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Abstract

We prove that there exists a universal constant D such that if p is a prime divisor of the
index of the Fitting subgroup of a finite group G, then the number of conjugacy classes of
G is at least Dp/ log2 p. We conjecture that we can take D = 1 and prove that for solvable
groups, we can take D = 1/3.

2010 Mathematics Subject Classification: 20E45 (Primary); 20C15, 20C20,
20D25 (Secondary)

1. Introduction

The study of the number of conjugacy classes k(G) of a finite group G has been a central
theme in group theory since the work of Burnside, Frobenius and Landau around 1900. Since
then, much effort has been made on the determination of finite groups with a small number
of conjugacy classes (see [28] and the references there). In a different direction, R. Brauer
[2] gave the first explicit lower bound for k(G) in terms of |G| and, in one of the problems in
his celebrated collection of open problems, asked for substantially better bounds. This was
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essentially solved by L. Pyber in 1992 [26], but there have been a number of improvements
on Pyber’s bound since then (see [1, 18] and the references there).

A variation of Brauer’s problem was considered by L. Héthelyi and B. Külshammer
in 2000 [9]. They proved that if G is a finite solvable group and p divides |G|, then
k(G) ≥ 2

√
p − 1 (and this bound is best possible). This has originated a lot of, still ongo-

ing, research. They conjectured that this inequality should hold for an arbitrary group G and
even that k(B) ≥ 2

√
p − 1 when B is a Brauer p-block of G of positive defect. The Héthelyi–

Külshammer bound was finally extended to arbitrary finite groups by A. Maróti in [22].
Later, Maróti and G. Malle proved that even the number of irreducible characters of degree
not divisible by p of a finite group G is |Irrp′(G)| ≥ 2

√
p − 1. (See [11] for a recent strength-

ening of this result involving fields of values.) The block-version still remains open, but the
principal block case has been very recently solved by N. N. Hung and A. A. Schaeffer Fry.
In [12], they prove that if B0 is the principal p-block of a finite group G, then the number
of irreducible characters in B0 is k(B0) ≥ 2

√
p − 1. Even more, Hung, Schaeffer Fry and

C. Vallejo have proven in [13] that the number of height zero irreducible characters in the
principal p-block is k0(B0) ≥ 2

√
p − 1.

On the other hand, R. Guralnick and G. Robinson [7] have proved that if F(G) is the
Fitting subgroup of a group G of even order, p divides |G:F(G)| and t ∈ G is an involution,
then p ≤ |CG(t)| + 1. This bound is best possible, as shown by the groups SL2(p − 1) for
p ≥ 5 a Fermat prime. We have observed that for these groups k(SL2(p − 1)) = |CG(t)| + 1,
and this leads us to the question of whether k(G) ≥ p when p is a prime that divides |G:F(G)|.
This is false, as k(PSL2(p)) = (p + 5)/2 for any prime p > 3. Even more, if we assume that
there are infinitely many Mersenne primes (as is expected), then the best bound that we can
hope for is of the order of p/ log p, where log (here and thoroughout the paper) means log2.
In order to see this, let q be a prime such that p = 2q − 1 is a Mersenne prime and consider
the affine semi-linear group G = A�(2q). Then it is easy to see that p divides |G:F(G)| and

k(G) = p − 1

q
+ 2q = p − 1

log (p + 1)
+ 2 log (p + 1) ≥ p

log p
.

Our main result shows that indeed there exists a bound of this order of magnitude.

THEOREM A. There exists a constant D such that if G is a finite group and p divides
|G:F(G)|, then

k(G) ≥ D(p/ log p).

Furthermore, if G is solvable, we can take D = 1/3.

Note that the hypothesis p divides |G:F(G)| is redundant for non-p-solvable groups. In
this case, we show that there are even better bounds.

THEOREM B. Let p be a prime. Then there exists C > 0 such that if G is a non-p-solvable
group, then k(G) ≥ Cp.

These theorems leave open the following questions.

CONJECTURE C. Let p be a prime and let G be a finite group. If p divides |G:F(G)|, then
k(G) ≥ p/ log p.
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CONJECTURE D. Let p be a prime and let G be a non-p-solvable group. Then k(G) ≥
(p + 5)/2.

Note that this would be a substantial improvement on the Héthelyi–Külshammer bound
for non-p-solvable groups.

