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MODULAR HADAMARD MATRICES
AND RELATED DESIGNS, II

O. MARRERO AND A. T. BUTSON

1. Introduction. An % by % matrix with entries =1 is called a modular
Hadamard matrix if the inner product of any two distinct row vectors is a
multiple of a fixed (positive) integer #; such a matrix is also referred to as
an “H(n, k) matrix”’ with parameters #» and k. Modular Hadamard matrices
and the related combinatorial designs were introduced in [2]; that paper was
concerned mainly with two of the related designs, the ‘“‘pseudo (v, &, \)-
designs’’ and the ‘‘(m, v, k1, \1, k2, N, f, \3)-designs’ (the reader is referred
to [2] for the definition of these designs). This paper is concerned with the
construction and existence of modular Hadamard matrices, and special
attention is given to some particular classes of these matrices.

The notation used in this paper follows that used in [2]. In addition, the
left Kronecker product C,; = 4, ® B of two matrices 4, = [a;;] and By is
the rs by rs matrix whose ¢jth s by s block is given by a¢;;B,1 < 4,7 < r. An
ordinary Hadamard matrix (or “H (0, 2) matrix’’) is said to be “normalized”
provided that it has only 41’s as entries in both the first row and the first
column.

The following result [2, Theorem 2.1] will be used several times in the sequel,
and is stated here for reference purposes.

TurorEM 1.1. Let Hy be o (1, —1)-matrix having the first row consisting of
all +1V's. For each v,7 = 2,...,h let k; denote the number of +1's in the 1th
row, and let \;; denote the number of times the 1th and jth rows have a +1 1n the
same column, 1 # j. Then mnecessary and sufficient conditions that H be an
H(n, h) matrix are

2k; =h (modn),

(1.1)
4N;; = h  (mod n).

2. Construction and existence theorems for H(n, r) matrices. This
section contains some results which show how to construct new modular
Hadamard matrices from given modular Hadamard matrices and ordinary
Hadamard matrices, from several well-known combinatorial designs, and
from abelian difference sets. In particular, it is shown that H (n, #) matrices
can always be constructed when #|k or when #| (2 — 4). Also, the existence of
H (n, k) matrices will be completely determined for » = 2, n = 3, and » = 6.
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It is clear that an H(n, k) matrix is also an H (d, #) matrix for any divisor
d of n. Thus, it is of interest to find ways of obtaining, from given H (n1, k;)
and H (ns, hs) matrices, an H(n, k) matrix having # > 1, #ns. The left Kro-
necker product of two modular Hadamard matrices, when one of the factors
is an ordinary Hadamard matrix, is one such construction.

THEOREM 2.1. Let M be an H (n1, h1) matrix and let N be an H (nq, hs) matrix.
Then M ® N is an H(n, hihe) matrix, where n = gcd{hine, nins, hong}.

THEOREM 2.2. If M and N are H(0, ki) and H (n., hs) matrices, respectively,
then M ® N is an H (nshy, hihs) matrix.

When #n|k or n|(h — 4), H(n, k) matrices can be constructed quite easily.
One observes that J, is an H (n, k) matrix whenever n|k, and J, — 21, is an
H(h — 4, ) matrix, and hence it is also an H (n, k) matrix when u|(h — 4).
(When |k it is sometimes possible to construct an H (%, k) matrix different
from J,; and when n|(h — 4), there are always additional ways of constructing
an H (n, h) matrix. These additional constructions are simple and are therefore
omitted.) This proves:

TrEOREM 2.3. If nlh or n|(h — 4), then H (n, h) matrices can be constructed.

It was observed in [2] that a necessary condition for the existence of an
H(n, k) matrix with £ = 3 is that & = 4¢ (mod %) for some ¢t € Z. It is now
shown that this condition is also sufficient in certain cases. (Note that if
n = gedi{du — 2,4t — 2} and b = 4u + 4t — 2, then & = 4¢ (mod #).)

