an application of Theorem 5.7. In the
following dist(u, go) denotes the distance from u to By and the lim sup is
taken as z — dH U {oo}.

PROPOSITION 5.8. Let k > 1 be an integer. Then
dist(u, By) ~ lim sup zF|D¥u(z)|
as u ranges over B.
Proof. Let u € B. It follows from (2.12) that
lim sup 28| D*u(z)| < C dist(u, Bo).

To prove the other inequality, fix a §-lattice {z,} for which Propo-
sition 4.12 holds. Let j be a given positive integer. Choose inductively a
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subsequence {z;, } of {zm }pr;, Which is sufficiently separated so that {z;, }

is a Bo- interpolating sequence of order k by Theorem 5.7. Adding finitely
many points, one can find that the sequence 21, z2,--,zj, 2, 2j,, - is
still a Bo interpolating sequence of order k. Thus, there exists a function

g € By such that D¥g(zmm) = D¥*u(zp,) for 1 < m < j and D¥g(zy) = 0 for
all m = J1, J2,--+. Now, by Proposition 4.12,

lu—glls <C sup Zpn| D*u(2m) — D*g(2m)|.

m>j+
Since g € By and z,, — 8H U {0}, taking the limit j — oo, one obtains
dist(u, By) < Climsup z¥|D*u(z)],

as desired.
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