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Summary

The incorporation of genetic information such as quantitative trait loci (QTL) data into breeding
schemes has become feasible as DNA technologies have advanced. Such strategies allow the
frequency of desirable QTL to be controlled over a predefined time frame, allowing the allele
trajectory for QTL to be manipulated. A continuous approximation to changes in allele frequency
was developed to approximate the selection procedure as a continuous rather than a discrete
process, and analytical solutions were obtained, which shed light on how allele trajectories behave
under different objective functions. Three different objectives were considered: (1) minimizing the
total selection intensity, (2) minimizing the sum of squared selection intensities and (3) equalizing
the selection intensity applied over time. Simulations and genetic algorithms were performed to test
the accuracy and robustness of the continuous approximation. Theory shows firstly that the total
selection intensity required for moving an allele from a starting frequency to another frequency
point can be predicted independent of its trajectory, and secondly that objectives (2) and (3) are
equivalent as the number of selection opportunities (T) becomes large. The prediction of total
selection intensity provides a good fit for these two objectives, with the accuracy of prediction
improving as T increases. However, for (1) the continuous approximation does not fit due to the
existence of a discontinuous solution in which the continuous approximation is applied before the
frequency of the selected allele reaches 0.5 followed by rapid fixation.

1. Introduction

As identification of quantitative trait loci (QTL) be-
comes routine, genotype-assisted selection (GAS) has
become possible and even desirable for populations
with managed breeding. GAS is where the frequency
of a known allele, which affects the trait of selection, is
managed generation by generation within the popu-
lation, often to fixation. One of the known hurdles
of the application of GAS is the Gibson effect, a
phenomenon whereby GAS results in higher short-
term genetic gain but lower long-term genetic gain
than conventional selection methods that ignore the
information on QTL (Gibson, 1994). The explanation
is, although GAS can fix the QTL in shorter time, the

loss of variation on polygenes associated with the
strong positive selection of QTL will lead to reduced
selection response on polygenes, which cannot be
fully recovered. Various authors have shown that this
effect can be ameliorated by optimizing the selection
procedures for the QTL over multiple generations,
i.e. the optimization of allele trajectory (Dekkers &
van Arendonk, 1998; Dekkers & Chakraborty, 2001;
Villanueva et al., 2002, 2004; Meuwissen & Sonesson,
2004; Sanchez et al., 2006).

This optimization process has led to a variety of
approaches tomanage the trajectory: maximizing pro-
gress over the long term (Pong-Wong & Woolliams,
1998; Villanueva et al., 2004), with predefined time
horizons (Dekkers & van Arendonk, 1998); or con-
strained to a constant rate of inbreeding (Villanueva
et al., 2002). These studies make selection decisions
based on estimated breeding values in one form or
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another, so optimum allele trajectory is therefore
defined only implicitly. However, the method of
Dekkers & van Arendonk (1998) allows the optimized
trajectory to be defined explicitly as a set of time
points for the allele frequency, so defining the selec-
tion pressure that is directly applied to the allele to be
analysed. Based on an observation of Dekkers &
van Arendonk (1998), Meuwiseen & Sonesson (2004)
directly defined the allele trajectory by making selec-
tion intensity on the allele constant over the period of
selection. More recently, Sanchez et al. (2006) pointed
out that the effective population size was inversely
proportional to the square of selection intensity, so
that the optimum trajectory to minimize the accu-
mulated inbreeding due to fixation should minimize
the average squared selection intensity on the major
gene over generations up to the given fixation time; in
other words, it should minimize the sum of squared
selection intensities (simplified as the sum of squared
intensities hereafter) applied to the allele over gen-
erations.

A common theme to these studies of allele trajec-
tories is that they use discrete generation models.
This discrete time model imposes limitations on ob-
taining analytical solutions for the problem of ap-
proximating the optimal pathway, and the lack of
analytical solution leaves unresolved the degree to
which these approaches are distinct. Furthermore,
the iterative solutions from the equalizing selection
intensities method leave open questions such as what
is the total selection intensity (simplified as total in-
tensity thereafter) required to fix the QTL given the
circumstances. Therefore, this study establishes a
continuous time model of the process of fixing an
allele, and explicitly optimizes the trajectory with
respect to various objective functions of the selection
intensity applied to the gene using the calculus of
variations. This continuous model serves as a com-
mon platform allowing further investigation and
comparison between different optimizing objectives.
The predictions from the continuous time model are
compared to optimizations using discrete generations
to quantify the precision of the continuous time
model.