THEOREM 2.4. Given H (0, 4u) and H (0, 4t) matrices, then an H (n,4u + 4t — 2)
matrix can be constructed, where n = ged{4u — 2, 4 — 2}.

Let M and N be the matrices obtained from normalized H(0, 4x) and

H (0, 4t) matrices, respectively, by removing from each the first row and the
first column. Then
[ M a1 J4u—1,4t—1]
—J4l—1,4u—l N4 t—1
is an H(n, 4u + 4t — 2) matrix, where n = gcd{4u — 2, 4t — 2}.

The special case where M = N is a normalized H (0, 4t) matrix yields a
class of H(n, h) matrices with n = 2 (mod 4).

CorOLLARY 2.1. An H (4t — 2, 8t — 2) mairix can be constructed using an
H (0, 4t) matrix.

Certain well-known combinatorial designs can be used to construct modular
Hadamard matrices, as follows. If M is the matrix obtained from the incidence
matrix of a (v, k, A\)-design [1; 3] by replacing all 0’'s by —1’s, then M is an
H(n, v) matrix, where # is a positive divisor of ¥ — 4(k — \). Also,

[M T
-J, M

isan H(2v — 4(k — 1)), 2v) matrix. This proves:
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TaeoreM 2.5. Guwen a (v, k, \)-design, then H{v — 4(k — \),v) and
H((2v — 4(k — )\), 2v) maitrices can be constructed.

According to Fisher's inequality, a (b, 9,7, k, \)-design has b = v [3].
If M is the matrix obtained from the transpose of the incidence matrix of a
(b, v, 7, k, \)-design by first replacing all 0's by —1's and then adjoining
b — v rows of +1’s, then M is an H(n, b) matrix, where n = gcd{b, 27, 4)\}.
This is stated as:

TaeoreM 2.6. If a (b, v, r, k, \)-design is given, then an H(n, b) mairix can
be constructed, where n = gcd{b, 2r, 4\}.

For the PBIB designs [4] and GD designs [1], cases need to be considered
depending upon whether &6 > v, b = v, or b < v, but the same technique may
be applied to the incidence matrices of these designs to obtain modular
Hadamard matrices. This yields:

THEOREM 2.7. Given o PBIB design with m associate classes, an H(n, h)
matrix can be constructed, where

1) n=ged{v — 4k —N\),...,v —4(k — \y)} and h = v, if b = v,
(2) n = gcd{b, 27,4y, ..., 4N,} and b = b, if b > v, or
B)n=gcd{v —4@F —\1),..., v — 4@ — \p)} and b = v, 1f b < v.

COROLLARY 2.2. Giwven a GD design, then an H (n, h) matrix can be constructed,
where

(1) n = gedfo — 4(B — \1),v — 4(k — \y)} and h = v, when b = v,

(2) n = gcd{b, 2r, 4\1, 4N2} and b = b, when b > v, and

B) n=gcedfv — 4@ — N),v — 4@ — \2)} and b = v, when b < v.

THEOREM 2.8. Giwven two abelian difference sets D1 and Dy with parameters
v1, R1, N1 and v, ks, Ns, vespectively, then an H (n, h) matrix can be constructed,
where
n = ng{vﬂ)g — 4(k1k2 — )\1)\2), V102 — 4(k1k2 — kl)\g), V109 — 4(k1k2 — kﬂ\l)}
and h = v19,.

Suppose D; C (Gi, +), D2 C (Gs, +), and consider the direct sum
G = G1 @ Gs. Let the (1, —1)-matrix H = [k ;] be defined by taking &,; = 1
if g; € D1 ®D:2) + giyyand hyy = —1if g; ¢ (D1 @ D) + g4, for each pair
gi g5 € G. It then follows that H is an H (n, v1v:) matrix, where n satisfies
the hypothesis of the theorem.

For each of these preceding results there exists a class of parameters of the
design used in the construction which yields non-trivial (in the sense that
n = 2) H(n, k) matrices.

