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REPRESENTATIONS AND INTERPOLATIONS OF
HARMONIC BERGMAN FUNCTIONS ON

HALF-SPACES

BOO RIM CHOE1 AND HEUNGSU YI2

Abstract. On the setting of the half-space of the euclidean n-space, we prove
representation theorems and interpolation theorems for harmonic Bergman
functions in a constructive way. We also consider the harmonic (little) Bloch
spaces as limiting spaces. Our results show that well-known phenomena for
holomorphic cases continue to hold. Our proofs of representation theorems also
yield a uniqueness theorem for harmonic Bergman functions. As an application
of interpolation theorems, we give a distance estimate to the harmonic little
Bloch space. In the course of the proofs, pseudohyperbolic balls are used as
substitutes for Bergman metric balls in the holomorphic case.

§1. In t roduct ion

Let H = Hn (n > 2) denote the upper half-space R7 1"1 x R+ where R+

denotes the set of all positive real numbers. For 1 < p < oo, we will write

Ψ for the harmonic Bergman space consisting of all harmonic functions u

on H such that

P

where V denotes the volume measure on H. The space IP turns out to be

a closed subspace of IP', the Lebesgue space on i ϊ , and thus bP is a Ba-

nach space. In particular, b2 is a Hubert space. Hence, there is a unique

Hubert space orthogonal projection R: L2 —» ί>2, which is called the har-

monic Bergman projection. It is known (see Theorem 8.22 of [3]) that

this harmonic Bergman projection can be realized as an integral operator

against the harmonic Bergman kernel R(z,w). See Section 2.

In their recent paper [8], Ramey and Yi have studied these harmonic

Bergman spaces and have shown that many fundamental Bergman space
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52 B. R. CHOE AND H. YI

properties, which are well known in the holomorphic case, remain true. In
this paper we continue to study further properties of these spaces. Here,
we are concerned with two properties of harmonic Bergman functions. One
property we are interested in is the representation of fe^-functions and the
other is, its "dual" property, the interpolation by ί^-functions.

Roughly speaking, by the representation property, we mean the discrete
version of the reproducing property of the harmonic Bergman kernel. That
is, we mean the property of ^-functions u that can be represented as sums
based on the harmonic Bergman kernel with weighted /^-coefficients, which
may take the following form:

(l l) Φ) = Σ, AmC(n"VP)^, *m).

Here, zmn denotes the last coordinate of zm G H. For example, the following
is a special case of our representation results.

THEOREM 1.1. Suppose 1 < p < oo. There exist a sequence {zm} of

points in H and a constant C with the following properties: For (λ m ) G lp,

the function u defined by the series (1.1) belongs to bP with

L \u\pdV<cT\Xm\p.
H L-*1

Conversely, given u G IP, there exists a sequence (λ m ) G lp such that (1.1)

holds and

<C ί \u\PdV.
JH

The corresponding theorem for the space b1 is also available with a
certain restriction. Note that this representation property amounts to the
"onto" property of the operator (λm) >—> u(z) from lp into bP defined by
(1.1). By a consideration of the "onto" property of its adjoint operator,
one is naturally led to the interpolation property. Roughly speaking, the
interpolation property means that lp can be realized as a certain weighted
sequence spaces formed by values of ^-functions on a sequence of points in
H. The following is the interpolation counterpart of Theorem 1.1, which is
also a special case of our interpolation results.

THEOREM 1.2. Suppose 1 < p < oo. There exist a sequence {zm} of

points in H and a constant C with the following properties: For u £bP, we

have

H
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HARMONIC BERGMAN FUNCTIONS 5 3

Conversely, given (λ m ) £ lp, there exists a function u € bP such that

{zm) = λ m for all m and

f \u\
JH

These two properties of holomorphic Bergman spaces were studied on

various settings. See [5], [7] for the representation and [1], [9] for the interpo-

lation. In [5], the representation properties of harmonic Bergman functions,

as well as harmonic Bloch functions, are also proved on the unit ball of Rn.

The interpolation for holomorphic (little) Bloch functions were studied in

[2], [4]. We will also consider the harmonic Bloch space B and the harmonic

little Bloch space Bo on H as limiting spaces of bP. See Section 2 for defini-

tions of these spaces. The models for our arguments are taken from those

arguments in [5], [9] which are based on estimates of the Bergman kernel

in a more constructive way. However, those arguments cannot be simply

applied to the setting of the present paper. There are two fundamental

reasons. First, as pointed out in [8], the unboundedness of H causes certain

difficulties especially when dealing with the spaces bι and B. For example,

the kernel R(z,w) is not integrable in each variable. Secondly, the kernel

R(z,w) has zeros, which causes difficulties in our estimates.

In Section 2 we list some basic properties related to the spaces bP, B

and Bo.

In Section 3 we collect basic and computational lemmas which will

be used repeatedly in later sections. Especially, we introduce a metric p

on H which is very useful for our purposes. While euclidean balls with

radii proportional to the distance from their centers to the boundary could

be used as substitutes for Bergman metric balls in the holomorphic case,

the p-balls play the role of Bergman metric balls and simplify a lot of our

argument.

Section 4 is devoted to the proofs of the representation theorems for

the space 6 ,̂ as well as the spaces B and Bo. We consider here normal

derivative versions of an arbitrary order. By a slight modification of our

proof of normal derivative versions of the ^-representation theorem, we

prove that the fe^-norm is equivalent to the normal derivative lattice norm

(see Proposition 4.8). This yields an unexpected result: If a bP -function has

vanishing normal derivatives along a "sufficiently dense" sequence, then it

must vanish identically. This uniqueness theorem for δ^-functions seems
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54 B. R. CHOE AND H. YI

new for harmonic Bergman functions. The analogue for harmonic Bloch

functions is also proved (see Proposition 4.12).

Section 5 is devoted to the proofs of interpolation theorems for the space

bP, as well as the spaces B and Bo. Using the ̂ -interpolation theorem, we

give an estimate for the distance between a given ^-function and the space

βo5 which might have further applications.

§2. Preliminaries

In this section, we review some preliminary results from [3], [8]. Unless

otherwise stated, the full range 1 < p < oo is intended when discussing IP.