2. Method

(i) Theory

(a) Continuous approximations

Consider the process of moving a desired allele Q
from frequency p0 at time 0 to pT at time T in discrete
generations and assume, for simplicity of notation,
that there is only one other allele, q, at that locus. The
trajectory consists of the set of frequency points
{pt, t=0,…,T} and optimization of the trajectory
is the set of pt that maximize a certain objective

function. Commonly, when considering fixation of
alleles in GAS, p0=(2N)x1 and pT=1, as it models the
fixing of a new mutation occurring in a diploid
population of sizeN. This scenario is equivalent to the
situation of eliminating a known allele from a popu-
lation (0<p0<1 and pT=0), as removing one allele
forces the frequency of all alternative alleles to 1.
However, the theory developed here will not be speci-
fic to these starting and finishing frequencies.

In this paper, following Meuwissen & Sonesson
(2004) and Sanchez et al. (2006), the objective func-
tions considered are functions of the selection inten-
sity applied directly to the allele. Let pt,k be the
frequency of the Q allele of individual k born at
time t, so pt,k will take values 0, 1/2 or 1 depending on
whether k has genotype qq, qQ or QQ. Using pt,k
as the definition of an additive trait of selection, the
population mean is pt, the variance is 1

2
pt(1xpt), the

selection intensity it can be defined as

it=(pt+1xpt)

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
pt(1xpt)

q
(1)

for t=0,…,Tx1, and the trajectory is a sequence of
points {pt, t=0,…,T}.

The trajectory can be considered in continuous time
rather than as a set of discrete generations. It is an
assumption, to be tested later, that the use of con-
tinuous time will approximate the original problem
better as the selection opportunities for changing
allele frequency become greater, i.e. when T is large.
Let the trajectory over time be given by p(t), which
is assumed to be a differentiable function of time t ;
then dp=pt+dtxptBpk(t) dt, where pk(t)=dp/dt and

it � pk(t) dt=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
p(t)(1xp(t))

q
. Therefore provided the

trajectory p(t) is differentiable so that its derivative,
pk(t), exists, the sums over the trajectory may be ap-
proximated by integrals.

Different objective functions that optimize the tra-
jectory are considered and analysed using the con-
tinuous approximation, including (1) the trajectory
that minimizes the total intensity, (2) the trajectory
that minimizes the sum of squared intensities and
(3) the trajectory that equalizes selection intensity.
Due to the amount of mathematical details involved,
only the essential information and core equations are
shown in this section; however, more details can be
found in Appendix A.

(b) Minimizing the total intensity

The total intensity for fixing an allele with a trajectory
p(t) as T becomes large can be given by

g
T

t=0
it �

Z T

0

pk(t) dtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
p(t)(1xp(t))

q : (2)
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Transformation and integration of the above
equation give the following:

ffiffiffi
2

p
(sinx1(1x2p0)xsinx1(1x2pT)): (3)

Note that this solution only depends on the starting
point p0 and the ending point pT, suggesting that there
is no such thing as minimizing the total intensity if the
approximation is valid – the total intensity is fixed
between a pair of frequency points regardless of its
trajectory or the value of T. For a new mutation
moving to fixation, p0=(2N)x1 and pT=1, the total
intensity applied to the allele during fixation isffiffiffi
2

p
1
2
p+sinx1(1xNx1)

� �
, which tends to

ffiffiffi
2

p
p as N

becomes large, i.e. when the starting frequency ap-
proaches zero.

(c) Minimizing the sum of squared intensities

The specific optimization considered by Sanchez et al.
(2006) was the trajectory of the allele frequencies
required to minimize the impact of the process on
accumulated inbreeding during the fixation. It is as-
sumed here that accumulated inbreeding can be well
approximated from the summed rates of inbreeding
(DF) achieved in each generation, and that the allele
can be fully identified throughout the process so
that its frequency can be explicitly managed over
time. The value of DF will vary according to the im-
pacts of all the different selection advantages inherent
in a selection scheme, not only the carrier status of
individuals for the allele of interest (Woolliams &
Bijma, 2000), and will depend on the square of the
selection intensities applied (Woolliams et al., 1993).
Therefore, the objective of minimizing the impact of
the fixation is to minimizegT

t=0i
2
t , which can be shown

as follows:

g
T

t=0
i2t �

Z T

0

pk(t)2
1
2
p(t)(1xp(t))

dt: (4)

Solving the above equation gives sinx1(1x2p)=
At+B or, equivalently,

p(t)=1
2
[1xsin(At+B)], (5)

where A and B are constants of integration and vary
depending on p0, pT and T. Values of A and B can be
obtained by substituting these parameters into eqn (5).
For example, assume that fixation is desired from a
new mutation, i.e. p0=(2N)x1B0 for large N, and
pT=1. With these conditions B=p/2 and A=xp/T
give p(t)=1

2
(1xsin[1

2
p(1x2tTx1)]). The optimal tra-

jectory for minimizing the sum of squared intensities
applied to the allele is therefore a segment of a sine
wave.

