A DDVV INEQUALITY FOR SUBMANIFOLDS OF WARPED PRODUCTS

JULIEN ROTH

(Received 3 October 2016; accepted 3 November 2016; first published online 5 January 2017)

Abstract

We prove a DDVV inequality for submanifolds of warped products of the form $I \times_{a} \mathbb{M}^{n}(c)$, where I is an interval and $\mathbb{M}^{n}(c)$ is a real space form of curvature c. As an application, we give a rigidity result for submanifolds of $\mathbb{R} \times e^{x t} \mathbb{H}^{n}(c)$.

2010 Mathematics subject classification: primary 53C42; secondary 53C24.
Keywords and phrases: warped product, rigidity, immersion.

1. Introduction

Let $\left(M^{n}, g\right)$ be an n-dimensional Riemannian manifold isometrically immersed into an $(n+p)$-dimensional Riemannian manifold $\left(N^{n+p}, \bar{g}\right)$. When the ambient space is a real space form of constant sectional curvature c, we have the pointwise inequality

$$
\|H\|^{2} \geqslant \rho+\rho^{\perp}-c,
$$

where

$$
\rho=\frac{2}{n(n-1)} \sum_{i<j}\left\langle R\left(e_{i}, e_{j}\right) e_{j}, e_{i}\right\rangle
$$

is the normalised scalar curvature of (M, g) and

$$
\rho^{\perp}=\frac{2}{n(n-1)}\left(\sum_{i<j} \sum_{\alpha<\beta}\left\langle R^{\perp}\left(e_{i}, e_{j}\right) \xi_{\alpha}, \xi_{\beta}\right\rangle^{2}\right)^{1 / 2}
$$

is the normalised normal curvature of the immersion. Here, $\left\{e_{1}, \ldots, e_{n}\right\}$ and $\left\{\xi_{1}, \ldots \xi_{p}\right\}$ are respectively orthonormal frames of $T M$ and $T^{\perp} M$. This inequality, known as the DDVV conjecture, was conjectured by De Smet et al. in [2] and proved recently by Lu [6] and by Ge and Tang [4] independently. More recently, Chen and Cui [1] generalised the inequality in the setting of product spaces $\mathbb{S}^{n} \times \mathbb{R}$ and $\mathbb{H}^{n} \times \mathbb{R}$.

In this note, we extend the result of Chen-Cui by proving a DDVV inequality for submanifolds of warped products $I \times{ }_{a} \mathbb{M}^{n}(c)$, where $I \subset \mathbb{R}$ is an interval and $a: I \rightarrow \mathbb{R}$ is a nowhere-vanishing smooth function. Denote by $\partial_{t}=\partial / \partial t$ the unit vector field tangent to the factor I. We prove the following result.

[^0]Theorem 1.1. Let M^{m} be a submanifold of the warped product $I \times_{a} \mathbb{M}^{n}(c)$ with normalised scalar and normal scalar curvatures ρ and ρ^{\perp} and mean curvature H. Then

$$
\|H\|^{2} \geqslant \rho+\rho^{\perp}+\left(\frac{\left(a^{\prime}\right)^{2}}{a^{2}}-\frac{c}{a^{2}}\right)\left(1-\frac{2}{m}\|T\|^{2}\right)+\frac{2 a^{\prime \prime}}{m a}\|T\|^{2},
$$