By the mean value property and Jensen's inequality, one can easily

verify that

(2.1) \U(Z)\P < σ^z-n\\u\ψp

holds for all u G bP and z G H. Here, we use the notation σn for the

volume of the unit ball of Rn and z = (z',zn) G R7 1"1 x M+ for z G H. It

follows from inequality (2.1) that norm convergence in IP implies uniform

convergence on compact subsets of H. Thus, IP is a Banach space and in

particular b2 is a Hubert space. Inequality (2.1) also implies that, for each

fixed z G if, the map z *-» u(z) is a bounded linear functional on b2 and

hence there exists a unique function R(z, •) G b2 such that

u(z) = / u(
JH

for all u G b2 where dw also denotes the volume measure on i ί , which we

will often write as dz, ds, etc. The function R(z,w) is called the harmonic

Bergman kernel for b2. It is known that R(z, w) = R(w, z) and that R(z, w)

is real valued; thus we can remove the complex conjugate in the integral

above. For this and related results see Chapter 8 of [3]. From this it is easily

checked that the harmonic Bergman projection R: L2 —•> b2 is the integral

operator against the kernel R(z,w):

(2.2) Rf(z)= ί f(w)R(z,w)dw
JH

for all / G L2. The explicit formula for the harmonic Bergman kernel is

given by

(2.3) R(Z,W

 4 "(*n+Wn)2-\z-w\2

nσn \z — w\
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HARMONIC BERGMAN FUNCTIONS 55

Here, we use the notation w = (W, — wn) for w G H. Note that if n — 2,

then ΰ; is the usual complex conjugate of w. From this formula we easily

see that there is a constant C — C(n) such that

(2.4) \R(z,w)\< C

\z — w\

for all z, w G H. It is not hard to see that the function w ι—> \z — w\ nq

is integrable for each 1 < q < oo and for each fixed z. Also note that

\R(z,w)\ < Cz~n for all w G H. Hence, inequality (2.4) shows that the

harmonic Bergman projection R extends to an integral operator, defined

by (2.2), from LP into the space of harmonic functions on H for each 1 <

p < oo. Moreover, R: IP —> h9 is a bounded projection for 1 < p < oo, but

for some / G X1, Rf is not even integrable. See [8] for more details.

In [8] it is shown that there are many other bounded projections from

Lp onto bP. Let DWτι denote the differentiation with respect to the last

component of w. In case there is no possibility of confusion, we will simply

write D for DWnl DZn, etc. One can easily check from (2.3) that

DZnR(z,w) = DWnR{z,w).

Now, for each integer k > 0, define

for z, w G H. Note that RQ(Z,W) — R(z,w). This kernel Rk(z,w) also

has the following reproducing property as does R(z,w): If 1 < p < oo and

u G IP) then

(2.5) u(z) = / u(w)Rk(z,w)dw
JH

for every z G H. In fact, the kernel Rk(z,w) has the following generalized

reproducing property: If 1 < p < oo and u G bP, then

(2.6) «(*) = ( f e + m

for every integer m > 0. Associated with the kernel Rk{z, w) is the integral

operator Rk defined by the formula

= ί f{w)Rk(z,w)dw
JH
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56 B. R. CHOE AND H. YI

whenever the above integral makes sense. For k > 1, the kernel

behaves better than the harmonic Bergman kernel R(z,w) in the sense that

Rk'. Lp —> V9 is a bounded projection for every 1 < p < oo. For the proofs

of these results, refer to [8]. In the same paper the Bergman norm is shown

to be equivalent to the normal derivative norm: If 1 < p < oo and k > 0 is

an integer, then

(2.7) £ /
JH

as u ranges over b9. Here, and later, the notation a(u) « b(u) means that

the ratio a(u)/b(u) is bounded above and below by some positive constants

independent of u. The analogous result for the tangential derivative norm

can also be found in [8].

We now summarize preliminary results on the harmonic Bloch space B.

For a harmonic function u on if, we say u G B if

\\U\\B — sup wn\X7u(w)\ < oo.
weH

Let ZQ = (0,1) E H. We will let B denote the space of all functions u £ B

such that U(ZQ) = 0. The space B is a Banach space by a standard argument.

We say that u G #o? the harmonic little Bloch space, if u G H satisfies the

additional boundary vanishing condition

limuVilVi^it/)! = 0

where the limit is taken as w —» cλff U {oo}. It is not hard to verify that

BQ is a closed subspace of B. Although we do not need here, we remark in

passing that B is identified with the dual of 61 in [8]. Also, BQ is identified

with the predual of b1 in [10]. In proving these dualities, Ramey and Yi [8]

introduced the modified kernel

R(z, w) = jR(z, w) — R(zo, w)

to overcome the nonintegrability of R(z,w). In fact, the kernel R(z,w)

satisfies the estimate

(2.8) \R{z,w)\ < C +
\z — w\n \z — Vϋ\

for some constant C = C(n) and for all z, w G H. Thus, the function

w ι-> R(z,w) is integrable over H for each fixed z. This kernel R(z,w)
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turns out to be a reproducing kernel for the space B. More generally, for

an integer k > 0, let

Rk(z, w) = Rk(z, w) - Rk{z0, w).

Then Rk(z,w) has the following reproducing property for harmonic Bloch

functions: If u 6 B, then

(2.9) u(z) = / u(w)Rk(z,w)'dw
JH

for all z £ H. The generalized reproducing property of the kernel Rk(z,w)

is also available:

(2.10) u(z) =

for every integer m > 0 and for every u £ B. Also, the associated integral

operator i?fc defined by the formula

= ί f(w)Rk(z,w)dw
JH

takes L°° onto B boundedly. These results were proved in [8] only for the

case k = 0. In order to prove the remaining cases, one can modify the ideas

of [8] which are used to prove the ZAboundedness of Rk and the generalized

reproducing property (2.6).

The Bloch norm is also equivalent to the normal derivative norm ([8]):

If k > 1 is an integer, then

(2.11) N I B « supw*\Dku(w)\

as u ranges over B. Also, for u G B, we have u E BQ if and only if

(2.12) ]im w*Dku(w) = 0

where the limit is taken as w —• dH U {oo}. See [10].
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§3. Basic Lemmas

Words on Constants. In the rest of the paper the same letter C will

denote various positive constants, unless otherwise specified, which may

change at each occurrence. The constant C may often depend on the di-

mension n and some other parameters like <5, p, A;, or α, but it will be always

independent of particular functions, points or sequences under considera-

tion.

In this section we prove several basic lemmas which will be used in later

sections. We first introduce a distance function on H which is useful for

our purposes. In the hyperbolic geometry of H, the arclength element is

\dx\/xn and geodesies are (i) vertical lines and (ii) semi-circles centered on

and orthogonal to IR71"1. Thus, one can verify that the hyperbolic distance

between two points z, w G H is

I + P M
lOg

l-p(z,w)

where
\z-w\

P\z,w) = •: HT.

We shall work with this pseudohyperbolic distance p. While the pseudohy-

perbolic distance is well known on the upper half-plane (see, for example,

[6]), it appears to be not widely known in general. Here, we include a direct

proof that p indeed defines a distance function on H. First, note that p is

horizontal translation invariant and dilation invariant. In particular,

(3.1) p{z, W) = p(φa(z), φaW) (z, W G H)

where φa (a G H) denotes the function defined by

(3.2) φa(z) =
- a' Zn

for z = (z'j zn) G H. Recall z0 = (0,1).

LEMMA 3.1. p is a distance function on H.

Proof. Of course, we only need to check the triangle inequality. From

(3.1), we only need to show

(3.3) p(z, zQ) < p(z, w) + p(w, z0)
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for z,w G H. Fix z,w G H. Let p 2 denote the pseudohyperbolic distance

on the upper half-plane. Then we get

p(z,z0) = P2((\z'\,zn), (0,1))

' |, zn), (\w'\, wn)) + P2((\w'\,wn), (0,1))

/|j Zrι), (|w'|, ™n)) + p(w, Z0).

Note that

so that (3.3) holds. The proof is complete.