(d) Equalizing selection intensities

Based on the observation from Dekkers & van
Arendonk (1998) that the selection intensities achieved
in each generation are roughly constant in their
simulated result with best long-term gain, Meuwissen
& Sonesson (2004) suggest optimizing the trajectory
to maximize the cumulative selection response by
making the selection intensities constant over time.
Applying this objective in the continuous approxi-
mation gives a differential equation that is identical to
that obtained above for the objective of minimizing
the sum of squared intensities. This indicates that the
objective from Meuwissen & Sonesson gives an opti-
mum trajectory identical to that from minimizing the
sum of squared intensities. This conclusion is anal-
ogous to the minimization of the sum of squares for
n numbers whose sum is fixed to some value c – the
solution has all numbers equal to c/n. Therefore, the
theory suggests that as the continuous approximation
becomes more apt, the distinction between the ob-
jectives of Sanchez et al. (2006) and Meuwissen &
Sonesson (2004) disappears. The question remains
over how close an approximation.

(ii) Simulation methods

Two types of simulation methods are included in this
section: (i) a genetic algorithm with small population
size (N=10) and (ii) a simulation of breeding popu-
lations with large population size (N=500). Together
they test the validity and robustness of the continuous
approximation under various scenarios.

(a) Genetic algorithm

The genetic algorithm used differential evolution
(Shepherd & Kinghorn, 1992) to optimize the allele
frequency in order to find optimal trajectories with
N=10, for the three objectives considered above:
(i) equalizing selection intensities ; (ii) minimizing the
sum of squared intensities and (iii) minimizing total
intensity. Equalizing the selection intensities was
achieved by minimizing the sum of all squared differ-
ences among the selection intensities.

(b) Simulations of breeding schemes

Computer simulations of the breeding schemes start
with a base population (t=0) of 500 diploid indi-
viduals, and this population size was maintained
throughout the simulation. One individual from the
base population was randomly chosen to carry a single
copy of positive allele (initial frequency p0=(2N)x1)
with allelic effect a, which equals 0.5 as the addition or
removal of one positive allele results in a change of 0.5
in terms of frequency. Random mating with possible
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selfing was assumed for simplicity, i.e. the genetic
make-up of the offspring was randomly assigned from
selected parents with replacement.As the theory shows
that the objective of minimizing the sum of squared
intensities resembles the objective of equalizing selec-
tion intensities when T is large, only the objective of
equalizing selection intensities is used for its ease of
execution. Other selection strategies with oscillating
intensities in a sawtooth pattern, i.e. intensity profiles
of the form {0.3, 0.1, 0.3, 0.1…}, were also employed
to test whether the continuous approximation still
holds under more extreme conditions.

One should note that the time unit applied in this
study was the opportunities for selection and mating.
Hence, the word cohort will be used hereafter to rep-
resent a group of animals that are the direct result
of last selection and mating. The frequency of the
positive allele was then calculated and recorded for
each cohort, and simulation ended when the positive
allele was either fixed (pto(2Nx1)/2N) or lost (ptf
(2N)x1). In the case of the allele being lost, the data
were excluded from the final dataset as we considered
the pathway of allele fixation only. One thousand
simulations were run for each set of parameters and
the average number of cohorts required to fix the
selected allele was obtained to be compared to the
expected number of cohorts required from the ap-
proximation.

Discrete generation : A predefined constant selec-
tion intensity (i) was applied over every cohort by
restricting the average frequency of the selected in-
dividuals. Calculation was then performed for each
cohort to obtain the target pt+1 from the pt :

pt+1=pt+i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
pt(1xpt)

q
: (6)

Selection candidates were composed of all individuals
from the current cohort and were ranked according
to their allelic value. Selection candidates were then
removed sequentially from lower rank until the target
pt+1 was achieved. However, as matings between
selected parents are random, the average allele fre-
quency in the resultant population could not be
guaranteed and may deviate from the target pt+1. For
oscillating intensities, a similar procedure as described
above was used, except that the intensity is not con-
stant over every cohort.