where T is the part of ∂t tangent to M.
Remark 1.2. Note that, of course, we recover the DDVV inequality of [1] for product spaces $\mathbb{S}^{n} \times \mathbb{R}$ and $\mathbb{H}^{n} \times \mathbb{R}$ as well as for \mathbb{R}^{n+1} by taking $a=1$, but we also recover the inequality for space forms. Indeed, \mathbb{S}^{n} and \mathbb{H}^{n} can be expressed in terms of warped products. Namely:
$\mathbb{S}^{n}=[0,2 \pi] \times{ }_{a} \mathbb{S}^{n-1}$ with $a(t)=\sin (t)$. In this case, the inequality of Theorem 1.1 becomes $\|H\|^{2} \geqslant \rho+\rho^{\perp}-1$;
(2) $\mathbb{H}^{n}=\left[0,+\infty\left[\times_{a} \mathbb{S}^{n-1}\right.\right.$ with $a(t)=\sinh (t)$ or $\mathbb{H}^{n}=\mathbb{R} \times{ }_{a} \mathbb{R}^{n-1}$ with $a(t)=e^{-t}$. For both cases, the inequality of Theorem 1.1 becomes $\|H\|^{2} \geqslant \rho+\rho^{\perp}+1$.

2. Preliminaries

Let $\mathbb{M}^{n}(c)$ be the simply connected real space form of dimension n and constant curvature c. Let $I \subset \mathbb{R}$ be an interval and $a: I \longrightarrow \mathbb{R}$ be a nowhere-vanishing smooth function. We consider the warped product $\widetilde{P}^{n+1}=I \times_{a} \mathbb{M}^{n}(c)$, formed from the product $I \times \mathbb{M}^{n}(c)$ endowed with the metric $\bar{g}=d t^{2}+a(t)^{2} g_{\mathbb{M}^{n}(c)}$. Denote by $\partial_{t}=\partial / \partial t$ the unit vector field tangent to the factor I. Recall (see, for example, [5]) that the curvature tensor of $\left(\widetilde{P}^{n+1}, \widetilde{g}\right)$ is given by

$$
\begin{aligned}
& \widetilde{R}(X, Y) Z=\left(\frac{\left(a^{\prime}\right)^{2}}{a^{2}}-\frac{c}{a^{2}}\right)(\langle X, Z\rangle Y-\langle Y, Z\rangle X) \\
&+\left(\frac{a^{\prime \prime}}{a}-\frac{\left(a^{\prime}\right)^{2}}{a^{2}}+\frac{c}{a^{2}}\right)\left(\langle X, Z\rangle\left\langle Y, \partial_{t}\right\rangle \partial_{t}-\langle Y, Z\rangle\left\langle X, \partial_{t}\right\rangle \partial_{t}\right. \\
&\left.\quad-\left\langle Y, \partial_{t}\right\rangle\left\langle Z, \partial_{t}\right\rangle X+\left\langle X, \partial_{t}\right\rangle\left\langle Z, \partial_{t}\right\rangle Y\right) .
\end{aligned}
$$

Let $\left(M^{m}, g\right)$ be a Riemannian manifold isometrically immersed into \widetilde{P}. We denote by B its second fundamental form and by A the shape operator defined for any $X, Y \in \Gamma(T M)$ and $\xi \in \Gamma\left(T^{\perp} M\right)$ by $\langle B(X, Y), \xi\rangle=\left\langle A_{\xi} X, Y\right\rangle$. Moreover, ∂_{t} can be written as

$$
\partial_{t}=T+\sum_{\alpha=1}^{p} f_{\alpha} \xi_{\alpha}
$$

where T is a vector field tangent to $M,\left\{\xi_{1}, \ldots, \xi_{p}\right\}$ is a local orthonormal frame of $T^{\perp} M$ and f_{1}, \ldots, f_{p} are smooth functions over M. We will denote $A_{\xi_{\alpha}}$ simply by A_{α}.

From the expression of the curvature tensor of \widetilde{P}, we get immediately the Gauss, Codazzi and Ricci equations for a submanifold of \widetilde{P}. Namely, if we denote by R and R^{\perp} the curvature tensor of (M, g) and the normal curvature, respectively, we have the following proposition. The proof is straightforward from the expression for \widetilde{R}.