We remark that the straightforward versions of the main results in this paper for the num-
ber of irreducible characters of p′-degree or for the number of characters in a block do not
hold. For instance, the bound |Irrp′(G)| ≥ 2

√
p − 1 cannot be improved even if we assume

that p divides |G:F(G)|. This distinguishes our results from [9, 22] and shows that our results
are tighter, in the sense that it is not possible to replace k(G) by usually smaller invariants
like |Irrp′(G)| or k(B). Nevertheless, we think that they could also admit a block version and

a version for the number of p′-degree irreducible characters. This will be discussed in the
last section of the paper.

2. Preliminaries

All groups in this paper will be finite. Our notation is standard and follows [16, 20]. If N
is a normal subgroup of a group G, then Irr(G|N) is the set of irreducible characters of G
whose kernel does not contain N. If a group G acts on an abelian group V , then we write
n(G,V) to denote the number of orbits of G on V .

In this section, we collect some results that will be used several times in the proofs of the
main theorems. We start by recalling several results on the number of conjugacy classes that
will be used without further explicit mention.

LEMMA 2·1. Let G be a finite group and let N � G. Then:

(i) k(G) ≥ k(G/N);

(ii) k(G) ≤ k(G/N)k(N);

(iii) If N is abelian and C = CG(N) then k(G) ≥ k(G/C) + (|N| − 1)/|G:C|.
Proof. Parts (i) and (ii) are well known (see, for instance, [6] for (ii)). We prove (iii). Note

that |Irr(G|N)| ≥ (|N| − 1)/|G:C|. Hence,

k(G) = |Irr(G)| ≥ |Irr(G/C)| + |Irr(G|N)| ≥ k(G/C) + (|N| − 1)/|G:C|,
as wanted.

The following result, which is a combination of the main results of [10, 23], will allow us
to consider just groups with Sylow p-subgroups of order p.

THEOREM 2·2. There exists a constant c such that for any group G whose order is divis-
ible by the square of a prime p, we have k(G) ≥ cp. Furthermore, if G is solvable, then we
can take c = 49/60.

We definitely cannot take c = 49/60 when G is a non-solvable p-solvable group, as
[9, Examples (iv), p· 671] shows. This is one of the reasons why our constant D in Theorem
A is not explicit for non-solvable p-solvable groups.

The following theorem of Seager [27] will be another fundamental result to get our
explicit bound in the solvable case.
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THEOREM 2·3. Let p be a prime and let G be a solvable primitive subgroup of GLn(p). If
G is not permutation isomorphic to a subgroup of �(pn), then the number of orbits of G on
the natural module V is

n(G, V) ≥ (pn/2/12n) + 1,

except possibly when pn = 174, 194, 76, 58, 78, 138, 79, 36 and 516.

Another fundamental tool will be Zsigmondy’s prime theorem (see [15, IX, 8·3]). Recall
that if a > 1 and n are integers, a prime p is called a Zsigmondy prime divisor for an − 1 if
p divides an − 1 but p does not divide aj − 1 for j < n. (This is dependent upon a and n, and
not just an − 1.)

THEOREM 2·4. Let a > 1 and n be positive integers. Then there exists a Zsigmondy prime
divisor for an − 1 unless (a, n) = (2, 6) or (a, n) = (2k − 1, 2) for some positive integer k.

We will also use several times the following consequence of the Fong–Swan theorem, that
could be useful for other purposes.

LEMMA 2·5. Let G be a solvable group, and let V be a faithful irreducible G-module
over the field with q elements, where q is a prime. Then |V| ≥ qd, where d is the smallest
dimension of a faithful complex representation of G.

Proof. Let F be an algebraically closed field in characteristic q. Write |V| = qn. Let X
be the GF(q)-representation associated to V and let X F be the representation X viewed as
an F-representation. By [16, Theorem 9·21], X F decomposes as a sum of pairwise different
irreducible F-representations. Therefore, if ϕ is the (faithful) q-Brauer character associated
to X F we have that ϕ(1) = n and ϕ is a sum of pairwise different irreducible q-Brauer charac-
ters. By the Fong–Swan theorem ([24, Theorem 10·1]) all these irreducible Brauer characters
can be lifted to complex irreducible characters. Therefore, ϕ = χ◦ for some faithful complex
character χ . The result follows.