Overlapping generation : The overlapping gener-
ation model was largely identical to the discrete
generation model except that the candidates available
for selection were not only restricted to the current
cohort but also extended to include two previous
cohorts. For selection candidates with the same allelic
value, a randomization process was used to determine
which candidate would become a parent. Generation
interval (L) was calculated as the age of parents
(in units of cohorts) when the offspring was born.

When several cohorts contribute to the selection,
the genetic variance is higher than shown in eqn (6),
i.e. 1

2
pt(1xpt). Apart from the variance within all

selected cohorts, the true genetic variance also con-
tains an additional term for the variance between
different cohorts :

Vtotal=1
2
E [p](1xE [p])+1

2
(E [p2]xE [p]2), (7)

where E[p] denotes expectations over the selected co-
horts. Simulations were carried out using eqn (6) with
Vtotal replacing 1

2
pt(1xpt). This was compared to

using eqn (6) without modification.

3. Results

As shown in the theory, the continuous approxi-
mation provides a prediction for the total intensity
required to move a target allele from a specific fre-
quency to another. The prediction is only affected by
the starting and ending frequencies, and is indepen-
dent of T or N, although in the case of new mutation,
the starting frequency is inversely related to the
population size. Assuming fixation is the goal (i.e.
the ending frequency is 1), the predicted total in-
tensity is

ffiffiffi
2

p
p (B4.44) for fixing a mutation in a

large population and 3.80 for a starting frequency of
0.05.

(i) Goodness of fit for small T, using the
genetic algorithm

Table 1 summarizes and compares the results ob-
tained from different GA evolutions and the con-
tinuous approximation for N=10, i.e. p0=0.05, with
small T values up to 11. For these parameters, the
predicted total intensity from continuous approxi-
mation is 3.80 regardless of trajectory, in other words
regardless of the objective functions of the GA evol-
ution. When equalizing intensities across generations,
the precision of predicting total intensity was very
good initially with an error of 1.7% at T=2, de-
teriorating as T increases, and then improving again,
with the greatest error of predicting the total intensity
being 9.2% at T=5. The continuous approximation
introduces marginally greater errors to the predicted
total intensity when minimizing the sum of squared
intensities, with errors peaking at 12.3% for T=5 and
reducing to 10.4% for T=11. Note that the similar
trend on the goodness of fit of the continuous ap-
proximation varies with T for both objectives. A very
different trend was observed for the objective of
minimizing total intensity, with total intensity con-
tinuing to reduce with T to 3.06 at T=11, which is
very different from the prediction of 3.80. Reasons
leading to this observation will be explained in the
discussion section.
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Looking at the profile of these different GA evol-
utions reveals more details about them. The intensity
profile of equalizing intensities is quite similar to
minimizing the sum of squared intensities, with the
intensity achieved each generation becoming more
and more uniform over time (Fig. 1a and 1b). This
illustrates the derivation showing that the solutions
for the two objectives converge, given the validity of
the continuous approximation.

Assuming the convergence of objectives of equal-
izing intensities and minimizing the sum of squared
intensities, the minimum sum of squared intensities
predicted from the continuous approximation is
equal to 3.802/T since (i/T)2 T=i2/T. Figure 1a shows
that as T increases up to 11, the selection intensities
become much more uniform, although Table 1 shows
that the prediction of minimum sum of squared in-
tensities still has significant error at T=11 despite the
fact that the magnitude of the error is reducing. It
might be expected that minimizing the sum of squared
intensities will have approximately twice the error of
minimizing the total intensity (see Appendix B).

(ii) Goodness of fit for large T, using simulations

The simulations allowed the goodness of fit to be
tested for large T by varying the selection intensity
applied. For the results presented in this section, p0
is 0.001 (N=500), with the predicted total intensity
being 4.35 from the continuous approximation.

(a) Discrete generation with constant
selection intensity

The comparisons between the simulation of breeding
with discrete generation and the continuous approxi-
mation for a range of different but constant selection
intensities applied are shown in Figure 2. The results
are presented as the mean number of cohorts re-
quired to fixation, with the expected number of co-
horts being calculated by dividing the expected total
intensity with the constant intensity applied during
the simulation. Figure 2 shows that for constant in-
tensities >0.5, where T<10, the scale of errors
agrees with the result shown in Table 1. However,
the simulations show that the approximation fits the
results progressively more closely for all intensities
<0.5. For all intensities <0.75, the differences be-
tween prediction and actual results are less than one
cohort.

