Bull. Aust. Math. Soc. **95** (2017), 495–499 doi:10.1017/S0004972716001271

A DDVV INEQUALITY FOR SUBMANIFOLDS OF WARPED PRODUCTS

JULIEN ROTH

(Received 3 October 2016; accepted 3 November 2016; first published online 5 January 2017)

Abstract

We prove a DDVV inequality for submanifolds of warped products of the form $I \times_a \mathbb{M}^n(c)$, where *I* is an interval and $\mathbb{M}^n(c)$ is a real space form of curvature *c*. As an application, we give a rigidity result for submanifolds of $\mathbb{R} \times_{e^{it}} \mathbb{H}^n(c)$.

2010 *Mathematics subject classification*: primary 53C42; secondary 53C24. *Keywords and phrases*: warped product, rigidity, immersion.

1. Introduction

Let (M^n, g) be an *n*-dimensional Riemannian manifold isometrically immersed into an (n + p)-dimensional Riemannian manifold (N^{n+p}, \bar{g}) . When the ambient space is a real space form of constant sectional curvature *c*, we have the pointwise inequality

$$||H||^2 \ge \rho + \rho^\perp - c,$$

where

$$\rho = \frac{2}{n(n-1)} \sum_{i < j} \langle R(e_i, e_j) e_j, e_i \rangle$$

is the normalised scalar curvature of (M, g) and

$$\rho^{\perp} = \frac{2}{n(n-1)} \left(\sum_{i < j} \sum_{\alpha < \beta} \langle R^{\perp}(e_i, e_j) \xi_{\alpha}, \xi_{\beta} \rangle^2 \right)^{1/2}$$

is the normalised normal curvature of the immersion. Here, $\{e_1, \ldots, e_n\}$ and $\{\xi_1, \ldots, \xi_p\}$ are respectively orthonormal frames of *TM* and $T^{\perp}M$. This inequality, known as the DDVV conjecture, was conjectured by De Smet *et al.* in [2] and proved recently by Lu [6] and by Ge and Tang [4] independently. More recently, Chen and Cui [1] generalised the inequality in the setting of product spaces $\mathbb{S}^n \times \mathbb{R}$ and $\mathbb{H}^n \times \mathbb{R}$.

In this note, we extend the result of Chen–Cui by proving a DDVV inequality for submanifolds of warped products $I \times_a \mathbb{M}^n(c)$, where $I \subset \mathbb{R}$ is an interval and $a : I \to \mathbb{R}$ is a nowhere-vanishing smooth function. Denote by $\partial_t = \partial/\partial t$ the unit vector field tangent to the factor *I*. We prove the following result.

^{© 2017} Australian Mathematical Publishing Association Inc. 0004-9727/2017 \$16.00

THEOREM 1.1. Let M^m be a submanifold of the warped product $I \times_a \mathbb{M}^n(c)$ with normalised scalar and normal scalar curvatures ρ and ρ^{\perp} and mean curvature H. Then

$$||H||^{2} \ge \rho + \rho^{\perp} + \left(\frac{(a')^{2}}{a^{2}} - \frac{c}{a^{2}}\right) \left(1 - \frac{2}{m}||T||^{2}\right) + \frac{2a''}{ma}||T||^{2},$$

where T is the part of ∂t tangent to M.

REMARK 1.2. Note that, of course, we recover the DDVV inequality of [1] for product spaces $\mathbb{S}^n \times \mathbb{R}$ and $\mathbb{H}^n \times \mathbb{R}$ as well as for \mathbb{R}^{n+1} by taking a = 1, but we also recover the inequality for space forms. Indeed, \mathbb{S}^n and \mathbb{H}^n can be expressed in terms of warped products. Namely:

- (1) $\mathbb{S}^n = [0, 2\pi] \times_a \mathbb{S}^{n-1}$ with $a(t) = \sin(t)$. In this case, the inequality of Theorem 1.1 becomes $||H||^2 \ge \rho + \rho^{\perp} 1$;
- (2) $\mathbb{H}^n = [0, +\infty[\times_a \mathbb{S}^{n-1}]$ with $a(t) = \sinh(t)$ or $\mathbb{H}^n = \mathbb{R} \times_a \mathbb{R}^{n-1}$ with $a(t) = e^{-t}$. For both cases, the inequality of Theorem 1.1 becomes $||H||^2 \ge \rho + \rho^{\perp} + 1$.