For z £ H and 0 < δ < 1, let E$(z) denote the pseudohyperbolic ball

centered at z with radius δ. Note that φz(E$(z)) = E$(zo) by the invariance

property (3.1). Also, a straightforward calculation shows that

(3.4)

so that B(z,δzn) C Eδ(z) C B(z, 2δ(l - δ)-ιzn) where £ ( z , r ) denotes

the euclidean ball centered at z with radius r. We first prove two simple

consequences of (3.4).

LEMMA 3.2. For z, w e H, we have

1 - p(z,w) < Zn_ < 1 + p(z,w)

1 + p(z, iy) ~ iί;n ~ 1 - p(z, it;)'

Proof. Assume p(z,w) < δ. Then, by (3.4),

<
wn 1 - δ'

This implies the lemma.

LEMMA 3.3. For z, w G H, we have

l-p(z,w) < l ^ - s | < l + p(z,^)

l + p(z,κ;) ~ \w — ~s\ ~ 1 — p(z,w)

for all s e H.
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Proof. Assume p(z^w) < δ and let s G H. Then

(3.5) \z — ~s\ — \w — ~s\ < \w — z\.

On the other hand, since E$(w) C B(w, 26(1 — δ)~1wn), we have

\W- Z\< Z 7^n < T\W ~ S\.

l—o l—o

Insert this into (3.5) and get

\z-s\ 1+δ

\w — s\ 1 — δ

This proves the lemma.

Note that the kernel R(z, w) has zeros on H x H. Thus, some estimates

on holomorphic Bergman kernels in [5], [9] have no harmonic analogue.

Instead we have the following estimate.

LEMMA 3.4. Let k > 0 be an integer and a be real. Then

zk+a
\z«Rk{s, z) - w%Rk(8, w)\ < Cp(z, w) _V

\z s\

whenever p(z, w) < 1/2 and s G H.

Proof. Assume p(z,w) < 1/2 and let 5 G H. We first show that

(3.6) \Rk(s, z) - Rk(s, w)\ < Cp(z, w) J

By induction one can check that Rk(s,z) can be written in the form

Rk(8, z) = zn}^ cm

m=0 ' '

for some coefficients c m . Note that this implies

(3.7) \ R k ( S , Z ) \ < C 1
]
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Now, to prove (3.6), it is sufficient to show

J J+k

SnZn(3.8)
s

n

wn

\z _ \w —
< Cp(z,w)-

z - s\

forO <i+j — m < fc-h2. The left side of the above is less than or equal to

\ i j+k _ i wJ+k\
I 71 ^ 71 ^ I

\z _

snWn

\z -

snzn
\Z _ -^1714-^+771

<

~ \z - s\n+k

j+k

j+k

1 -
.
it; — 5

1 -
\W — S\

Since p(z,w) < 1/2, by Lemma 3.2, we have 1/3 < wn/zn < 3 and hence

the first term inside the parenthesis of the above is dominated by some

constant independent of 2, w. Similarly, it follows from Lemma 3.3 that

the second term inside of the parenthesis of the above is dominated by some

constant independent of z, w. This proves (3.8) and thus (3.6).

Now, let a be a given real number. By (3.6) and (3.7), we have

\z%Rk(S,z)-wZRk(s,w)\

< z%\Rk(s,z) - Rk(s,w)\ + zZ\Rk(s,w)\

yk+a yk+a

< C-
_ -ςln+fc l ϋ —

< C

z-s\n+k'

The last two inequalities of the above hold by Lemma 3.2 and Lemma 3.3.

The proof is complete.

Estimate like (2.1) and Cauchy's estimates yield the following lemma

whose proof can be found in Corollary 8.2 of [3]. The notation d(E,F)

denotes the euclidean distance between two sets E and F.

LEMMA 3.5. Suppose u is harmonic on some proper open subset Ω of

E n . Let 1 < p < 00 and a = (αi, , an) be a multi-index of nonnegative
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integers. Then

f)\a\n. p a r
}dVί \u\

d ( α , <

for all a G Ω. The constant C depends only on n, p and a.

Taking Ω = Es(a) in the above lemma, we have the growth estimate

for normal derivatives of harmonic functions on H.

LEMMA 3.6. Let 1 < p < oo; 0 < δ < 1, and k > 0 be an integer.

Then

a^k\Dku(aψ < - ^ / \u{w)ψdw

for all a G H and for every u harmonic on H. The constant C = C{n, k,p)

is independent of δ.

Proof. Let u be a harmonic function on H and fix a <Ξ H. From (3.4),

it is easily seen d(zo,dEs(zo)) = 2<5/(l + δ). Thus, by Lemma 3.5, we have

for some constant C = C{n,p, k). Given a G if, apply the above inequality

to u o φ~ι where φa is the map defined in (3.2) and then make a change of

variables z — φ~1(w). The result is

(a)r < ^ β ^ J M z W dz,

which completes the proof.

By Lemma 3.5, derivatives of harmonic functions cannot grow arbi-

trarily, and neither can integrals of their oscillations. In what follows \K\

denotes the Lebesgue measure of a Borel subset K of H.

LEMMA 3.7. Suppose u is harmonic on some proper open subset Ω of

M71 and let 1 < p < oo. Then, for a given open ball £ C f i ,

for all a G E. The constant C depends only on n and p.
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Proof. Fix a e E. Then, we have

\u(z) — u(a)\ < \z — a\ sup |Vtz(iί;)|

for all z e E. Note that, for w G E,

c (f y/p

l/p

by Lemma 3.5. Hence,

(3.9) M

Since \z — a\n < C\E\ for every a, z £ E, we conclude from (3.9)

L]2 -aΐiz L w'd

as desired. The proof is complete.

Remark 1. By the fact that \u\v is almost subharmonic (see Lemma 3.5

of [5]) for 0 < p < 1, Lemma 3.5, Lemma 3.6, and Lemma 3.7 are actually

true for all 0 < p < oo. However, we will not need this fact in the present

paper.

We now close this section with two simple integral formulas which are

useful in understanding the integral behaviour of various kernels.

LEMMA 3.8. For a > 0, we have

d w

 C-af dw

JH \z - w

for every z € H.
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Proof. Fix z and substitute w = φ~λ{s) — (zns
f + z\ znsn) to see that

JH\z-w\n+<* ~Zn JH\s-zozo\n+a'

Now, the lemma follows from the estimate

ds < ί ds
< ί ds = r
~ JH [1 + H2](»+«)/2 " Λ

The proof is complete.

For a proof of the following lemma, see Lemma 3.1 of [8].

LEMMA 3.9. For 0 < a < 1, we have

f w n a

for every z G H.

§4. Representations

For a motivation, consider a sequence {zm} of distinct points in H with

Zm —* dHu{oo} and pick a pairwise disjoint covering {Em} of H such that

zm G Em. For an integer k > 0 and u G ί̂ , we see from the reproducing

property (2.5)

u(z) = 2_] / u(w)Rk(z,w) dw.

Let q be the conjugate exponent of p. Then, the series

(4.1) ;>>(zm)|£m|1/*' I^I^Λfcίz,^)

can be considered as an approximating Riemann sum of the above integral.