(a)
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Figure 1. The composition of the total intensity obtained
from GA with the objective of (a) minimizing the sum
of squared intensities and (b) equalizing selection
intensities. Each block represents the amount of selection
intensity achieved in a single mating/frequency change.
Shading is for the purpose of illustration only.

Table 1. The total intensity (Sum it) and the sum of squared intensities (Sum it
2) required for N=10 and a

range of T values, using three optimization strategies : (1) equalizing selection intensities across generations,
(2) minimizing Sum it

2, (3) minimizing Sum it and (4) calculated from the continuous approximation

Strategy Criterion T=2 % error T=5 % error T=8 % error T=11 % error

Equalize it Sum it 3.869 x1.7 3.456 9.2 3.474 8.7 3.509 7.8
Sum it

2 7.486 x3.4 2.390 17.5 1.509 16.6 1.119 15.0
Minimize Sum it

2 Sum it 3.790 0.4 3.338 12.3 3.364 11.6 3.411 10.4
Sum it

2 7.296 x0.8 2.300 20.6 1.460 19.3 1.088 17.3
Minimize Sum it Sum it 3.748 1.5 3.166 16.8 3.088 18.8 3.059 19.6

Sum it
2 7.670 x6.0 3.154 x8.9 2.604 x43.9 2.404 x82.7

Prediction Sum it 3.805 3.805 3.805 3.805
Sum it

2 7.239 2.896 1.810 1.316
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(b) Discrete generation with oscillating
selection intensity

The independence of the total intensity applied to a
trajectory was further tested by oscillating selection
intensities across cohorts as in a sawtooth pattern.
Table 2 shows the comparison of total intensity ap-
plied for oscillating selection intensities patterns com-
pared to constant selection intensity with the same

pairwise average. Results show that the prediction
errors are only slightly larger for oscillating selection
intensities compared to constant selection intensities
with comparable average selection intensity. The ap-
proximation still provides good prediction under such
conditions, with errors around 2.3% for oscillating
selection intensities {0.3, 0.1} that increased to 11.7%
for selection intensities {0.6, 0.4}. The increase in
error with higher selection intensities and lower fix-
ation times would be expected from the result of
constant selection intensities. There were only small
differences between complementary patterns, i.e. {0.3,
0.1} compared to {0.1, 0.3} (results not shown).

In all breeding simulations, the prediction often
appears as an under-estimation of the simulated re-
sult, which is unsurprising because the selection in-
tensity applied in the simulation could not always
be achieved, i.e. in the last few cohorts the target
p could exceed 1.0 in order to achieve the selection
intensity applied – which is not possible. This is par-
ticularly important for large i selection, when only
small selection intensity might have been required to
move the frequency to 1.

(c) Overlapping generation

Table 3 summarizes the results for simulations with
overlapping generations. It shows that the total in-
tensity required for fixation is predictable from the

Table 2. Comparison between the total intensity (Sum it) required to fix an allele under simulations with discrete
generations and predicted from continuous approximation for a range of different selection intensities. The
selection intensity can be either constant all through the simulation or oscillating between a pair of different
values (shown as {a, b}). Population size (N) equals 500 in all cases

Selection intensity 0.2 {0.3, 0.1} 0.3 {0.4, 0.2} 0.5 {0.6, 0.4}

Predicted Sum it 4.35 4.35 4.35 4.35 4.35 4.35
Simulated Sum it 4.40 4.45 4.50 4.55 4.68 4.86
% error 1.1 2.3 3.4 4.6 7.6 11.7

Table 3. A comparison between the total intensity (Sum it) required to fix an allele in simulations with
overlapping generations for different constant selection intensities applied and for genetic variance calculated by
different methods. In ‘Unmodified ’ eqn (6) was used directly, but in ‘Modified ’ the true genetic variance Vtotal

replaced 1
2
pt(1xpt) in eqn (6). In all cases population size (N) equals 500 and predicted Sum it=4.35. Standard

