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Abstract

We prove a DDVV inequality for submanifolds of warped products of the form I ×a M
n(c), where I is

an interval and Mn(c) is a real space form of curvature c. As an application, we give a rigidity result for
submanifolds of R ×eλt Hn(c).
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1. Introduction
Let (Mn, g) be an n-dimensional Riemannian manifold isometrically immersed into an
(n + p)-dimensional Riemannian manifold (Nn+p, ḡ). When the ambient space is a real
space form of constant sectional curvature c, we have the pointwise inequality

‖H‖2 > ρ + ρ⊥ − c,

where
ρ =

2
n(n − 1)

∑
i< j

〈R(ei, e j)e j, ei〉

is the normalised scalar curvature of (M, g) and

ρ⊥ =
2

n(n − 1)

(∑
i< j

∑
α<β

〈R⊥(ei, e j)ξα, ξβ〉2
)1/2

is the normalised normal curvature of the immersion. Here, {e1, . . . , en} and {ξ1, . . . ξp}

are respectively orthonormal frames of T M and T⊥M. This inequality, known as the
DDVV conjecture, was conjectured by De Smet et al. in [2] and proved recently
by Lu [6] and by Ge and Tang [4] independently. More recently, Chen and Cui [1]
generalised the inequality in the setting of product spaces Sn × R and Hn × R.

In this note, we extend the result of Chen–Cui by proving a DDVV inequality for
submanifolds of warped products I ×aM

n(c), where I ⊂ R is an interval and a : I → R
is a nowhere-vanishing smooth function. Denote by ∂t = ∂/∂t the unit vector field
tangent to the factor I. We prove the following result.
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Theorem 1.1. Let Mm be a submanifold of the warped product I ×a M
n(c) with

normalised scalar and normal scalar curvatures ρ and ρ⊥ and mean curvature H.
Then

‖H‖2 > ρ + ρ⊥ +

( (a′)2

a2 −
c
a2

)(
1 −

2
m
‖T‖2

)
+

2a′′

ma
‖T‖2,

where T is the part of ∂t tangent to M.

Remark 1.2. Note that, of course, we recover the DDVV inequality of [1] for product
spaces Sn × R and Hn × R as well as for Rn+1 by taking a = 1, but we also recover the
inequality for space forms. Indeed, Sn and Hn can be expressed in terms of warped
products. Namely:

(1) Sn = [0, 2π] ×a S
n−1 with a(t) = sin(t). In this case, the inequality of Theorem 1.1

becomes ‖H‖2 > ρ + ρ⊥ − 1;
(2) Hn = [0,+∞[×a S

n−1 with a(t) = sinh(t) or Hn = R ×a R
n−1 with a(t) = e−t. For

both cases, the inequality of Theorem 1.1 becomes ‖H‖2 > ρ + ρ⊥ + 1.

2. Preliminaries

Let Mn(c) be the simply connected real space form of dimension n and constant
curvature c. Let I ⊂ R be an interval and a : I −→ R be a nowhere-vanishing smooth
function. We consider the warped product P̃n+1 = I ×aM

n(c), formed from the product
I ×Mn(c) endowed with the metric g̃ = dt2 + a(t)2gMn(c). Denote by ∂t = ∂/∂t the unit
vector field tangent to the factor I. Recall (see, for example, [5]) that the curvature
tensor of (P̃n+1, g̃) is given by

R̃(X,Y)Z =

( (a′)2

a2 −
c
a2

)
(〈X,Z〉Y − 〈Y,Z〉X)

+

(a′′

a
−

(a′)2

a2 +
c
a2

)
(〈X,Z〉〈Y, ∂t〉∂t − 〈Y,Z〉〈X, ∂t〉∂t

− 〈Y, ∂t〉〈Z, ∂t〉X + 〈X, ∂t〉〈Z, ∂t〉Y).

Let (Mm,g) be a Riemannian manifold isometrically immersed into P̃. We denote by B
its second fundamental form and by A the shape operator defined for any X,Y ∈ Γ(T M)
and ξ ∈ Γ(T⊥M) by 〈B(X,Y), ξ〉 = 〈AξX,Y〉. Moreover, ∂t can be written as

∂t = T +

p∑
α=1

fαξα,

where T is a vector field tangent to M, {ξ1, . . . , ξp} is a local orthonormal frame of
T⊥M and f1, . . . , fp are smooth functions over M. We will denote Aξα simply by Aα.

From the expression of the curvature tensor of P̃, we get immediately the Gauss,
Codazzi and Ricci equations for a submanifold of P̃. Namely, if we denote by R and
R⊥ the curvature tensor of (M, g) and the normal curvature, respectively, we have the
following proposition. The proof is straightforward from the expression for R̃.
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Proposition 2.1. The Gauss, Codazzi and Ricci equations of the immersion of M into
P̃ are respectively

〈R(X,Y)Z,W〉= 〈B(Y,Z), B(X,W)〉 − 〈B(Y,W), B(X,Z)〉

+

( (a′)2

a2 −
c
a2

)
(〈X,Z〉〈Y,W〉 − 〈Y,Z〉〈X,W〉)

+

(a′′

a
−

(a′)2

a2 +
c
a2

)
(〈X,Z〉〈Y,T 〉〈W,T 〉 − 〈Y,Z〉〈X,T 〉〈W,T 〉

− 〈Y,T 〉〈Z,T 〉〈X,W〉 + 〈X,T 〉〈Z,T 〉〈Y,W〉),

〈(∇̃X B)(Y,Z), ξα〉=
(a′′

a
−

(a′)2

a2 +
c
a2

)
fα(〈Y,T 〉〈X,Z〉 − 〈X,T 〉〈Y,Z〉),

〈R⊥(X,Y)ν, ξ〉= 〈[Aν, Aξ]X,Y〉.