2. Preliminaries

Let $\mathbb{M}^n(c)$ be the simply connected real space form of dimension *n* and constant curvature *c*. Let $I \subset \mathbb{R}$ be an interval and $a: I \longrightarrow \mathbb{R}$ be a nowhere-vanishing smooth function. We consider the warped product $\widetilde{P}^{n+1} = I \times_a \mathbb{M}^n(c)$, formed from the product $I \times \mathbb{M}^n(c)$ endowed with the metric $\widetilde{g} = dt^2 + a(t)^2 g_{\mathbb{M}^n(c)}$. Denote by $\partial_t = \partial/\partial t$ the unit vector field tangent to the factor *I*. Recall (see, for example, [5]) that the curvature tensor of $(\widetilde{P}^{n+1}, \widetilde{g})$ is given by

$$\begin{split} \widetilde{R}(X,Y)Z &= \left(\frac{(a')^2}{a^2} - \frac{c}{a^2}\right) (\langle X, Z \rangle Y - \langle Y, Z \rangle X) \\ &+ \left(\frac{a''}{a} - \frac{(a')^2}{a^2} + \frac{c}{a^2}\right) (\langle X, Z \rangle \langle Y, \partial_t \rangle \partial_t - \langle Y, Z \rangle \langle X, \partial_t \rangle \partial_t \\ &- \langle Y, \partial_t \rangle \langle Z, \partial_t \rangle X + \langle X, \partial_t \rangle \langle Z, \partial_t \rangle Y). \end{split}$$

Let (M^m, g) be a Riemannian manifold isometrically immersed into \widetilde{P} . We denote by *B* its second fundamental form and by *A* the shape operator defined for any $X, Y \in \Gamma(TM)$ and $\xi \in \Gamma(T^{\perp}M)$ by $\langle B(X, Y), \xi \rangle = \langle A_{\xi}X, Y \rangle$. Moreover, ∂_t can be written as

$$\partial_t = T + \sum_{\alpha=1}^p f_\alpha \xi_\alpha,$$

where *T* is a vector field tangent to *M*, $\{\xi_1, \ldots, \xi_p\}$ is a local orthonormal frame of $T^{\perp}M$ and f_1, \ldots, f_p are smooth functions over *M*. We will denote $A_{\xi_{\alpha}}$ simply by A_{α} .

From the expression of the curvature tensor of \overline{P} , we get immediately the Gauss, Codazzi and Ricci equations for a submanifold of \overline{P} . Namely, if we denote by R and R^{\perp} the curvature tensor of (M, g) and the normal curvature, respectively, we have the following proposition. The proof is straightforward from the expression for \overline{R} . **PROPOSITION 2.1.** The Gauss, Codazzi and Ricci equations of the immersion of M into \tilde{P} are respectively

$$\begin{split} \langle R(X,Y)Z,W\rangle &= \langle B(Y,Z),B(X,W)\rangle - \langle B(Y,W),B(X,Z)\rangle \\ &+ \left(\frac{(a')^2}{a^2} - \frac{c}{a^2}\right) (\langle X,Z\rangle\langle Y,W\rangle - \langle Y,Z\rangle\langle X,W\rangle) \\ &+ \left(\frac{a''}{a} - \frac{(a')^2}{a^2} + \frac{c}{a^2}\right) (\langle X,Z\rangle\langle Y,T\rangle\langle W,T\rangle - \langle Y,Z\rangle\langle X,T\rangle\langle W,T\rangle \\ &- \langle Y,T\rangle\langle Z,T\rangle\langle X,W\rangle + \langle X,T\rangle\langle Z,T\rangle\langle Y,W\rangle), \\ \langle (\widetilde{\nabla}_X B)(Y,Z),\xi_\alpha\rangle &= \left(\frac{a''}{a} - \frac{(a')^2}{a^2} + \frac{c}{a^2}\right) f_\alpha(\langle Y,T\rangle\langle X,Z\rangle - \langle X,T\rangle\langle Y,Z\rangle), \\ \langle R^{\perp}(X,Y)v,\xi\rangle &= \langle [A_v,A_{\xi}]X,Y\rangle. \end{split}$$

Finally, we recall that the DDVV conjecture can be reduced to the following algebraic result (see [3]) proved by Lu.