errors, % error in prediction and generation interval (L) are also shown

Selection intensity/cohort=0.2 Selection intensity/cohort=0.5

Unmodified Modified Unmodified Modified

Sum it 4.33¡0.012 4.30¡0.006 4.51¡0.016 4.72¡0.012
% error x0.5 x1.1 3.7 8.4
L 2.29 2.32 2.06 2.21
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Figure 2. Comparison between the numbers of cohorts
required to fix an allele for a range of different selection
intensities, for (a) simulations with discrete generation
(open circles) and (b) continuous approximation
(filled circles). Population size (N) equals 500 in all cases.
The standard deviations are shown as error bars and the
standard errors are negligible.
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continuous approximation for low selection inten-
sities, but the % errors increase as the selection
intensity applied per cohort increases. When the un-
modified eqn (6) was used, the result is almost ident-
ical to those shown in Figure 2. However the use
of Vtotal, which represents the full genetic variance,
introduces an additional error. The 8.4% error for an
intensity of 0.5 represents approximately 1 cohort
difference between predicted and observed time
to fixation. In this case, the mean actual number of
cohorts was 9.4.

4. Discussion

The theory developed in this paper shows that pro-
vided the continuous approximation is valid, then
the total intensity applied to move between two fre-
quencies is directly proportional to the difference be-
tween the arcsines of (1x2p) for the end points p0 and
pT irrespective of trajectory – including standard
logistic trajectories, dp/dt=sp(1xp). For fixation of a
rare mutant, a frequent subject of interest, as p0 tends
to 0 and pT tends to 1, the total intensity tends to

ffiffiffi
2

p
p.

Further the strategies of (i) equalizing selection
intensities throughout the trajectory (Meuwissen &
Sonesson, 2004) and (ii) minimizing the sum of
squared intensities (Sanchez et al., 2006) converge to
the same optimal trajectory, which is a function of
time described by a segment of a sine wave. The re-
sults showed that the goodness of fit of the continuous
approximation became progressively better as T
increased, with prediction errors for total intensity
reducing and becoming reasonable as Ty10, or av-
erage iy0.4 during the period. Further this result
remained true for trajectories in which i was varied

over time rather than constant, or where generations
were overlapping rather than discrete.

The continuous approximation will have a lack of
fit for two reasons. First, a smooth curve is used
to approximate a step function; second, the domi-
nator for pt+1xpt in it is related to pt(1xpt), not
p
t+1

2
(1xp

t+1
2
), which would be more natural for the

use of the continuous approximation. This affects the
goodness of fit under positive selection since it is
greater than expected from the approximation by
pk(t+1

2
) when p(t)<p(t+1

2
)<0�5, but less than the

approximation when p(t+1
2
)>p(t)>0:5. The sizes of

error are comparable for the pair of p(t) that are
in equal deviation from 0.5. These trends are most
extreme for p close to 0 or 1, or for small T when p(t)
changes rapidly, and there are greater opportunities
for cancelling when trajectories move from p<0.5 to
p>0.5.

The difference in the sign of errors when p is greater
than or less than 0.5 helps explain the results found
for minimizing the total intensity, since for all T a
trajectory with total intensity less than that predicted
by the continuous approximation can be found
(Table 1). Figure 3 shows the trajectories that mini-
mize the total intensity shown in Table 1, and it is seen
that the trajectory resembles a continuous curve for
p<0.5 with a jump in the final generation from close
to 0.5 directly to 1. As T increases, this represents a
discontinuity in the trajectory, which can be seen as a
combination of the continuous approximation from
p0 (assumed <0.5) to 0.5 and a direct jump from 0.5
to 1. For T=11 used in Table 1, the expected value
from the discontinuous solution is 3.02 (cf. 3.06), af-
firming that the continuous approximation can fit well
to intervals that do not span both sides of 0.5.
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Figure 3. The frequency path (trajectory) obtained by GA with the objective of minimizing the total intensity for different
T values. For each profile with different T, the frequency points are shown as solid circles along the horizontal line, with
the first frequency point being at p=0.05. The last frequency points, pTx1, from all profiles are joined by a dashed line to
illustrate how pTx1 approaches 0.5 as T increases.
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The existence of the discontinuous solution for
minimizing the total intensity creates a distinction
betweenminimizing the sum of squared intensities and
equalizing selection intensities. The sum of squared
intensities can be broken down into two components :
the sum of selection intensity and the variance of
selection intensity:

g
T

t=1
i2t=T E [it]

2+T Var(it)=Tx1 g
T

t=1
it

� �2

+T Var(it):

The strategy of equalizing selection intensities
promotes reduction in the sum of squared intensities
by having no variance term, while the discontinuous
solution is effective through reducing the total inten-
sity. For small T, the trajectory minimizing the sum of
squared intensities is temporarily effective in reducing
the sum of squared intensities by reducing the total
intensity acquired and therefore allowing some vari-
ance. However, as T increases, the benefits from re-
ducing the total intensity become less than the penalty
from the variance among the selection intensities, and
the optimum trajectory moves towards the trajectory
of equalizing intensities (see Appendix D).