We will need the following calculus exercise together with [9] in the proof of the solvable
case of Theorem A.

LEMMA 2·6. If 2 ≤ x < 1800, then 2
√

x − 1 > x/(2 log x). If 2 < x ≤ 4936 then
2
√

x − 1 > 0.3492x/ log x.

3. Proof of Theorem B

In this short section, we prove Theorem B. It is an easy consequence of results of Fulman
and Guralnick on the number of conjugacy classes of simple groups of Lie type (and the
classification of finite simple groups).

Proof of Theorem B. By Theorem 2·2, we may assume that |G|p = p. Let M/N = S be the
chief factor of G whose order is divisible by p. Arguing by induction, we may assume that
N = 1 and CG(M) = 1. Therefore, M is the unique minimal normal subgroup of G, so G is
an almost simple group with socle S. Using the CFSG, we may assume that S is of Lie type
of rank r over a field of size q, for some integers r and q (because there are finitely many
sporadic groups, so we can ignore them and it is easy to see that if S is an alternating group,
then the number of conjugacy classes of G is at least the largest prime divisor of |S|).
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Now, it follows from [5] that k(G) ≥ qr/|M(S)|, where M(S) is the Schur multiplier of G.
The result follows from inspection of [8, table 2].

4. p-solvable groups

In this section, we prove the first part of Theorem A. We start with a particular case.

LEMMA 4·1. Let G be a finite group with a unique minimal normal subgroup N. Suppose
that |G|p = p and N = S × · · · × S, where S is a non-abelian simple p′-group. Then k(G) >

Cp, where C is the constant that appears in Theorem B.

Proof. We know that G is isomorphic to a subgroup of Aut(N) = Aut(S) 	 Sn, where n
is the number of direct factors isomorphic to S that appear in N. Let M = G ∩ Aut(S)n. We
distinguish two cases.

Suppose first that p divides |G/M|. Since G/M is isomorphic to a subgroup of
Sn, we deduce that n ≥ p. Hence if we fix any 1 �= x ∈ S, we have that (x, 1, . . . , 1),
(x, x, 1, . . . , 1), . . . , (x, . . . , x) ∈ N are representatives of at least p different conjugacy
classes of G. The result follows in this case.

Now, we may assume that p divides |M/N|. This implies that p divides |Out(S)|. Since p
does not divide |S|, it follows from the classification of finite simple groups that S is a group
of Lie type over the field with qa elements for some prime q and some positive integer a that
is divisible by p. By the order formulae of the simple groups of Lie type (see [3]), qa − 1
divides |S|. If l is a Zsigmondy prime divisor for qa − 1, then q has order a modulo l, so l ≡ 1
(mod a). In particular, l ≥ a + 1 > p. Applying Theorem B with the prime l, we deduce that
there exists a constant C such that k(G) ≥ Cl > Cp, as wanted.

Next, we handle the critical case.

THEOREM 4·2. There exists a universal constant A such that the following holds. Let p
be a prime and G a group such that the Sylow p-subgroup of G is normal in G and cyclic
of order p. Let V be a faithful G-module over GF(q) where q is a prime different from p.
Then

k(GV) ≥ A
p

log p
.

Proof. We first define a constant A that will do the job. Let β be as in [18, Theorem
B]. Moreover let δ0 = 1/δ, where δ is the constant one gets from [1, Theorem 2·1] if one
chooses ε = 1 there. Now choose A > 0 sufficiently small such that it satisfies the following
conditions:

(i) A ≤ β

2

p − 1

p
; (ii) log (1/A) > e4 and (iii)

log (1/A)

( log log (1/A))4
≥ 8δ0

β
.

First note that there is nothing to prove if Ap/ log p ≤ 1, so we may assume that p/ log p ≥
1/A and thus p > 1/A. Since the function f (x) = x/( log x)4 is strictly increasing for x > e4,
we see that with (ii) and (iii) we obtain

log (p)

( log log (p))4
≥ 8δ0

β
.
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Hence for any real number a0 with a0 ≥ log (p) we get the inequality

log (a0)

( log log (a0))4
≥ 8δ0

β
,

which can easily be seen to be equivalent to

βa0 − 16δ0( log a0)4 ≥ (β/2)a0. ( ∗ )

Now let GV be a counterexample of minimal order. Let P be the Sylow p-subgroup of
G and observe that since P is normal and cyclic we see that VP = [P, V] ⊕ CV (P), and P
acts frobeniusly on [P, V]. By induction we may assume that V = [P, V], and so P acts
frobeniusly on V . Now if 0 < V1 < V is a G-module, then G also acts on V/V1 and P acts
frobeniusly on V/V1, and so by induction we are done again. Hence no such V1 exists, and
hence V is irreducible as G-module.