Finally, we recall that the DDVV conjecture can be reduced to the following
algebraic result (see [3]) proved by Lu.

Theorem 2.2 [6]. Let n, p > 2 be two integers and M1, M2, . . . , Mp be some n × n real
symmetric and trace-free matrices. Then

p∑
α, β=1

‖[Mα,Mβ]‖2 6
( p∑
α=1

‖Mα‖
2
)2
.

3. Proof of Theorem 1.1

First, from the definition of ρ and using the Gauss equation,

ρ=
2

m(m − 1)

∑
i< j

〈R(ei, e j)e j, ei〉 =
1

m(m − 1)

∑
i, j

〈R(ei, e j)e j, ei〉

=
1

m(m − 1)

∑
i, j

(
〈B(e j, e j), B(ei, ei)〉 − ‖B(ei, e j)‖2 −

( (a′)2

a2 −
c
a2

)
−

(a′′

a
−

(a′)2

a2 +
c
a2

)
(〈T, ei〉

2 + 〈T, e j〉
2)
)

=−

( (a′)2

a2 −
c
a2

)
+

1
m(m − 1)

(
n2‖H‖2 − ‖B‖2 − 2(m − 1)

(a′′

a
−

(a′)2

a2 +
c
a2

)
‖T‖2

)
.

Now, set τ = B − Hg, the traceless part of the second fundamental form. Clearly, we
have ‖τ‖2 = ‖B‖2 − n‖H‖2. Hence,

ρ=−

( (a′)2

a2 −
c
a2

)(
1 −

2
m
‖T‖2

)
−

2a′′

ma
‖T‖2 + ‖H‖2 −

1
m(m − 1)

‖τ‖2. (3.1)

For any α ∈ {1, . . . , p}, define the operator S α : T M → T M by

〈S αX,Y〉 = 〈τ(X,Y), ξα〉.
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Obviously, S α = Aα − 〈H, ξα〉Id and [Aα, Aβ] = [S α, S β]. From the Ricci equation,
given in Proposition 2.1,

ρ⊥ =
1

n(n − 1)

√√√ p∑
α, β=1

‖[Aα, Aβ]‖2 =
1

n(n − 1)

√√√ p∑
α, β=1

‖[S α, S β]‖2.

Since the operators S α are symmetric and trace-free, we can apply Theorem 2.2 at any
point of M to get

p∑
α, β=1

‖[S α, S β]‖2 6
( p∑
α=1

‖S α‖
2
)2
.

Thus,

ρ⊥ 6
1

m(m − 1)

m∑
α=1

‖S α‖
2 =

1
m(m − 1)

‖τ‖2.

Combining this with (3.1) gives

‖H‖2 > ρ + ρ⊥ +

( (a′)2

a2 −
c
a2

)(
1 −

2
m
‖T‖2

)
+

2a′′

ma
‖T‖2,

which concludes the proof. �

4. An application to submanifolds of R ×eλt H
n(c)

To finish this note, we apply Theorem 1.1 to submanifolds of the warped product
of the type R ×a H

n(c), where a is the real function defined by a(t) = eλt and λ is a real
constant.

Corollary 4.1. Let Mm be a submanifold of the warped product R ×eλt Hn(c) with
normalised scalar and normal scalar curvatures ρ and ρ⊥ and mean curvature H.
Then

‖H‖2 > ρ + ρ⊥ + λ2 − ce−2λt
(
1 −

2
m
‖T‖2

)
.

Proof. This comes directly from Theorem 1.1, using the facts that

(a′)2

a2 −
c
a2 = λ2 − ce−2λt,

a′′

a2 = λ2.

Hence, the terms( (a′)2

a2 −
c
a2

)(
1 −

2
m
‖T‖2

)
+

2a′′

ma
‖T‖2 = λ2 − ce−2λt

(
1 −

2
m
‖T‖2

)
. �

Comparing ‖H‖2 with ρ is a natural question which leads to rigidity results. Indeed,
by the Gauss formula, we know that, for hypersurfaces of space forms, ρ is up to a
constant (which is the sectional curvature k of the ambient space form) the second
mean curvature H2, that is, the second elementary symmetric polynomial in the
principal curvatures. Moreover, it is a classical fact that H2 > H2 with equality at
umbilical points. Hence, assuming H2 6 ρ − k implies that M is a hypersphere. In this
spirit, and using the above DDVV inequality, we give the following rigidity result.
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Corollary 4.2. Let Mm be a complete submanifold without boundary of the warped
product R ×eλt Hn(c) with normalised scalar and normal scalar curvatures ρ and ρ⊥

and mean curvature H. If ‖H‖2 6 ρ + λ2, then

‖H‖2 = ρ + λ2, ρ⊥ = 0, m = 2 and ‖T‖ = 1.

Hence, M is a surface of the type R ×eλt γ, where γ is a curve in Hn(c).

Proof. First note that since n > 2, ‖T‖2 6 1 and c < 0,

ce−2λt
(
1 −

2
n
‖T‖2

)
6 0.

By definition, ρ⊥ > 0. Hence, from Corollary 4.1, ‖H‖2 6 ρ + λ2 is possible if and only
if ‖H‖2 = ρ + λ2, ρ⊥ = 0, m = 2 and ‖T‖ = 1. Since n = 2, M is a surface and the fact
that ‖T‖ = 1 implies that T = ∂t and so M is of the type I ×eλt γ, where γ is a curve
in Hn(c). Since we assume that M is complete and without boundary, I = R. This
concludes the proof. �
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