Genomics is at the start of giving values to many
small segments of chromosomes, sometimes with QTL
identified and sometimes simply marked. Simul-
taneously, we are also at the threshold of being able
to manage inbreeding at the level of the segment, i.e.
requiring a slow change in diversity, or wishing to
reduce the impact of negative LD on what segments
can be fixed in the population. Therefore, we envisage
the field of ‘designer genomes’, where the target tra-
jectories of multiple loci are mapped out on a genome-
wide scale. This is not a problem with only one locus.
However, to achieve targets on frequency and in-
breeding at multiple loci, we need to understand,
in the long term, what is required to fix/eradicate an
allele or to move from a frequency point to another,
and hence consider how closely the designed genome
can be achieved. It is precisely this approximation
that allows such predictions over time to be made in
a simple fashion albeit it is but one step towards
achieving the wider goal.

One of the possible uses of this approximation is on
the removal of the recessive mutant allele that causes
foal immunodeficiency syndrome (FIS), more com-
monly known as the Fell pony syndrome. This fatal
condition affects not only Fell ponies but also Dales
ponies, and the causal mutant has recently been
identified (June Swinburne, personal communication).
Although the eradication of this mutant allele is
highly desirable, two reasons make the execution dif-
ficult : first, the frequency of the carrier is high with-
in the population (y0.4 in the Fell breed, June
Swinburne, personal communication), and second,

the Fell breed is a small breed. In other words, this
allele is widespread in a small gene pool ; hence op-
tions such as culling of all carriers are not sensible
as they might lead to the loss of genetic diversity
and the emergence of new recessives. Therefore, it is
necessary to plan the removal of this mutant allele
over a prior timescale to minimize the impact on
diversity. Theoretically, the process of eradication
should be carried out slowly and carefully in order
to minimize the reduction on genetic diversity with-
in the breeds. The approximation in this study can
provide a simple means of obtaining a series of
stage goals for moving the frequency to zero, i.e. tar-
get frequency points, to be achieved over the pre-
determined horizon while minimizing the diversity
loss. With the mutant allele frequency y0.25, the
total intensity required to remove the mutant allele
is y1.48, and the intensity in each generation is
1.48/T.

Aspects of the results may be generalized to more
than one QTL, and there is a synergy with the results
of Goddard (2009), where trajectories for two QTLs
are optimized with respect to a profit function. The
study of Goddard recognizes that allele frequencies
do not change linearly with the selection intensity
applied, and uses a transformation to a scale (denoted
z in the paper) upon which linearity holds – this re-
quires the continuous approximation to hold since
derivatives are required. Appendix C shows that the
scale, z(p), can be interpreted as being directly pro-
portional to accumulated selection intensity applied
to the locus for moving from an infinitesimally small
frequency to p. This study shows that to move m loci
from p0 to pT while minimizing inbreeding at a neutral
locus (and one that is affected by selection through the
development of the pedigree only) constant selection
intensity is required to be simultaneously applied at
each locus – albeit with intensity differing among loci.
This trajectory is represented by straight lines in an
m-dimensional z-space with the relative strength of
selection on each locus determining direction, and
the line is traversed in T segments of equal length.
However, the actual inbreeding accumulated will de-
pend on T, the size of the population, and also upon
the linkage disequilibrium among the loci being
selected.

In conclusion, the continuous approximation shows
that (i) the optimizing approaches of equalizing in-
tensities (Meuwissen & Sonesson, 2004) and mini-
mizing the sum of squared intensities (Sanchez et al.,
2006) have the same limiting form and converge over
time to a sine wave and (ii) the total intensity required
to move an allele from a given frequency point to
another can be very closely approximated and only
depends on the starting and end frequency.
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Appendix A

(i) Minimizing the total intensity

By noting that pk(t) dt can be replaced by dp, and then
substituting p for p(t), eqn (2) can be transformed to
the following equation, where its direct integration
leads to eqn (3) :

g
T

0
it �

Z pT

p0

dpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
p(1xp)

q : (A1)