The preceding Theorem 2.2 and Theorem 2.3 together with Theorem 2.2
and Corollary 2.1 in [2] may be used to determine completely the existence of
H(n, k) matrices when # is 2, 3, or 6, as stated in the following theorems.
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THEOREM 2.9. 4 mnecessary and sufficient condition for the existence of an
H (2, h) matrix is that b be even.

TreoreM 2.10. A necessary and sufficient condition for the existence of an
H(3, k) matrix is that h = 0, 1 (mod 3), or h = 2 (mod 12), or & = 0 (mod 4).

TaEOREM 2.11. A mnecessary and sufficient condition for the existence of an
H (6, k) matrix 1s that h be even.

3. H4q + 1,k) and H(4q + 3, ) matrices. The matrices which are
studied in this section are the H (», ) matrices forn = 4¢ + land 7 = n + 1,
2n 4+ 1, 3n + 1, and 4n + 1, and the H(n, k) matrices for n = 4¢ + 3 and
h=mn-+1, 20+ 1, and 3% + 1. The method utilized in studying these
matrices is as follows. A given H (n, £) matrix is taken to be in standard form.
Then, using the congruences (1.1), one finds the possible values for &; and \,;.
Next, each —1 in the given H (n, 1) matrix is replaced by 0, and the first row
of all +1’s is removed. Thus, one obtains the incidence matrix of some com-
binatorial design having the %;'s for possible “row sums’ and the \;'s for
possible “row intersections’. Finally, by analyzing the combinatorial design
thus obtained, one gets information about the corresponding H (n, k) matrix.
This method is similar to that which establishes a connection between
H(0, 4¢) matrices and (4t — 1,2t — 1,¢ — 1)-designs, where ¢ = 2. In
studying the H (n, k) matrices considered in this section, one is led to pseudo
(v, k, \)-designs and (m, v, k1, A1, k2, No, f, A3)-designs. Thus, some of the
results obtained in [2] will find application in the sequel.

Multiplication of the elements of any row by — 1 preserves the orthogonality
modulo % property of the rows of an H (z, &) matrix. Consequently, the stan-
dard form of an H (n, &) matrix may be assumed to have, in addition to the
first row consisting of +1’s, 2k; < &,72 = 2, ..., h. Thus, when considering
solutions of the congruences (1.1) in the sequel, only those values of &, satisfy-
ing 2%k; = I will be considered.

Let # = 49+ 1. When % is # 4+ 1 or 2n + 1, the congruences (1.1) have
no possible solution. When # = 3z + 1, the congruences (1.1) yield 2; = 6q + 2
and \;; = 3¢ + 1ford,j = 2,7 #j.

Let n = 4¢ + 3 and 2 = n + 1, then solving the congruences (1.1) yields
k; = 2g + 2 and \;; = ¢ + 1. These results are collected in:

TaroreM 3.1. H(4q + 1, 4q + 2) matrices and H(4q + 1, 8¢ + 3) matrices
do not exist. The only H(4q + 1, 12q + 4) matrices are the H(0, 12q + 4)
matrices, and the only H(4q + 3,4q + 4) matrices are the H(0, 4q + 4)
matrices.

When # = 4¢+ 1 and © = 4n + 1, solving the congruences (1.1) yields
ki =6g+ 2 and N\yy =3¢+ 1 for 7, 7 = 2, 7 # j. Let Aieg14,16¢+5 be the
matrix obtained from an H(4¢ + 1, 16¢ + 5) matrix in standard form by
first replacing all —1's by 0’s, and then deleting the first row of all 41’s.
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Then
AJ1egrs1 = (6¢ + 2)J164+4,1 and
AAT = (39 + 1)Ilﬁq+4 + (3Q + 1)J16q-r‘ty

from which it is seen that A is the incidence matrix of a pseudo (16g + 5,
6g + 2, 3¢ + 1)-design. Similarly, when #» = 4¢ 4+ 3 and # = 2n 4 1, one is
led to a (0, 1)-matrix Bs,i6,8,+7 Which satisfies