Proposition 2.1. The Gauss, Codazzi and Ricci equations of the immersion of M into \widetilde{P} are respectively

$$
\begin{aligned}
&\langle R(X, Y) Z, W\rangle=\langle B(Y, Z), B(X, W)\rangle-\langle B(Y, W), B(X, Z)\rangle \\
&+\left(\frac{\left(a^{\prime}\right)^{2}}{a^{2}}-\frac{c}{a^{2}}\right)(\langle X, Z\rangle\langle Y, W\rangle-\langle Y, Z\rangle\langle X, W\rangle) \\
&+\left(\frac{a^{\prime \prime}}{a}-\frac{\left(a^{\prime}\right)^{2}}{a^{2}}+\frac{c}{a^{2}}\right)(\langle X, Z\rangle\langle Y, T\rangle\langle W, T\rangle-\langle Y, Z\rangle\langle X, T\rangle\langle W, T\rangle \\
&\quad-\langle Y, T\rangle\langle Z, T\rangle\langle X, W\rangle+\langle X, T\rangle\langle Z, T\rangle\langle Y, W\rangle), \\
&\left\langle\left(\widetilde{\nabla}_{X} B\right)(Y, Z), \xi_{\alpha}\right\rangle=\left(\frac{a^{\prime \prime}}{a}-\frac{\left(a^{\prime}\right)^{2}}{a^{2}}+\frac{c}{a^{2}}\right) f_{\alpha}(\langle Y, T\rangle\langle X, Z\rangle-\langle X, T\rangle\langle Y, Z\rangle), \\
&\left\langle R^{\perp}(X, Y) v, \xi\right\rangle=\left\langle\left[A_{v}, A_{\xi}\right] X, Y\right\rangle .
\end{aligned}
$$

Finally, we recall that the DDVV conjecture can be reduced to the following algebraic result (see [3]) proved by Lu.

Theorem 2.2 [6]. Let $n, p \geqslant 2$ be two integers and $M_{1}, M_{2}, \ldots, M_{p}$ be some $n \times n$ real symmetric and trace-free matrices. Then

$$
\sum_{\alpha, \beta=1}^{p}\left\|\left[M_{\alpha}, M_{\beta}\right]\right\|^{2} \leqslant\left(\sum_{\alpha=1}^{p}\left\|M_{\alpha}\right\|^{2}\right)^{2} .
$$

3. Proof of Theorem 1.1

First, from the definition of ρ and using the Gauss equation,

$$
\begin{aligned}
\rho= & \frac{2}{m(m-1)} \sum_{i<j}\left\langle R\left(e_{i}, e_{j}\right) e_{j}, e_{i}\right\rangle=\frac{1}{m(m-1)} \sum_{i \neq j}\left\langle R\left(e_{i}, e_{j}\right) e_{j}, e_{i}\right\rangle \\
= & \frac{1}{m(m-1)} \sum_{i \neq j}\left(\left\langle B\left(e_{j}, e_{j}\right), B\left(e_{i}, e_{i}\right)\right\rangle-\left\|B\left(e_{i}, e_{j}\right)\right\|^{2}-\left(\frac{\left(a^{\prime}\right)^{2}}{a^{2}}-\frac{c}{a^{2}}\right)\right. \\
& \left.-\left(\frac{a^{\prime \prime}}{a}-\frac{\left(a^{\prime}\right)^{2}}{a^{2}}+\frac{c}{a^{2}}\right)\left(\left\langle T, e_{i}\right\rangle^{2}+\left\langle T, e_{j}\right\rangle^{2}\right)\right) \\
= & -\left(\frac{\left(a^{\prime}\right)^{2}}{a^{2}}-\frac{c}{a^{2}}\right)+\frac{1}{m(m-1)}\left(n^{2}\|H\|^{2}-\|B\|^{2}-2(m-1)\left(\frac{a^{\prime \prime}}{a}-\frac{\left(a^{\prime}\right)^{2}}{a^{2}}+\frac{c}{a^{2}}\right)\|T\|^{2}\right) .
\end{aligned}
$$