THEOREM 2.2 [6]. Let $n, p \ge 2$ be two integers and M_1, M_2, \ldots, M_p be some $n \times n$ real symmetric and trace-free matrices. Then

$$\sum_{\alpha,\beta=1}^{p} \|[M_{\alpha}, M_{\beta}]\|^{2} \leq \left(\sum_{\alpha=1}^{p} \|M_{\alpha}\|^{2}\right)^{2}.$$

3. Proof of Theorem 1.1

First, from the definition of ρ and using the Gauss equation,

$$\begin{split} \rho &= \frac{2}{m(m-1)} \sum_{i < j} \langle R(e_i, e_j) e_j, e_i \rangle = \frac{1}{m(m-1)} \sum_{i \neq j} \langle R(e_i, e_j) e_j, e_i \rangle \\ &= \frac{1}{m(m-1)} \sum_{i \neq j} \left(\langle B(e_j, e_j), B(e_i, e_i) \rangle - ||B(e_i, e_j)||^2 - \left(\frac{(a')^2}{a^2} - \frac{c}{a^2}\right) \right. \\ &\left. - \left(\frac{a''}{a} - \frac{(a')^2}{a^2} + \frac{c}{a^2}\right) (\langle T, e_i \rangle^2 + \langle T, e_j \rangle^2) \right) \\ &= - \left(\frac{(a')^2}{a^2} - \frac{c}{a^2}\right) + \frac{1}{m(m-1)} \left(n^2 ||H||^2 - ||B||^2 - 2(m-1) \left(\frac{a''}{a} - \frac{(a')^2}{a^2} + \frac{c}{a^2}\right) ||T||^2 \right). \end{split}$$

Now, set $\tau = B - Hg$, the traceless part of the second fundamental form. Clearly, we have $||\tau||^2 = ||B||^2 - n||H||^2$. Hence,

$$\rho = -\left(\frac{(a')^2}{a^2} - \frac{c}{a^2}\right)\left(1 - \frac{2}{m}||T||^2\right) - \frac{2a''}{ma}||T||^2 + ||H||^2 - \frac{1}{m(m-1)}||\tau||^2.$$
(3.1)

For any $\alpha \in \{1, ..., p\}$, define the operator $S_{\alpha} : TM \to TM$ by

$$\langle S_{\alpha}X, Y \rangle = \langle \tau(X, Y), \xi_{\alpha} \rangle.$$

J. Roth

Obviously, $S_{\alpha} = A_{\alpha} - \langle H, \xi_{\alpha} \rangle$ Id and $[A_{\alpha}, A_{\beta}] = [S_{\alpha}, S_{\beta}]$. From the Ricci equation, given in Proposition 2.1,

$$\rho^{\perp} = \frac{1}{n(n-1)} \sqrt{\sum_{\alpha,\beta=1}^{p} \|[A_{\alpha}, A_{\beta}]\|^2} = \frac{1}{n(n-1)} \sqrt{\sum_{\alpha,\beta=1}^{p} \|[S_{\alpha}, S_{\beta}]\|^2}.$$

Since the operators S_{α} are symmetric and trace-free, we can apply Theorem 2.2 at any point of *M* to get

$$\sum_{\alpha,\beta=1}^{p} \|[S_{\alpha},S_{\beta}]\|^{2} \leq \left(\sum_{\alpha=1}^{p} \|S_{\alpha}\|^{2}\right)^{2}.$$

Thus,

498

$$\rho^{\perp} \leq \frac{1}{m(m-1)} \sum_{\alpha=1}^{m} \|S_{\alpha}\|^2 = \frac{1}{m(m-1)} \|\tau\|^2.$$

Combining this with (3.1) gives

$$||H||^{2} \ge \rho + \rho^{\perp} + \left(\frac{(a')^{2}}{a^{2}} - \frac{c}{a^{2}}\right) \left(1 - \frac{2}{m}||T||^{2}\right) + \frac{2a''}{ma}||T||^{2},$$

which concludes the proof.

4. An application to submanifolds of $\mathbb{R} \times_{e^{M}} \mathbb{H}^{n}(c)$

To finish this note, we apply Theorem 1.1 to submanifolds of the warped product of the type $\mathbb{R} \times_a \mathbb{H}^n(c)$, where *a* is the real function defined by $a(t) = e^{\lambda t}$ and λ is a real constant.