Note that the sum

can be viewed as an approximating Riemann sum of \\u\\p. In this section

we find a sufficient condition on the sequence {zm} for which every function

u £ bP can be represented in this way. By intuition, points of such a sequence

are expected to be sufficiently dense so that approximating Riemann sums

get very close to actual integrals. This intuition has been already made

precise for holomorphic Bergman functions. See [5], [7]. We will prove
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that "sufficient density" remains still sufficient for representation on the

setting of the present paper. Also, we consider an analogous representation

property on the limiting spaces B and Bo.

In the holomorphic case ([5], [7]), representation theorems were proved

under the lattice density condition. Representation theorems for harmonic

Bergman functions on the setting of the unit ball are also proved in [5]

under the similar lattice density condition. The analogous lattice density

condition will turn out to be sufficient for representation of fe^-functions.

The argument of [5] is a constructive one, while that of [7] extensively

uses dualities. We will take the more constructive idea of [5]. To be more

precise, let us introduce some terminology. Let {zm} be a sequence in H

and 0 < δ < 1. We say that {zm} is δ-separated if the balls Es(zm) are

pairwise disjoint or simply say that {zm} is separated if it is ^-separated

for some δ. Also, we say that {zm} is a δ-lattice if it is <5/2-separated and

H — UE^(zrn). Note that any "maximal" έ/2-separated sequence is a 8-

lattice. Also, one can explicitly construct a έ-lattice by using almost the

same argument of [5], We will prove that <5-lattices, with δ sufficiently small,

are representing sequences. The main tool in proving such representation

results is the following covering lemma. One can also prove it by using

almost the same argument of [5]. '

LEMMA 4.1. Fix a 1/2-lattιce {am} and let 0 < δ < 1/8. If {zm} isaδ-

lattice, then we can find a rearrangement {zij | i = 1, 2 , . . . , j = 1, 2 , . . . ,Λ^}

°f {zm} and a pairwise disjoint covering {Dij} of H with the following

properties:

(a)

(b)

(c)

for all i —

Eδ/2(zij) C

Έlβ(ai) C I

Zij £ Eι/2(a

1, 2, ; and j — 1, 2, . .

D

i)

ij C E

= \Dij

Ni.

'δ(Zzj)

C E5/S(aι)

By property (c) of the above, the sequence Ni must have an upper

bound, because pseudohyperbolic balls centered at lattice points cannot

intersect too often as the following lemma shows.

LEMMA 4.2. Let a > 0 and assume 0 < (1 -f a)η < 1. If {zm} is an

η-separated sequence, then there is a constant M — M{n,a,η) such that

more than M of the balls Eaη(zrn) contain no point in common.
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Proof, The proof is a standard volume argument. So, first note from

(3.4) that there exists a positive constant C = C(n) such that

(4.2) C\n < a~n\Er(a)\ < C

for all 0 < r < 1 and a G H. Fix z and let Jz be set of all indices m

such that p(zm^z) < aη. Note that Eη{zm) C E(i+a)η(z) for each m € Jz>
Therefore, by the disjointness of the balls Eη(zm), we have

(4-3) ^ \Eη(zm)\ < \E{1+a)η(z)\.

Also, for each m E J 2 , we have by Lemma 3.2

(4>4)
 ΓTS - ΊΓ'

Letting Mz denote the cardinality of Jz, we obtain from (4.2), (4.3), (4.4)
that

< C

so that

(4.5) Mz<c

for some constant C depending only on n. The proof is complete.

LEMMA 4.3. Let Ni be the sequence defined in Lemma 4-1- Then

sup Ni < Cδ~n

i

for some constant C depending only on n.

Proof By (c), each α; is contained in Ei^(zij) for each j = 1, 2, , N{.

Hence, by Lemma 4.2 with η — δ/2 and a = 1/ί, we obtain from (4.5) (recall

0 < δ < 1/8)

δ~ι)n(l - δ)~n < Cδ~n

for some constant C depending only on n.
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Representation on \P

Let {zm} be a sequence in H. Let 1 < p < oo and k > 0 be an integer.

For (λ m ) G lp, let Qfc(λm) denote the series defined by

(4-6) Qk(λm)(z) = X ; \mZnJtl'P)Rk{z, Zm) (* € #)•

Here, we restrict fc > 1 for p = 1. For a sequence {zm} good enough,
Qk(λm) will be harmonic on H. We say that {zm} is a bP-representing

sequence of order k if Qk(lp) — bP.

Of course, the motivation for the series (4.6) is the approximating Rie-
mann sum (4.1) where Em is pretended to be the ball Es(zrn) for some
fixed δ. However, it might not be clear from the very definition that the
series (4.6) defines a ί^-function under the separation condition. To make
this clear, we need a lemma which is proved in the course of the proof of
Theorem 3.2 and Theorem 4.2 of [8]. We prove it here for the reader's
convenience.

LEMMA 4.4. Let 1 < p < oo and k > 0 be an integer. For f G LP,

define

t«, (z€H).

Then, for 1 < p < oo; Φfc'.I^ —> Lp is bounded for each k > 0. Also,

Φk' L1 —•> L1 is bounded for each k > 1.

Proof. First assume p > 1 and k > 0. Since | Φ * / | < |Φo|/| | j it is
enough to show ΦQ:LP —> L p is bounded. Let g be the conjugate exponent
of p. Note that

Thus, taking absolute values, and then applying Holder's inequality and

Lemma 3.9, we obtain

IΦ./WI-S
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Integrate both sides of the above. After interchanging the order of integra-

tion, we see from Lemma 3.9 once more

/ \Φθf(z)\Pdz < C l\f{w)ψw}l* / r^—dzdw
JH JH JH \Z - w\

<C ί \f(w)\p

JH
\pdw.

Next, for p = 1 and k > 1, it is enough to show Φ\: L1 —> L1 is bounded.

By using Fubini's theorem and Lemma 3.8, we have

< C f \f(w)\dw.
JH

The proof is complete.

The following shows Qk(Jp) C bP if the underlying sequence is separated.

In other words, every separated sequence represents a part of the whole

space.

PROPOSITION 4.5. Let 1 < p < oo and k > 0 be an integer. Suppose

{zm} is a δ-separated sequence. Let Qk be the associated operator as in

(4.6). Then, for 1 < p < oo, Qk: l
p -> IP is bounded for each k > 0. Also,

Qk'Ί1 —* b1 is bounded for each k > 1.

Proof. By (3.7), Lemma 3.2 and Lemma 3.3, there exists a constant

C = C(n, fc, δ) such that

(4.7) \Rk(z,zm)\<C fn <C S" +k
\z ~ zm\ \z ~ s\

for all s G E^{zm) and z G H. Let χm denote the characteristic function of

Eδ(zm) and, for (λ m ) G lp, put

https://doi.org/10.1017/S0027763000025174 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000025174


HARMONIC BERGMAN FUNCTIONS 69

Then, by (4.7), we have

k

ds\Qk(\m)(z)\ < CΣlλ^t^lEsiZmT1 ί
JE

= CΦkf(z).

, + f c

Es{Zm) \Z S\

Now assume k > 0 for 1 < p < oo and assume A: > 1 for p = 1. Then,

from Lemma 4.4, it follows that

WQkiXmW, < C\\f\\P

which shows that Qk' lp —> Lp is bounded and the series in (4.6) converges in

norm. Since every term in the series (4.6) is harmonic, the series converges

uniformly on compact subsets of H. It follows that Qk maps lp into bP. The

proof is complete.