Write M = CG(P) and note that M = K × P for a Hall p′-subgroup K of M. Then G/M is
isomorphic to a subgroup of Aut(P), and hence if we write a = |G/M|, then a divides p − 1,
and G/M is cyclic of order a. Now we see that

k(GV) ≥ k(G) ≥ a + p − 1

a
. (0)

Also, if g ∈ G is such that G/M = 〈gM〉, then P〈g〉 is a subgroup U of G which has a factor
group that is a Frobenius group of order ap. So if 0 < V0 < V is an irreducible U-submodule
of V , then by Lemma 2·5 we have |V| ≥ |V0| ≥ qa ≥ 2a.

Now let S be the solvable radical of G. Then SV is a solvable group with trivial Frattini
subgroup, and hence by [18, Theorem B] with β as introduced above we have that

k(SV) ≥ |SV|β ≥ |V|β ≥ 2aβ . (1)

Furthermore, G/S is a group with trivial solvable radical, and so by [1, Theorem 2·1] with
δ0 > 0 as introduced above we get

log |G/S| ≤ δ0( log k(G/S))4.

Furthermore, note that k(K) ≤ a, because if k(K) > a, then

k(M) = k(P × K) = pk(K) > pa

and then

k(GV) ≥ k(G) ≥ k(M)/|G/M| > pa/a = p,

contradicting GV being a counterexample. Now since P ≤ S, we see that

MS/S ∼= M/(M ∩ S) ∼= K/(K ∩ S)

and hence k(MS/S) ≤ k(K) ≤ a. Since |G:M| = a, we then conclude that

k(G/S) ≤ k(G/MS)k(MS/S) ≤ a · a = a2.

With this we get

|G/S| ≤ 2δ0( log a2)4 = 216δ0( log a)4
. (2)
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Putting (1) and (2) together, we obtain

p ≥ k(GV) ≥ k(SV)

|G/S| ≥ 2aβ

216δ0( log a)4 (3)

Note that by (0) we may assume that a ≥ log p. Therefore by ( ∗ ) we know that βa −
16δ0( log a)4 ≥ (β/2)a. Therefore by (3) we get

log p ≥ βa − 16δ0( log a)4 ≥ (β/2)a.

Hence a ≤ (2/β) log p, and thus (0) yields

k(GV) ≥ p − 1

a
≥ p − 1

(2/β) log p
= β

2

p − 1

log p
.

But now by (i) we see that

β

2

p − 1

log p
≥ A

p

log p

which is the final contradiction to GV being a counterexample. The proof is complete.
Now, we can complete the proof of the first part of Theorem A. We refer the reader to [17,

9A] for the definition and basic properties of the generalised Fitting subgroup.

THEOREM 4·3. There exists a constant C such that if G is a finite group such that p
divides |G:F(G)| then k(G) ≥ Cp/ log p.

Proof. By Theorem B, we may assume that G is p-solvable. By Theorem 2·2, we
may assume that |G|p = p. We argue by induction on |G|. By [14, III·4·2(d)], we know
that F(G/�(G)) = F(G)/�(G). Hence, p divides |G/�(G):F(G/�(G))|. Since k(G) ≥
k(G/�(G)), we may assume that �(G) = 1. Note that this implies that the Frattini subgroup
of any subnormal subgroup of G is trivial and in particular any component of G is simple.
Hence E(G) is a direct product of (non-abelian) simple p′-groups. Furthermore, F(G) is a
direct product of elementary abelian minimal normal subgroups of G, by [14, III·4·5].

Hence the generalised Fitting subgroup F∗(G) = E(G)F(G) is the direct product of the
minimal normal subgroups of G, i.e., coincides with the socle of G. Note also that p does
not divide |F∗(G)|. Write F∗(G) = V1 × · · · × Vt, where V1, . . . , Vt are minimal normal
subgroups of G.