COROLLARY 4.1. Let M^m be a submanifold of the warped product $\mathbb{R} \times_{e^{At}} \mathbb{H}^n(c)$ with normalised scalar and normal scalar curvatures ρ and ρ^{\perp} and mean curvature H. Then

$$||H||^{2} \ge \rho + \rho^{\perp} + \lambda^{2} - ce^{-2\lambda t} \left(1 - \frac{2}{m} ||T||^{2}\right).$$

PROOF. This comes directly from Theorem 1.1, using the facts that

$$\frac{(a')^2}{a^2} - \frac{c}{a^2} = \lambda^2 - ce^{-2\lambda t}, \quad \frac{a''}{a^2} = \lambda^2$$

Hence, the terms

$$\left(\frac{(a')^2}{a^2} - \frac{c}{a^2}\right)\left(1 - \frac{2}{m}||T||^2\right) + \frac{2a''}{ma}||T||^2 = \lambda^2 - ce^{-2\lambda t}\left(1 - \frac{2}{m}||T||^2\right).$$

Comparing $||H||^2$ with ρ is a natural question which leads to rigidity results. Indeed, by the Gauss formula, we know that, for hypersurfaces of space forms, ρ is up to a constant (which is the sectional curvature k of the ambient space form) the second mean curvature H_2 , that is, the second elementary symmetric polynomial in the principal curvatures. Moreover, it is a classical fact that $H^2 \ge H_2$ with equality at umbilical points. Hence, assuming $H^2 \le \rho - k$ implies that M is a hypersphere. In this spirit, and using the above DDVV inequality, we give the following rigidity result.

COROLLARY 4.2. Let M^m be a complete submanifold without boundary of the warped product $\mathbb{R} \times_{e^{\lambda t}} \mathbb{H}^n(c)$ with normalised scalar and normal scalar curvatures ρ and ρ^{\perp} and mean curvature H. If $||H||^2 \leq \rho + \lambda^2$, then

$$||H||^2 = \rho + \lambda^2, \quad \rho^{\perp} = 0, \quad m = 2 \quad and \quad ||T|| = 1$$

Hence, M is a surface of the type $\mathbb{R} \times_{e^{\lambda t}} \gamma$ *, where* γ *is a curve in* $\mathbb{H}^n(c)$ *.*

PROOF. First note that since $n \ge 2$, $||T||^2 \le 1$ and c < 0,

$$ce^{-2\lambda t} \left(1 - \frac{2}{n} \|T\|^2\right) \le 0.$$

By definition, $\rho^{\perp} \ge 0$. Hence, from Corollary 4.1, $||H||^2 \le \rho + \lambda^2$ is possible if and only if $||H||^2 = \rho + \lambda^2$, $\rho^{\perp} = 0$, m = 2 and ||T|| = 1. Since n = 2, M is a surface and the fact that ||T|| = 1 implies that $T = \partial_t$ and so M is of the type $I \times_{e^{\lambda t}} \gamma$, where γ is a curve in $\mathbb{H}^n(c)$. Since we assume that M is complete and without boundary, $I = \mathbb{R}$. This concludes the proof.

References

- [1] Q. Chen and Q. Cui, 'Normal scalar curvature and a pinching theorem in $\mathbb{S}^m \times \mathbb{R}$ and $\mathbb{H}^m \times \mathbb{R}$ ', *Sci. China Math.* **54**(9) (2011), 1977–1984.
- [2] P. J. De Smet, F. Dillen, L. Verstraelen and L. Vrancken, 'A pointwise inequality in submanifold theory', Arch. Math. 35(1) (1999), 115–128.
- [3] F. Dillen, J. Fastenakels and J. Van der Veken, 'Remarks on an inequality involving the normal scalar curvature', in: *Pure and Applied Differential Geometry* (Shaker, Aachen, 2007), 83–92.
- [4] J. Q. Ge and Z. Z. Tang, 'A proof of the DDVV conjecture and its equality case', *Pacific J. Math.* 237 (2008), 87–95.
- [5] M.-A. Lawn and M. Ortega, 'A fundamental theorem for hypersurfaces in semi-Riemannian warped products', J. Geom. Phys. 90 (2015), 55–70.
- [6] Z. Q. Lu, 'Normal scalar curvature conjecture and its applications', J. Funct. Anal. 261 (2011), 1284–1308.

JULIEN ROTH, LAMA, UPEM-UPEC-CNRS, Cité Descartes, Champs sur Marne, 77454 Marne-la-Vallée cedex 2, France e-mail: julien.roth@u-pem.fr