BJsgi11 = (2¢ + 2)Js416,1 and
BB” = (¢ + 1)Isgss + (g + 1)Tsq+6

so that B is the incidence matrix of a pseudo (8¢ + 7, 2¢ + 2, ¢ + 1)-design.
Thus, in each of these two instances, one is led to a pseudo (v, k, \)-design
with v # 4\ and k = 2\. Consequently, as an application of Theorem 3.4
in [2], it is possible to state:

THEOREM 3.2. The existence of an H(4q + 1, 16 + 5) matrix is equivalent to
the existence of a (16q + 5, 4q + 1, g)-design. Also, if 32¢* + 56q + 25 = D2,
then the existence of an H(4q + 3, 8¢ + 7) matrix is equivalent to the existence
ofa 8¢+ 7, 8+ 7—D)/2, 8¢+ 7—D)/2 —q— 1)-design.

When » = 49 + 3 and 2 = 3n 4 1, it will be shown that the associated
design is an (m, v, k1, A1, ks, Ns, f, N\3)-design. But first an interesting observa-
tion will be made concerning this particular class of H (%, ) matrices.

As observed in Section 2, if H is an H (n, k) matrix, then it is an H(d, k)
matrix for any divisor d of # (but the converse does not always hold, for it is
a consequence of Theorem 2.10 and Theorem 2.11 that H (3, 9) matrices exist
whereas H (6, 9) matrices do not exist); in particular, an H(8¢ + 6, 12¢ + 10)
matrix is also an H(4q + 3, 12¢ 4+ 10) matrix. It is an interesting fact that
for this particular set of parameters the converse is also true. For suppose H
is an H(4q + 3, 12¢ + 10) matrix in standard form. For these parameters,
solving the congruences (1.1) one finds that the only &, which satisfy 2k; < h
are k; = 2¢ + 2, or 6¢ + 5, and, therefore, that \,; = ¢ + 1, or 5¢ + 4.
Consequently, the following result may be stated.

TaEOREM 3.3. A (1, —1)-matrix is an H(4q + 3, 12¢ 4 10) matrix if and
only if it is an H(8q + 6, 12¢ + 10) matrix.

Now let H be an H(4q + 3, 12¢ + 10) matrix in standard form, and let
A be the (0, 1)-matrix obtained from H by first replacing all —1’s by 0’s, and

then removing the initial row of all +1’s. After appropriate permutations of
the rows, if necessary, it may be assumed that

A = I:]‘{f—l,l2q+10 ]

512q+10—f,12q+10
and

[ mur <g+1>J]
AAT_[(Q+1)J sst |
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where

MM?T = (g4 D)I0+ (g4 )T,

69 +5 K12 oo M1,12¢410~7
M21 69 +5 ces M2,12¢+10—71
SST = . . : ,
MH12¢+10~7,1  M12¢+10—r,2 - - - 69 +5 J