We are now ready to prove our ̂ -representation theorem under the

lattice density condition. Roughly speaking, it states that every sufficiently

dense lattice represents the whole space. We first consider the case 1 < p <

oo.

THEOREM 4.6. Let 1 < p < oo and let k > 0 be an integer. Then

there exists a positive number δo with the following property: Let {zm} be

a δ-lattice with 6 < 6Q and let Qk'Ίp —> bP be the associated linear operator

as in (4.6). Then there is a bounded linear operator Pk'-bP —* lp such that

QkPk is the identity on IP. In particular, {zm} is a bP-representing sequence

of order k.

This should be compared with Theorem 3 of Coifman and Rochberg

[5]. While their theorem (on the ball) has the advantage of being valid for

p < 1, it contains the restriction fc>lforl<p<oo.

Proof. We may assume δ < 1/8. Fix a 1/2-lattice {αm}. Find a

rearrangement {z^} of {zm}, as well as a pair wise disjoint covering {Dij}

of if, for which all properties of Lemma 4.1 are satisfied.
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For u £ bP, let Tu denote the sequence whose components are u(zij)

\Dij\z~n'q where q is the conjugate exponent of p. By (a) and Lemma 3.6

we have

Hzijψ < γ^— ί \u(w)\Pdw

and therefore

(4.8) / \u\VdV = C ί \uψdV,

which means the operator T\bP —» lp is bounded and thus QkT is bounded

on IP by Proposition 4.5.

Now, we show that QkT is invertible on IP for all δ sufficiently small.

Let Xij denote the characteristic function of Dij. The reproducing property

(2.5) then gives

u = Rku = Rk pΓ U χ iή = ]ΓRk[uχij).

Notice that

QkTu(z) ^

Thus, we have u — QkTu = u\ + U2 where

= Rk \Σ(u - u(zij))χij] (z)

J Dij

To estimate these functions, first note that

(4.9) 1/5 < i=- < 5, 1/5 < J i ^ i L < 5
ain \z - ai\

for all 5 e E2/s(ai) and 2 € H by Lemma 3.2 and Lemma 3.3. Put
Eδ(zij) and E* = E2/3(ai) for simplicity. Note Eij C E1/2+δ(ai) C Eb

by (c). Hence, by (4.9),

*) > Cain > Czijn
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for some absolute constant C. Thus, by (a) and Lemma 3.7, we find

/ \u(w) — u(zij)\p dw < / \u(w) — u(zij)\p dw
JDij JEij

f \u(w)\p

JE
<Cδn+p f \u(w)\pdw

J

for all i, j. Here, the constant C is independent of i, j , δ. Thus, for each

fixed ΐ, we obtain from Lemma 4.3

(4.10) V / l i iH-uίz i jOI 'c ίω^σ^ /

Now, since R^ is L^-bounded, we have

- I P
υ\\

= Cγ^ ί \u(w) - u(zi:j)\pdw

<Cδp

ί \u(w)\pdw

/ \u(w)\pdw.
JH

The last inequality of the above holds by Lemma 4.2. In summary, we have

the following estimate of the norm of u\\

(4.11) | | « i | | P < C % | | p

for some constant C independent of δ.

Now we estimate 7x2 By Lemma 3.4, (a) and (4.9),

r , 4n
\Rk(z,w) - Rk(z,Zij)\dw < C / p(w,zij)] _ {r)4_k dw

J Dij
zk-

< Cδ\D,

^ ,
~ Zij\

\z ~ zϋ\

< C δ \ D i j \ ^
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Also, by (a) and Lemma 3.6,

C f

\u(zij)\ < —— / \u(w)\dw,

Combining these observations, we have by (b) and Holder's inequality

M z ) | < C*Σ ]z _aj?ln+k JD \u(w)\dw

(4-12)

\u(w)\p dw >
\z-ai\n+k

where

l ^ ? J
Note that, by (4.9),

1 d5

and hence, by (4.12),

\u2(z)\ < Φk \cδΣχiaΊίq\E*i\~lXi\ (z)

where Φ^ is the operator defined in Lemma 4.4 and χι denotes the charac-

teristic function of E*. Now, the ZAboundedness of Φ*. gives

ί Hw)\p

Jεr

ί \u(w)\pdw.
JH

Σ ί H)\pdw
Jεr

<Cδp ί
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The last inequality of the above holds by Lemma 4.2. Here, the constant

C is independent of δ. Thus we have the following estimate of the norm of

u2:

(4.13) \\u2\\p < Cδ\\u\\p

for some constant C independent of δ. We therefore conclude from (4.11)

and (4.13) that

\\QkT-I\\<Cδ

where / denotes the identity on IP for some constant C independent of δ.

Accordingly, QkT is invertible for all δ sufficiently small. For such <5, set

Pk = T{QkT)~ι. The proof is complete.

The b1 -representation theorem takes exactly the same form as the above

^-representation theorem except for the restriction k > 1. The proof is also

almost the same and thus omitted.

THEOREM 4.7. Let k > 1 be an integer. Then there exists a positive

number δo with the following property: Let {zm} be a δ-lattice with δ < δo

and let Qk:l
ι —» bι be the associated linear operator as in (4.6). Then there

is a bounded linear operator Pk:b
λ —» I1 such that QkPk is the identity on

b1. In particular, {zm} is a b1 -representing sequence of order k.

The above proof of Theorem 4.6 also gives some other information on

norm representation of ̂ -functions. Namely, one can conclude from (4.8)

and (4.10)

/ |iλ(it;)|p dw r
JH

as u ranges over IP. Such norm representation remains true with normal

derivatives of an arbitrary order.

PROPOSITION 4.8. Let 1 < p < oc and k > 0 be an integer. If {zm} is

a δ-lattice with δ sufficiently small, then

LIH

as u ranges over bP.
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Proof. Let u £ IP. We continue to use the notations defined in the
proof of Theorem 4.6. Note that

/ wpk\Dku{w)\pdw -
id

< CΣ I WnDku{w) - zk

jnD
ku{zi3)\p dw

id jDi>

\wk

n-zk

jn\
p\Dku{w)\pdw

ΦDk<w) - Dku{Zij)ψdw
hJ

It follows from (a) and Lemma 3.2 that |1 — Zijn/wn\ < 26/(1 — δ) for
w E Dij and therefore

I < j " f wlk\Dku(w)\p dw = C6p f wp

n

k\Dku(w)\p dw

for some constant C independent of 6 small. Also, as in the proof of (4.10),
we have

\Dku(w) - Dku(Zij)\p dw < Cδn+v Y / wg\Dku{w)ψ dw

<Cδp f wPk\Dku(w)\pdw,
JE*

so that

II < CδPY f wpk\Dku{w)\p dw < Cδp [ wpk\Dku{w)\pdw.
i JE* JH

Here, the constant C is also independent of δ small. It follows that

(i - cs>) ί wζk\Dku(w)\pdw < X ^ j^M^OIΊAi l
H ij
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Now, since C is a constant independent of 6 small, we see from (2.7) that

one inequality holds for δ sufficiently small. The other inequality easily

follows from Lemma 3.6.