Now, set $\tau=B-H g$, the traceless part of the second fundamental form. Clearly, we have $\|\tau\|^{2}=\|B\|^{2}-n\|H\|^{2}$. Hence,

$$
\begin{equation*}
\rho=-\left(\frac{\left(a^{\prime}\right)^{2}}{a^{2}}-\frac{c}{a^{2}}\right)\left(1-\frac{2}{m}\|T\|^{2}\right)-\frac{2 a^{\prime \prime}}{m a}\|T\|^{2}+\|H\|^{2}-\frac{1}{m(m-1)}\|\tau\|^{2} . \tag{3.1}
\end{equation*}
$$

For any $\alpha \in\{1, \ldots, p\}$, define the operator $S_{\alpha}: T M \rightarrow T M$ by

$$
\left\langle S_{\alpha} X, Y\right\rangle=\left\langle\tau(X, Y), \xi_{\alpha}\right\rangle .
$$

Obviously, $S_{\alpha}=A_{\alpha}-\left\langle H, \xi_{\alpha}\right\rangle \mathrm{Id}$ and $\left[A_{\alpha}, A_{\beta}\right]=\left[S_{\alpha}, S_{\beta}\right]$. From the Ricci equation, given in Proposition 2.1,

$$
\rho^{\perp}=\frac{1}{n(n-1)} \sqrt{\sum_{\alpha, \beta=1}^{p}\left\|\left[A_{\alpha}, A_{\beta}\right]\right\|^{2}}=\frac{1}{n(n-1)} \sqrt{\sum_{\alpha, \beta=1}^{p}\left\|\left[S_{\alpha}, S_{\beta}\right]\right\|^{2}}
$$

Since the operators S_{α} are symmetric and trace-free, we can apply Theorem 2.2 at any point of M to get

$$
\sum_{\alpha, \beta=1}^{p}\left\|\left[S_{\alpha}, S_{\beta}\right]\right\|^{2} \leqslant\left(\sum_{\alpha=1}^{p}\left\|S_{\alpha}\right\|^{2}\right)^{2}
$$

Thus,

$$
\rho^{\perp} \leqslant \frac{1}{m(m-1)} \sum_{\alpha=1}^{m}\left\|S_{\alpha}\right\|^{2}=\frac{1}{m(m-1)}\|\tau\|^{2}
$$

Combining this with (3.1) gives

$$
\|H\|^{2} \geqslant \rho+\rho^{\perp}+\left(\frac{\left(a^{\prime}\right)^{2}}{a^{2}}-\frac{c}{a^{2}}\right)\left(1-\frac{2}{m}\|T\|^{2}\right)+\frac{2 a^{\prime \prime}}{m a}\|T\|^{2}
$$

which concludes the proof.

4. An application to submanifolds of $\mathbb{R} \times_{e^{x t}} \mathbb{H}^{n}(c)$

To finish this note, we apply Theorem 1.1 to submanifolds of the warped product of the type $\mathbb{R} \times_{a} \mathbb{H}^{n}(c)$, where a is the real function defined by $a(t)=e^{\lambda t}$ and λ is a real constant.

Corollary 4.1. Let M^{m} be a submanifold of the warped product $\mathbb{R} \times{ }_{e^{x t}} \mathbb{H}^{n}(c)$ with normalised scalar and normal scalar curvatures ρ and ρ^{\perp} and mean curvature H. Then

$$
\|H\|^{2} \geqslant \rho+\rho^{\perp}+\lambda^{2}-c e^{-2 \lambda t}\left(1-\frac{2}{m}\|T\|^{2}\right) .
$$

Proof. This comes directly from Theorem 1.1, using the facts that

$$
\frac{\left(a^{\prime}\right)^{2}}{a^{2}}-\frac{c}{a^{2}}=\lambda^{2}-c e^{-2 \lambda t}, \quad \frac{a^{\prime \prime}}{a^{2}}=\lambda^{2}
$$

Hence, the terms

$$
\left(\frac{\left(a^{\prime}\right)^{2}}{a^{2}}-\frac{c}{a^{2}}\right)\left(1-\frac{2}{m}\|T\|^{2}\right)+\frac{2 a^{\prime \prime}}{m a}\|T\|^{2}=\lambda^{2}-c e^{-2 \lambda t}\left(1-\frac{2}{m}\|T\|^{2}\right)
$$