Since CG(F∗(G)) ≤ F∗(G), we deduce that CG(F∗(G)) = F(G). Write Ci = CG(Vi) for
every i. Note that CG(F∗(G)) = ⋂t

i=1 Ci so G/F(G) is isomorphic to a subgroup of the direct
product G/C1 × · · · × G/Ct. Since p divides |G/F(G)|, there exists j such that p divides
|G/Cj|. Write V = Vj and C = Cj. Note that since p divides |G/C|, p does not divide |C|.

Suppose first that V is abelian. Using [14, III·4·4], we deduce that there exists H ≤ G such
that G = HV and H ∩ V = 1. Let D = CH(V), which is a normal p′-subgroup of G. Hence
VD/D is the unique minimal normal subgroup of G/D and H/D acts faithfully on VD/D.
Since k(G) ≥ k(G/D) and the hypotheses hold for G/D, we may assume that D = 1. Hence,
V is the unique minimal normal subgroup of G and F(G) = V . By induction, again, we may
assume that p divides |F2(G):F(G)|, so H has a normal Sylow p-subgroup. Now, the result
follows from Theorem 4·2.

Hence, we may assume that V is not abelian. In this case, VC/C is the unique minimal
normal subgroup of G/C and we are in the situation of Lemma 4·1. The theorem follows.
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5. Solvable Groups: Imprimitive Case

In this and the next section, we work to provide the explicit and reasonable constant in the
solvable case of Theorem A. The problem is reduced to studying the action of a group on a
finite faithful irreducible module. Our first result handles the imprimitive case.

THEOREM 5·1. There exists a universal constant D such that the following holds. Let p
be a prime and H a solvable group such that the Sylow p-subgroup of H is normal in H and
cyclic of order p. Let V be a faithful irreducible H-module over GF(q) where q is a prime
different from p, and suppose that V is not quasi-primitive (in particular, it is imprimitive).
Then

k(HV) ≥ D
p

log p
.

One can choose D = 0.3492. Moreover, if p > 11000, then one can even choose D = 1/2.

Proof. Let 0 < D ≤ 1/2 be arbitrary. We will see that the proof will work with this D
except for one critical case. In that one case the argument will only work under the additional
assumption p > 11000, and for arbitrary p it will only work if D ≤ 0.3492.

First note that by Lemma 2·6 and [9], we may assume that 2
√

p − 1 ≤ Dp/ log2 (p), that is,
D ≥ (2

√
p − 1 log2 (p))/p. If D = 1/2, this forces p > 1800, and if D = 0.34924, this forces

p > 4936.
Let HV be a counterexample of minimal order.
Now let N � H be maximal such that VN is not homogeneous, and then by Clifford’s

theorem we know that VN = ⊕n
i=1Vi for some n > 1 and homogeneous components Vi, and

H/N permutes the Vi (i = 1, . . . , n) faithfully and primitively.
Next, let P be the Sylow p-subgroup of H and observe that since P is normal and cyclic, it

acts frobeniusly on V . We claim that P ≤ N. If not, then P would permute the Vi nontrivially,
and we could without loss assume that {V1, . . . , Vp} would be an orbit of P in this action.

But then if x is a generator of P and 0 �= v1 ∈ V1, then
p−1∑
i=0

vxi
1 would clearly be a nonzero

element of V which is fixed by x and thus P, contradicting P acting frobeniusly on V . This
proves our claim that P ≤ N.

We study the action of N on V .
We claim that N has at least pn−1/(p − 1) distinct orbits on V . (∗)
To see this, we let 0 �= v1 ∈ V1. Let gi ∈ H (i = 1, . . . , n) such that Vgi

1 = Vi for all i; clearly
we may assume that g1 = 1. Put vi = vgi

1 ∈ Vi for all i. Then

T: =
n∑

i=1

vN
i

obviously is an N-invariant subset of V . For j = 1, . . . n we define

Tj: =
j∑

i=1

vN
i

so that Tn = T . Write M = CN(P) and note that M = K × P for a Hall p′-subgroup K of M.
To establish our claim (∗), we prove the following.