Remark 2. Proposition 4.8 yields an interesting consequence. Namely,

if the normal derivative of a ί^-function u vanishes on a 5-lattice with δ

sufficiently small, then u must vanish identically. This seems a new unique-

ness result for harmonic Bergman functions. This property also extends to

harmonic Bloch functions. See Proposition 4.12 below.

Now, we turn to the analogous representation property for the spaces

B and Bo

Representation on B and Bo

Recall that we also have the reproducing formula (2.9) for harmonic

Bloch functions. Thus, a consideration of approximating Riemann sum

leads us to a similar definition of representing sequences for the spaces B

and Bo Let {zm} be a sequence in H and k > 0 be an integer. For

(λ m ) € l°°, let

(4.14) Qk(λm)(z) = Σ λmz^nRk(z, zm) (z e H).

We say that {zm} is a B-representing sequence of order k if Qk{l°°) = B- We

also say that {zm} is a BQ-representing sequence of order k if Qk(co) — #o

As in the case of {^-representation, we begin with an observation that

a separated sequence represents a part of the whole space.

PROPOSITION 4.9. Let k > 0 be an integer and suppose {zm} is a δ-

separated sequence. Let Qk be the associated operator as in (4.14). Then,

Qk'Ί00 —* β ϊ 5 bounded. In addition, Qk maps Co into Bo-

Proof. Note Rk(z,w) = (-2) f c(fc!)- 1^D^n JR(z,iί;). We first show that

the series in (4.14) converges uniformly on compact subsets of H. Let K

be a compact subset of H. Then, by (2.8) and Lemma 3.3, there exists a

constant C = C(K) such that

for all z G K and w G H. Thus, it follows from Lemma 3.6 that

_ r _ r

zn

mn\Rk{z,zm)\<C \R(z,w)\dw<C
JEs(zm) JE

\ ) \
Es(zm) JE6{zm)
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for all z G K. Since \w — z"o|~^n+1^ is integrable, it follows that the series

in (4.14) converges uniformly on K. Note that DZnR(z,w) = DZnR(z,w).

Now, after differentiating term by term, apply Lemma 3.6, (3.7), Lemma 3.8,

to obtain

DQ(λm)(z) < j2

V / \DZnR(z,w)\dw
Es{zm)

In other words, by (2.11),

(4.15) | | Q ( λ m ) | | β <

which shows the first part of the proposition.

Next, assume (λ m ) G Co and put

N ~
UN(Z) = Σ λjZ?nRk(z, zj) (N = 1, 2, .).

3=1

Since DZnRk(z,w)= — (k + l)2~1w~1Rk+i{zjit;), it is easily checked

G Bo for each fixed K; and therefore UN € ^o for all iV. By (4.15), for every
N, we have

\\Qk(*m)-UN\\.B<c( SUp Iλj l)

so that U]\[ converges to Qk(λm) in norm. Hence Qk(λm) £ BQ. The proof

is complete.

Having Proposition 4.9, one can modify the proof of Theorem 4.6 to

obtain a similar /^-representation theorem. As a substitute for integral

estimates in the proof of Theorem 4.6, we need the following lemma.

LEMMA 4.10. Let k > 1 be an integer. Then

\zk

nD
ku{z) - wk

nD
ku{w)\ < Cp(z,w)\\u\\B

for all z, w G H and u G B.
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Proof. Let u G B and fix z, w G i/. We may assume p(z,w) <
1/2. By passing differentiation through the integral sign in the generalized
reproducing formula (2.10), we have

zkDku{z) - wkDku(w)

= -2 / sn[Du(s)](zkDk

nR(z, s) - wkDk

WnR(w, s)) ds
JH

= k\(-2γ-k ί sn[Du(s)}(Rk(s,z)-Rk(s,w))ds
JH

and therefore, after taking absolute values, we obtain from Lemma 3.4 and
Lemma 3.8 that

\zkDku(z)-wkDku(w)\<Cp(z,w)\\u\\B I *? ds
JH \z s\

<Cp(z,w)\\u\\B,

which completes the proof.

The following is the limiting version of the ̂ -representation theorem
(Theorem 4.6). For a similar result on the ball, see Theorem 3' of [5].

THEOREM 4.11. Let k > 0 be an integer. Then there exists a positive
number δo with the following property: Let {zm} be a δ-lattice with δ < δo
and let Qk'Ί00 —* B be the associated linear operator as in (4.14). Then
there exists a bounded linear operator Pk' B —> l°° such that QkPk is the
identity on B. Moreover, Pk maps BQ into CQ. In particular, {zm} is a both
B-representing and Bo-representing sequence of order k.

Proof. The proof is similar to that of Theorem 4.6. Any unexplained
notation will have the same meaning as in the proof Theorem 4.6. For
u G B, let Tu denote the sequence whose components are zl~^Du(zij)\Dij\.

Then, by (a), T:B—^l°° is bounded. Since the sequence {zm} is separated,
we have zm —> dH U {oo}. Thus T maps Bo into co It follows that QkT is
bounded on B and maps Bo into itself by Proposition 4.9. As in the proof of
Theorem 4.6, it suffices to show QkT is invertible on B for all δ sufficiently
small.

Note that

QkTu(z) = y ^ ZjjnDu(zjj)Rk(z, Zjj)\Djj
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and Rk[wnDu(w)] = — (k + l)u/2 by the generalized reproducing property

(2.10). Hence we can decompose —(k + l)u/2 — QkTu = u\ + u2 where

uι(z) — Rk yS (wnDu(w) - ZijnDu(zij))χij\ (z)

u2(z) — 2_. ZίjnDu(zij) / Rk(z, w) — Rk(z, Zij) dw.
JD%3

For ^i , since Rk: L°° —• B is bounded, we have, by Lemma 4.10 and (a),

the following norm estimate of u\:

\\U\\\B = \\Rk \^2(wnDu(w) - zijnDu{zij))χi

< I

(4.16)

< C||ifc||5 I sup sup p(w,.

< Cδ\\u\\B.

Note that the above constant C is independent of δ.

Differentiating term by term and then differentiating under the integral

sign, we have

Du2(z) = S^ zijnDu(zij) / DZnRk(z, w) - DZnRk(z, z^) dw

jnDu(zij) / w^Rk+i&w) - z~^nRk

JDij

After taking absolute values, we see from (a) and Lemma 3.4

k

\Du2(z)\ < C\\u\\BJ2 / P(w,*ij)] = £
— JDij \z ~ w\

<C6MBΣΓ dw

z — w\n+1

< Cδz-ι\\u\\B

where the last inequality holds by Lemma 3.8. This, together with (2.11),

yields the following norm estimate of u2:

(4.17) \\U2\\B < Cδ\\u\\B.
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Here, the constant C is also independent of δ. Now, letting I denote the

identity on #, we conclude from (4.16) and (4.17) that

for some constant C independent of δ. Accordingly, QkT is invertible on B

for all δ sufficiently small, as desired. The proof is complete.

Lemma 4.10 also yields the following result for B analogous to Propo-

sition 4.8.

PROPOSITION 4.12. Let k > 1 be an integer. If {zm} is a δ-lattice with

δ sufficiently small, then

m
U\\B « supz^ n \D k u(z m )\

as u ranges over B.