(ii) Minimizing properties of allele trajectories

An important methodology for optimizing trajec-
tories is the calculus of variations (Weisstein, 2005).
When the function to be optimized is of the form

Z T

0
f [p, pk, t] dt, (A2)

the solution can be obtained from the Euler–
Lagrange equations provided trajectories p(t) are dif-
ferentiable. This equation states that the optimum
trajectory satisfies

@f=@pxd[@f=@pk]=dt=0:

This solution can be further simplified if f [p, pk, t] is
independent of explicit dependence on t, i.e. the par-
tial derivative of f [ ] with respect to t is 0 (i.e. df/
dt=0), then the condition may be simplified to the
Beltrami identity: f [p, pk, t]xpkdf/dpk=C, where C is
a constant of integration.

(iii) Minimizing the sum of squared intensity

The function f [ ] required to minimize the sum of
squared intensity is as follows:

Z T

0
f [p, pk, t] dt=

Z T

0

pk2

0�5p(1xp)
dt, (A3)

where pk is the derivative of p with respect to t, and
f [p, pk, t]=pk2[0.5p(1xp)]x1, representing the square
of the selection intensity at time t. Applying the
method of calculus of variation (Weisstein, 2005) to
the sum of squared intensities gives the following re-
sult : f [p, pk, t]xpkdf/dpk=xpk2[0.5p(1xp)]x1=C and
p must satisfy

pk=[0�5Cp(1xp)]1=2: (A4)

Solving this differential equation gives sinx1(1x2p)=
At+B or, equivalently, p(t)=1

2 [1xsin(At+B)], where
A and B are constants of integration. This comes from
noting that [p(1xp)]1/2=1

2 [1xu2]1/2, where u=(1x2p)
converts the function into a recognizable standard
integral form. A and B are determined by the desired
change from t=0, … , T and have units of radians
(not degrees). The optimal trajectory for minimizing
the sum of squared intensity applied to the allele is
therefore a segment of a sine wave.

(iv) Equalizing selection intensities

The objective function of equalizing the selection in-
tensities is equivalent to making the selection intensity
constant, i.e. pk[0.5p(1xp)]x1/2=C, which is the same
differential equation as that obtained above for the
criterion of minimizing the sum of squared intensities
(eqn (A4)).
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Appendix B

The error associated with minimizing the sum of
squared intensity (as a percentage to the total) can be
simplified as

(it+d(it))
2xi2t

i2t
� 2td(it)

i2t
=

2d(it)

it

given (d(it))
2 can be neglected, which is twice the error

of minimizing the total intensity (d(it)/it).

Appendix C

This study considers the total intensity required to
move from p0 to pT, as

Z pT

p0

dpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0�5p(1xp)

p :

Note that in Goddard (2009) z(p)= sinx1 ffiffiffi
p

p� �
=

p=4x1
2
sinx1 (1x2p) and

Z pT

p0

dpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0�5p(1xp)

p =
Z zT

z0

dp

dz

dzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0�5p(1xp)

p =
Z zT

z0
dz

=zTxz0:

Therefore, the increment in z is the accumulated
selection intensity applied to the locus.

Appendix D

For large N, the total intensity for the continuous
solution �

ffiffiffi
2

p
p, while the total intensity for the dis-

continuous solution approaches
ffiffiffi
2

p
(1+p=2). This is

obtained by calculating separately the intensity from
p0 (assumed<0.5) to 0.5 and the intensity from 0.5
to 1. The first of these is

ffiffiffi
2

p
sinx1 (1xNx1), which

tends to p=
ffiffiffi
2

p
as N becomes large, while the second

is
ffiffiffi
2

p
, giving a minimum of

ffiffiffi
2

p
(1+p=2) for large N.

Hence, for a continuous solution the sum of squared
intensitiesgi2=T

ffiffiffi
2

p
p=T

� �2
= 2p2

T
and for a discontinu-

ous solution gi2=
ffiffiffi
2

p� �2
+(Tx1) p=

ffiffiffi
2

p
=Tx1

� �
=2+

p2=2(Tx1).
The sums of squared intensities from the two sol-

utions for a range of T values are summarized below.
When T=7, the two solutions yield roughly equal
results, and for T>7, the continuous solution per-
forms better than the discontinuous solution.

e Continuous Discontinuous

2 9.87 6.93
3 6.58 4.47
4 4.93 3.64
5 3.95 3.23
6 3.29 2.99
7 2.82 2.82
8 2.47 2.70
9 2.19 2.62
10 1.97 2.55
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