urs is either ¢ + 1 or 8¢ + 4, and f is a fixed integer, 1 < f =< 12¢ + 10. Thus,
some simplification of this associated incidence matrix is desirable, and this
will be accomplished presently. In fact, it will be shown that all u,, may be
assumed to be 5¢ + 4. Consider .S as the incidence matrix of a combinatorial
design consisting of 12¢ + 10 — f subsets Xy, ..., Xj2r10-, of the set
X = {x1,..., X12g410}, SO that w,, = |X, N X,| for r # 5. For notation,
~X, will denote the set complement of X,. It is first observed that there
cannot be 3 subsets X, X, X, satisfying |X,NX|=]X,NX/]|=
| XN X, = q+ 1. For, if this were so, then 12¢ + 10 = |X, U X, U X ,| =
15¢ + 12, which is not true. If 12¢ + 10 — f is 0 or 1, then there is no y,, to
consider. If 12¢ + 10 — f is 2, and [Xi249-7/ Xi2gt107 = ¢ + 1, then
replacing Xisgr10-; by ~Xisr10—y gives [Xiogro—r M ~Xi2gr10-4] = 5g + 4.
Suppose 12g 4 10 — f is 3, and suppose there is a pair of subsets X ,, X such
that | X, N X, =¢+ 1. If X, is the third subset, then |X, N X,| =
XN X,; for [ X.NX,)|=|X;NX,]=¢qg+1 is impossible, and, if
X, NX,|=|XNX,=bg+ 4 then| X, N ~X,|=|X,N~X,|=q+ 1,
which is again impossible. Now, it may be assumed that | X, N\ X,| =¢ + 1
and | X, N X,| = 5¢ + 4. Thus, replacing X, by ~X, gives |~X, N X || =
I~X, N\ X, =|X;N\X,] = 5g+ 4, as desired. Now let 12¢ + 10 — f = 4,
and suppose there are 2 subsets X,, X, such that |[X, "\ X,| = ¢+ 1. For a
third subset, say X, it may be assumed that [X,MN X, = 5¢ + 4 and
| X, N\ X, =¢-+ 1. Now consider a fourth subset X,. It is necessary that
X, N X, = [X;NX,]; say [ X, N X, =¢g+ 1 and [X; N X,] = 5q + 4.
Then it follows that |[X,MN X,| = 5¢ + 4. Now note that |[~X,N X,| =
INXsm NX!I = INXsm NXul = Ier NXlI = |er NXu] = |NXtm
~X,| = 5¢ + 4. Therefore, replacing X;, X,, and X, by their complements
gives a design in which all u,; = 5¢ 4 4. This proves:

TueoreM 3.4. The incidence mairix of the combinatorial design associated
with an H(4q + 3,12 + 10) matrix yields the incidence matrix of an
(m, v, k1, Ay, ko, Ao, f — 1, N3)-design, where m = 12q + 9, v = 12¢ + 10, k; =
294+ 2, M=q+ 1, ko =60+ 5, \a =574+ 4, \s =g+ 1, and f is some
fixed integer satisfying 1 = f £ 12q + 10. The converse is also valid.
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4, A particular class of (m, v, k1, Ay, k2, \s, f, N\3)-designs. The particular
class of (m, v, k1, A1, ks, No, f, \3)-designs which is considered in this section is
that obtained from H(4q 4+ 3, 12¢ 4+ 10) matrices as stated in Theorem 3.4.
The existence of these designs will be determined for ¢ =0, ¢ = 1, and
g = 2 (and as a consequence of Theorem 3.4, it follows that the existence of
H(4q + 3, 12¢g + 10) matrices will be determined for these three values of ¢).
It is simple to show that these designs exist when ¢ = 0 or ¢ = 1, since it is
not too difficult to exhibit the corresponding H (4q + 3, 12¢ 4+ 10) matrices.
One observes that Jyg — 2144 is an H (3, 10) matrix; and, since Jy; — 217y is an
H (7, 11) matrix,

un-mie|] _i]

is an H (7, 22) matrix. However, as will be seen in the sequel, the known proof
that these designs do not exist when ¢ = 2 is not as simple.

LevMa 4.1, The parameter [ in Theorem 3.4 must satisfy the following: if
x = (4g + 3)(f — (6¢ + b)), then x must be a solution of the Diophantine
equation x* + y2 = ((4¢ + 3)(6g + 5) + 2(¢ + 1))

Let 4 be the incidence matrix of the design associated with an
H(4q + 3, 12¢ + 10) matrix, as given in Theorem 3.4. Let B be the (0, 1)-
matrix obtained from 4 by adjoining an initial row of +1’s. With some work,
it may be determined that

(4.1) (det B)? = det(BBT) = (¢ + 1)12¢t3¢,
where
(4.2) a = —[(4g + 3)* + 2f(4g + 3)*(6g + 5)
+ 4(g + 1)(24¢> + 39¢ + 16).