Proof. Let {zm} be a ό-lattice with δ < 1/8 and let {Aj} be the

pairwise disjoint covering of H associated with {zm} as in Lemma 4.1.

Then, for u G B and for w G Dij, we have by (a) and Lemma 4.10

\w*Dhu(w) - z^Dku{zii)\ < Cδ\\u\\B

and hence

sup wk

n\Dku(w)\ - Cδ\\u\\B < zln\Dku{Zij)\.
weDij

Taking supremum over all i, j , we have from (2.11)

C\\u\\B - Cδ\\u\\B < 8VL?z*jn\Dku(zij)\J

hi

which implies the proposition.

A result for holomorphic Bloch functions (on the disk) similar to the

above proposition can be found in [2].
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§5. Interpolations

Consider a ^-separated sequence {zm}. Let k > 0 be an integer and

1 < p < oo. By Lemma 3.6 we have

ί W\pdV < C [ \u\*>dV

for all u £ bP. In other words, if we let T^u denote the sequence whose m-th

component is z^n Dku(zm), then the operator Tk'.bP —> lp is bounded.

However, having seen representation theorems in the previous section, one

cannot expect that such Tk is onto in general. In fact, by Proposition 4.8,

Tk is one-to-one for 8 sufficiently small and Tk cannot be expected to be an

isomorphism in general. This "interpolating" operator Tk is closely related

with the "representing" operator Qk (studied in the previous section) in

the sense that, for 1 < p < oo and its conjugate exponent g, the adjoint

of Qk'Ίq —> bq can be identified (up to a constant factor) with T^: bP —» lp

under the standard integral pairing if the underlying sequence is separated.

For the duality (6?)* = bq, see [8].

In view of interpolation results of [1], [9] for holomorphic Bergman

functions on various domains, a good candidate condition for "onto" is

"sufficient separation." In this section we prove that the same phenomenon

persists to hold on the setting of the present paper. As a limiting case, we

will also consider interpolation on the spaces β, Bo and get similar results.

In the holomorphic case, such interpolation property on the Bloch space

was studied in [2], [4].

Interpolation on IP

Let {zm} be a sequence in H. Let k > 0 be an integer and 1 < p < oo.

For u E ftP, let T\~u denote the sequence of complex numbers defined by

(5.1) Tku = {zΐltkDku{zm)).

Thus Tfc is a linear operator taking IP into the space of all sequences of

complex numbers. We say that {zm} is a IP-interpolating sequence of order

kιfTk(W) = P.

We first show that separation is necessary for ^-interpolation. We need

a couple of lemmas.

LEMMA 5.1. Let {zm} be a bP-interpolating sequence of order k. Let

Tk denote the associated operator as in (5.1). Then, Tk'. bP —> lp is bounded.
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Proof. Assume Uj —> u in bP and TkUj —> (λ m ) in lp. By the closed

graph theorem, we only need to show Tku = ( λ m ) . By Lemma 3.6, for any

positive integer TV, we have

\\Tku-(\mψp

oo

— V^ \zn/p+kDkv(z ) - A \p

1

iV N

%*k\Dku(zm) - Dk

Uj(zm)f + cY(\z^+kDkuj(zm) - λm\p

1 1
oo

\zmn
N+l

< CN\\u - u3\\p

p + C\\Tku3 - (λm)| |J + £ \z^p+kDku(zm) - λm\p.
ΛΓ+l

Now, taking first the limit j —> oo and then JV -^ oo, we obtain Tfc?x = .(λm).
The proof is complete.

The following can be viewed as a ί^-version of Lemma 4.10.

LEMMA 5.2. Let 1 < p < oo and k > 0 be an integer. Then

\z^p+kDku(z) - w^p+kDku(w)\ < Cp(z,w)\\u\\p

for all z, w € H and u £ bP.

Proof. Let u e bP and fix z, w G H. By Lemma 3.6, we may assume
p(z,w) < 1/2. First, by the reproducing formula (2.5) and differentiation
under the integral sign, we have

ί
JH

Note that

n/p+k

^ ^ s , w ) \ < Cp(z,w) Zn

\z
_
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by Lemma 3.4. Since z^k\z — ?|~(n+fc) < 15 this proves the lemma for

p = 1. For p > 1, after taking absolute values, apply Holder's inequality

and then Lemma 3.8 to obtain

<Cp(z,w)\\u\\p

where q is the conjugate exponent of p. The proof is complete.

PROPOSITION 5.3. Every bP -interpolating sequence of order k is sepa-

rated.

Proof. Let a ί^-interpolating sequence of order k be given. Then, by

Lemma 5.1, the associated linear operator T^: Ψ —> lp is bounded and onto.

Hence, by the open mapping theorem, one can find a uniformly bounded

sequence Uj in IP such that T^Uj is the sequence whose components are

all 0 except for the j- th component 1. Now, the proposition follows from

Lemma 5.2.

Before proceeding to the proof that "sufficient separation" is sufficient

for ί^-interpolation, we first prove a lemma.

LEMMA 5.4. Let 1 < p < oo and k > 0 be an integer. Suppose {zm} is

a δ-separated sequence. Then, for (λ m ) £ lp, we have

(5.2)

for w G H where q is the conjugate exponent of p. The constant C is

independent of δ.

Proof. Note that

\Xm\z^\Rk(zm9w)\

Thus, by Holder's inequality, the left side of (5.2) is less than or equal to
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Note that 1/3 < zmn/sn < 3 for s G Eδ/2(zm) by Lemma 3.2. Thus, by

Lemma 3.6 and (3.7), the sum inside the parenthesis of the above is less

than or equal to

^6 / 2 (.

\Rk(srw)\ds

<cδ~nY ί ,whnSn

ι 1 ds

r k - 1

<cδ-n / ™nSn

JH\s-w\n+k

k -1/P

r s~ 1 / p

n / , ,
JH\s-w\n ds

where the last inequality holds by Lemma 3.9. Here, the constant C =

C(n,p, k) is independent of δ. The proof is complete.

Now we prove our ί^-interpolation theorem. Recall that the interpola-

tion is the dual property of representation in a certain sense. Thus, even

though we do not use any duality argument here, it is not too surprising to

see that the following ^-interpolation theorem takes a very similar form to

the ^-representation theorem of the previous section. Duality does provide

some motivation for the proof, however.

THEOREM 5.5. Let 1 < p < oo and k > 0 be an integer. Then there

exists a positive number <5o with the following property: Let {zm} be a δ-

separated sequence with δ > δo and let !&: bP —> lp be the associated linear

operator as in (5.1). Then there is a bounded linear operator Sk'.lp —> bP

such that T^Sfc is the identity on lv. In particular, {zm} is a bP-interpolating

sequence of order k.

Proof. Fix an integer k > 0. First, it is not hard to verify (by

induction) that the function w «—> k\(—2)~kw^R]ς(w,w) is constant on

H. We will let c& (φ 0) denote this constant (one may compute c^ =

4(-l) f c (n + k- l)\/nσn2
n+k(n - 2)!). The proof is splitted into two cases.