Comparing $\|H\|^{2}$ with ρ is a natural question which leads to rigidity results. Indeed, by the Gauss formula, we know that, for hypersurfaces of space forms, ρ is up to a constant (which is the sectional curvature k of the ambient space form) the second mean curvature H_{2}, that is, the second elementary symmetric polynomial in the principal curvatures. Moreover, it is a classical fact that $H^{2} \geqslant H_{2}$ with equality at umbilical points. Hence, assuming $H^{2} \leqslant \rho-k$ implies that M is a hypersphere. In this spirit, and using the above DDVV inequality, we give the following rigidity result.

Corollary 4.2. Let M^{m} be a complete submanifold without boundary of the warped product $\mathbb{R} \times e_{e^{t t}} \mathbb{H}^{n}(c)$ with normalised scalar and normal scalar curvatures ρ and ρ^{\perp} and mean curvature H. If $\|H\|^{2} \leqslant \rho+\lambda^{2}$, then

$$
\|H\|^{2}=\rho+\lambda^{2}, \quad \rho^{\perp}=0, \quad m=2 \quad \text { and } \quad\|T\|=1
$$

Hence, M is a surface of the type $\mathbb{R} \times_{e^{t t}} \gamma$, where γ is a curve in $\mathbb{H}^{n}(c)$.
Proof. First note that since $n \geqslant 2,\|T\|^{2} \leqslant 1$ and $c<0$,

$$
c e^{-2 \lambda t}\left(1-\frac{2}{n}\|T\|^{2}\right) \leqslant 0 .
$$

By definition, $\rho^{\perp} \geqslant 0$. Hence, from Corollary $4.1,\|H\|^{2} \leqslant \rho+\lambda^{2}$ is possible if and only if $\|H\|^{2}=\rho+\lambda^{2}, \rho^{\perp}=0, m=2$ and $\|T\|=1$. Since $n=2, M$ is a surface and the fact that $\|T\|=1$ implies that $T=\partial_{t}$ and so M is of the type $I \times_{e^{x t}} \gamma$, where γ is a curve in $\mathbb{H}^{n}(c)$. Since we assume that M is complete and without boundary, $I=\mathbb{R}$. This concludes the proof.

References

[1] Q. Chen and Q. Cui, 'Normal scalar curvature and a pinching theorem in $\mathbb{S}^{m} \times \mathbb{R}$ and $\mathbb{H}^{m} \times \mathbb{R}^{\prime}, S c i$. China Math. 54(9) (2011), 1977-1984.
[2] P. J. De Smet, F. Dillen, L. Verstraelen and L. Vrancken, 'A pointwise inequality in submanifold theory', Arch. Math. 35(1) (1999), 115-128.
[3] F. Dillen, J. Fastenakels and J. Van der Veken, 'Remarks on an inequality involving the normal scalar curvature', in: Pure and Applied Differential Geometry (Shaker, Aachen, 2007), 83-92.
[4] J. Q. Ge and Z. Z. Tang, 'A proof of the DDVV conjecture and its equality case', Pacific J. Math. 237 (2008), 87-95.
[5] M.-A. Lawn and M. Ortega, 'A fundamental theorem for hypersurfaces in semi-Riemannian warped products', J. Geom. Phys. 90 (2015), 55-70.
[6] Z. Q. Lu, 'Normal scalar curvature conjecture and its applications', J. Funct. Anal. 261 (2011), 1284-1308.

JULIEN ROTH, LAMA, UPEM-UPEC-CNRS, Cité Descartes,

 Champs sur Marne, 77454 Marne-la-Vallée cedex 2, France e-mail: julien.roth@u-pem.fr
[^0]: (C) 2017 Australian Mathematical Publishing Association Inc. 0004-9727/2017 \$16.00