It follows from Equation (4.1) that ¢« must be a square, say ¢ = y2. Now,
from Equation (4.2), ¢« may be re-written in the form

a« = —(4g + 3)*(f — (6g + 5))* + ((4¢ + 3)(6g + 5) + 2(¢ + 1))?,

which easily gives the desired result.
When ¢ = 2, the parameter f can be determined by using Lemma 4.1;
indeed, f must equal 17. Thus, the following may be stated.

LEmMa 4.2, If an (m = 33,v = 34, k1 = 6, N\ = 3, ko = 17, Ny = 14, f —
1 = 16, \y = 3)-design exists, then there exists a (0, 1)-matrix Mis 34 satisfying
llfﬁ[T = 3]15 + 3-[16-

The proof that an (33, 34, 6, 3, 17, 14, 16, 3)-design cannot exist will be
accomplished by showing that such a matrix M cannot exist. This proof will
be given in several lemmas. If Ps and Q34 are permutation matrices, then

(PMQ)(PMQ)T = PMMTPT = P (31 + 3J16)PT = 3115 + 37 1s.
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Consequently, the rows of M may be permuted and the columns of M/ may be
permuted without changing the significant properties of 3. This fact will
be used throughout the subsequent proof, and a particular usage will not
necessarily be noted explicitly. Let n, denote the rth row vector of M = [m;];
and let 7,9 = (m,,...,m,;), the j dimensional vector whose entries are
the first j entries of n,. Throughout the proof it will be assumed that

71 = 111 111 000 000 ... 000 and
72 = 111 000 111 000 . .. 000.

LeMmMA 4.3. The matrix M can have at most three rows which have +1's in the
same three columns. If M has three such rows, then every remaining row has
exactly two +1's in those three columns.

It will be sufficient to show that either 71®® o 9;® < 3 for j = 3, or
73 = (111) and 7,® 0 9, = 2 for j = 4. Let

ns = 111 000 000 111 000 000 000 ... 000,
(4.3) ns = 111 000 000 000 111 000 000 ... 000, and
75 = 111 000 000 000 000 111 000 . .. 000.

For j > 5, suppose first that ¥ o9, = 0. Then n107; =n.09; =3
requires that 7, = (000 111 111). However, 73 0 9; = 0, instead of 3. Now
suppose that 7, o9;® = 1. In order that ny0n; =n20%; = n3019; = 3,
7,12 must be essentially (100 110 110 110), which is impossible. By ‘‘essen-
tially”’ will be meant to within a permutation of the columns. In this particular
case, the permutation could interchange the 7th, the (z 4 1)st, and the
(# + 2)nd columns, wherez = 1, 4, 7, 10. Next, supposing that 7:®®¥ o n,® = 2,
a similar argument shows that »;'® must be essentially (110 100 100 100 100
100), which is impossible. Consequently, 7;® = (111) for all j. In this case,
M could have at most 10 rows. At this stage, it has been shown that A can
have at most 4 rows with +1’s in the same three columns.

Suppose that M has 4 such rows and let 3 and 74 be as in (4.3). In the above
argument 75 was used only in the proof that 7:®® o 7;® 2. Consequently,
in this case, 7@ 0on;® =2 for j = 5. In order that nion; = ne01n; =
n30n; = N4 0n; = 3, it is necessary that n; be essentially (110 100 100 100
100 000 . . . 000), for 7 = 5. Thus, M must have the form

M = [Sis15 616,19,

where SST = 3I; + 3J1s and every entry in 6 is 0. But such a matrix .S
cannot exist. Therefore, M has at most 3 rows with 41’s in the same three
columns. The preceding argument has also shown that if M has three such
rows, then 7Y 07, 0, 1 for j = 4. Hence 71® 0 9, = 2 for j = 4, and
the lemma is established.

LemMA 4.4. If the matrix M has three rows with +1's in the same three columns,
then M must have three rows n,, n,, and n, such that ,(® = 5, = 5 ,©®,
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Let 53 be as described in (4.3). Since (by Lemma 4.3) m1® o 9;® = 2 for
j = 4, and since 5, 0 n; = 3, it follows that ,(® is essentially (110 100). Here,
the permutation can interchange the ith, (z + 1)st, and (¢ + 2)nd columns
for 2 = 1, 4; and hence there are exactly nine possibilities for 5,(¥. They are

o1 = (110 100), o = (110 010), o3 = (110 001),

oy = (101 100), o5 = (101 010), os = (101 001),
o7 = (011 100), a3 = (011 010), and o9 = (011 001).