The case 1 < p < oo: Fix (λ m ) G lp. Let Q(λm) denote the function

defined by

Q(λm)(w) = Σ λmZ^R{w, zm) (w e H)
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where q is the conjugate exponent of p. Then, by Proposition 4.5, Q:lp —> IP

is a bounded linear operator. Thus T^Q is bounded on P.

We claim that TkQ is invertible on lp for all 6 sufficiently close to

1. Let / denote the identity on lp and let a.j denote the jί-th component

of the sequence {T^Q — Cfc/)(λm). Note that the j - t h component of the

sequence TkQ(λm) is zn !^ DkQ{Xrn){zj). Thus, by term-by-term differen-

tiation (justified by uniform convergence on compact sets), one has

Ύϊlφj

Thus, by Lemma 5.4, we have

\oι\v < Cδ~n(p~1^zn~1/q S^ Iλ \|«j| ^ ^° zjn /^ί I m

so that

(5.3) ]Γ \atf < Cδ-<v-V f; \λmψβm

where

jφm

On the other hand, by Lemma 3.6, we have (as in the proof of Lemma 5.4)

βm<Cδ-(n+khUZΣZJn/q J \R(Zm,s)\ds

ί s-^q\R(zm,s)\ds

19

ds'LH\Ee(zm) I s - zm\n

r -1/9
= Cδ-ίn+k) ^ _ d s

JH\ES(Z0) \S ~ Z0\
n

for all m. Here, the constant C depends only on n, p and k. Consequently,

from (5.3) and (5.4), we conclude

f r

\\TkQ - cfclH < Cδ-^kM I / j ^ — - ds
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for some constant C independent of 6. It follows from the fact that sn |s —

Ίo\~n is integrable (Lemma 3.9) that the integral of the above tends to 0 as

ί / I . Thus TkQ is invert ible on lp for all 6 sufficiently close to 1. For such

<5, put Sfc — Q(TkQ)~λ. This completes the proof for the case 1 < p < oo.

The case p = 1: The proof is similar. The auxiliary operator is slightly

different. Fix (λ m ) G I1. Let Q(λ m ) denote the function defined by

(5.5) Q(λm)(w) = Σ XmRi(w, zm) (w e H).

Then, by Lemma 4.5, Q: I1 —> 61 is bounded and thus TkQ is bounded on

I1.

We now prove TkQ is invert ible on I1 for all δ sufficiently close to 1. Let

/ denote the identity on I1 and let aj be the j-th component of the sequence

(TkQ 4- 2cfc+il)(λm). Since the j- th component of the sequence TkQ(λm) is

z™nkDkQ(λm)(zj), after differentiating term-by-term, we obtain

aj ~ ~^Zjn Z-j ^rnZmnDZJ7iDZjnR(zrn^ Zj)

and therefore by Lemma 3.6

Σ / zmn\DWnR(zm,w)\ dw

where C is a constant independent of 6. Since \w — ZQ\ (n + 1) is integrable

(Lemma 3.8), one can see as above that the operator TkQ is invertible on

I1 for all 6 sufficiently close to 1. For such 5, put Sk = QiTkQ)'1. This

completes the proof.

As a limiting case of ^-interpolation, we now consider interpolations

on the spaces B and BQ.
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Interpolation on B and Bo

Let k > 1 be an integer and let {zm} be a sequence in H. For u G #,

let Tfc?i denote the sequence of complex numbers defined by

(5.6) fku = (zk

mnD
ku(zm)).

Then 2V B —•> Z°° is clearly bounded. We say that {zm} is a B-interpolating

sequence of order k if Tk(B) = Z°°. We also say that {zm} is a £?o-

interpolating sequence of order k if Tfc(£?o) — co

As in the case of ί^-interpolation, separation turns out to be necessary

for β-interpolation or i?o-interpolation.

PROPOSITION 5.6. Every B-interpolating sequence of order k is sepa-

rated. Also, every Bo-interpolating sequence of order k is separated.

Proof Having Lemma 4.10, one can proceed as in the proof of Propo-

sition 5.3.

The following theorem shows that "sufficient separation" is also suffi-

cient for β-interpolation or ί?o-interpolation.

THEOREM 5.7. Let k > 1 be an integer. Then there exists a positive

number δo with the following property: Let {zm} be a δ-separated sequence

with δ > δo and let 2\: B —» l°° be the associated linear operator as in (5.6).

Then there exists a bounded linear operator 5 :̂/°° —•» B such that TfrSk is

the identity on l°°. Moreover, S^ maps Co into Bo- In particular, {zm} is a

both B-interpolating and Bo-interpolating sequence of order k.

Proof. Fix a positive integer k and let {zm} be a έ-separated sequence.

For (λ m ) G Z°°, let Q(Xm) denote the function defined by

Λ Φ , Zm) (W € H).

By Proposition 4.9, Q:l°° -> B is bounded and Q maps Co into Bo. Since

the sequence {zm} is separated, we have zm —> dHu{oo} and thus Tk maps

Bo into co It follows that T^Q is bounded on Z°° and maps Co into itself.

As in the proof of Theorem 5.5, it remains to show T\Q is invertible on Z°°

for all δ sufficiently close to 1.
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Let Cfc be the constant defined in the proof of Theorem 5.5 and let
/ denote the identity on Z°°. Since the j-th component of the sequence
TkQ{λm) is ZjnD

kQ(λm)(zj), term-by-term differentiation yields

j = k\(-2) ~k

where αy denotes the j-th component of the sequence (T^Q — Cfcl)(λm).
Thus, by Lemma 3.6 and (3.7),

f \Rk{z,z3)\dz

f
H\Eδ(Zj) \z~ zj

d z

H\Eδ(zo) \z ~

for all j . Here, C is a constant depending only on n and k. Now, as in the
proof of Theorem 5.5, we conclude that the operator T^Q is invertible for
all δ sufficiently close to 1, as desired. The proof is complete.

We now close the paper by giving a distance estimate from a given
function u G B to the space Bo as an application of Theorem 5.7. In the
following dist(ti, βo) denotes the distance from u to Bo and the limsup is
taken asz-> dH U {oo}.

PROPOSITION 5.8. Let k > 1 be an integer. Then

dist(n, Bo) « limsup^|i?fc'u(2:)|

as u ranges over B.

Proof. Let ueB.lt follows from (2.12) that

limsupZn\Dhu(z)\ < Cdist(u,B0).

To prove the other inequality, fix a <5-lattice {zm} for which Propo-
sition 4.12 holds. Let j be a given positive integer. Choose inductively a
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subsequence {zjk } of {zm}^_ _ 1̂ which is sufficiently separated so that {zjk }

is a ^-interpolating sequence of order k by Theorem 5.7. Adding finitely

many points, one can find that the sequence JZI, 22, , 2j, ^ji? ^ 2 ) * * * is

still a ^-interpolating sequence of order k. Thus, there exists a function

g e Bo such that Dkg(zm) = Dku(zm) for 1 < m < j and Dkg(zm) — 0 for

all m = jΊ, J25 * * *• Now, by Proposition 4.12,

\\u-g\\B<C sup zk

mn\Dku{zm)-Dkg{zm)\.
m>j+l

Since g £ ί?o and z m —> 9 ί ί U {00}, taking the limit j —>• 00, one obtains

as desired.
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