I
1

Il

If the above permutation is not trivial for 2 = 1 and also for ¢z = 4, then the
resulting o satisfies o3 0 ¢; = 1. Clearly, for each ¢, there are exactly four o,
such that ¢;00; = 1. Since 7,® is essentially o; for j = 4, clearly M must
contain two rows 7, and 75, such that ,(® = /® Let ,(® = 4,® = ¢, and
suppose that 7, = ¢, and that ¢, 0 ¢, = 1. Then, essentially,

7, = 110 100 100 110 000 000 . .. 000,

ns = 110 100 010 001 100 000 ... 000, and
7.9 = 101 010.

I

Because n: 01, = 3, 7, must have only one +1 in the 7th, 8th, and 9th
columns. Assume that this 41 occurs in the 7th column. Then, since
7. O 1, = 3, there is only one 41 in the 9th and 10th columns. So far, five of
the columns containing +1’s in 7, have been determined; and, at this stage,
ns and », have only one +1 in common, so that », 0 5, < 2. Similar arguments
will resolve the cases when the 41 in 75, is assumed to occur first in the Sth
column and then in the 9th column. Consequently, since M has two rows
7, and 5, satisfying 7,® = 5® = ¢, every other row 5, (excluding #; and 73)
must have 7,® = o, where ¢,0 0, % 1. This means that at most five o,'s
can occur in the first six columns of M ; and, since M has thirteen rows n; with
7,0 = oy essentially, the lemma has been proven.

LeMMA 4.5. The matrix M cannot have three rows which have +1’s in the same
three columns.

If M has three such rows, by Lemma 4.4, M also has rows 7., n, and 5, such

that ,® = 5,® = 4, Essentially, 5,9 = ¢y, and 91, 5,, 75, 7, are four rows
with +1's in the 1st, 2nd, and 4th columns. This contradicts the result in
Lemma 4.3.

If ;, 7 =2 3, is a row with exactly one +1 in the first three columns, then,
since 71 01; = 3, 7,0 must be essentially (100 110). Since the permutation
here can interchange the zth, (z+ + 1)st, and (# + 2)nd columns for 7 = 1, 4,

there are exactly nine possibilities. They are

& = (001 011), £ = (001 101), & = (001 110),
£ = (010 011), & = (010 101), & = (010 110),
& = (100 011), £ = (100 101), and & = (100 110).
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LemMA 4.6. For each i, 1 <1 £ 9, not both &; and o, can be initial segments
of rows in the matrix M.

Let 5, be a row which has ¢; as its initial segment, and let 5, be a row which
has £; as its initial segment. Then, essentially, 4, = (110 100 100 110 000 . . .
000), and 5,® = (001 011). Because 52 0 5, = 3, it follows that 7, 09, < 2,
a contradiction.

It is now possible to show that such a matrix M cannot exist. From
Lemma 4.5, ;% £ (111) for j = 3. Clearly, there can be at most one row
7, in M such that 7, = (000); and so, every remaining row 7n; must have
7m® oy =1 or 2. There cannot be two rows 7, 7, in M which have the
same o, as their initial segment; for otherwise, rows 71, 74, and 75, are three
rows having +1’s in the same three columns, which contradicts Lemma 4.5.
Similarly, there cannot be two rows in M having the same £, as their initial
segment. Now, because of Lemma 4.6, there can be at most 12 rows in M.
This concludes the proof of

THEOREM 4.1. The combinatorial designs associated with H (4q + 3, 12¢ + 10)
matrices (as given in Theorem 3.4) exist for ¢ = 0 and ¢ = 1, and they do not
exist for ¢ = 2.
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