Let j ∈ {1, . . . , n}. Then M has at least pj−1 orbits on Tj. (∗∗)
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We prove this by induction on j. If j = 1, then the assertion is trivial. So let 1 < j ≤ n and
suppose that M has at least pj−2 orbits on Tj−1. Now let y ∈ Tj−1 be in one of these orbits.
Since P is normal in H and acts frobeniusly on V , we conclude that p does not divide the
order of CM(y); that is, CM(y) = CK(y). Since M is p-nilpotent and P acts frobeniusly on V ,
the N-orbit vN

j ⊆ Vj decomposes into at least p distinct CM(y)-orbits (since the sizes of the

CM(y)-orbits are not divisible by p, but |vM
j | is divisible by p, and P will always join p of

the CM(y)-orbits to a single CM(y) × P-orbit). If wi ∈ vN
j (i = 1, . . . , p) are representatives of

such p distinct CM(y)-orbits, then we see that the y + wi ∈ Tj (i = 1, . . . , p) are representa-
tives of p distinct M-orbits. Since y was chosen from an arbitrary M-orbit on Tj−1, and since
furthermore clearly any y1 + wi and y2 + wj (for any i, j ∈ {1, . . . , p} lie in different M-orbits
if y1 and y2 lie in different M-orbits on Tj−1, it follows that M has at least pj−2 · p = pj−1

distinct orbits on Tj. Thus (∗∗) is proved.
Now |N/M| = |NN(P)/CN(P)| divides p − 1, and so by (∗∗) for j = n it follows that N has

at least pn−1/(p − 1) orbits on V , establishing (∗).
Now by a result of Dixon [4] we know that |H/N| ≤ 24(n−1)/3, and since H/N permutes

the N-orbits on V , and the H-orbits on V are clearly conjugacy classes of HV , with (∗) we
obtain

k(HV) ≥ n(N, V)

|H/N| ≥
pn−1

p−1

24(n−1)/3
= 1

p − 1

(
p

2 3
√

3

)n−1

. ( + )

This implies that if

pn−3 ≥ 2n−1 · 3
n−1

3 , (∗∗∗)

then k(HV) ≥ p, contradiction, and we are done.
Hence as p > 1000, p will satisfy (∗∗∗) unless n ≤ 3. Since we are done if (∗∗∗) holds,

we may assume that n ≤ 3, i.e., n = 2 or n = 3.
First suppose that n = 3. Then by ( + ) we get that k(HV) ≥ p/4 3√9 ≥ Dp/log2 (p). So we are

done when n = 3.
So let finally n = 2. Then |H/N| = 2. Recall that M = K × P for a Hall p′-subgroup K of

M.
We first want to show that M acts irreducibly on V1. To do so, assume that V1 = X1 ⊕ X2

for nontrivial M-modules X1 and X2. Then we also have V2 = Y1 ⊕ Y2 for nontrivial M-
modules Y1 and Y2. Arguing just as in the proof of (∗∗), we let 0 �= x1 ∈ X1, so that each
M-orbit on X2 splits in at least p nontrivial CM(x1)-orbits. If x2 is in one of these orbits, then
each M-orbit on Y1 splits in at least p nontrivial CM(x1 + x2)-orbits. If y1 is in one of these
orbits, then each M-orbit on Y2 splits in at least p nontrivial CM(x1 + x2 + y1)-orbits. This
shows that M has at least p3 nontrivial orbits on V . Thus

k(HV) ≥ k(MV)

|HV:MV| ≥ n(M, V)

|H:M|
≥ p3

2(p − 1)
≥ p,

contradicting HV being a counterexample. So indeed M acts irreducibly on V1 (and also on
V2).

Next we claim that M acts primitively on V1. To see this, assume to the contrary that V1 =
W1 ⊕ · · · ⊕ Wl is the sum of l ≥ 2 subspaces Wi (i = 1, . . . l) which are transitively permuted
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by M. Let L � M be the kernel of this permutation action. Then likewise V2 = Wl+1 ⊕ · · · ⊕
W2l is the sum of l subspaces Wi (i = l + 1, . . . , 2l) which are transitively permuted by M/L.
Now if P is not a subgroup of L, then P permutes the Wi with orbits of length p. Hence
l ≥ p and we may assume that {W1, . . . , Wp} is a P-orbit. But then taking 0 �= w1 ∈ W1 and
adding up the elements in wP

1 we easily find a nonzero fixed point of P on W1 ⊕ · · · ⊕ Wp,
contradicting P acting frobeniusly on V . Thus indeed P ≤ L.

We can now argue as for M above to see that L has at least p2l−1 nontrivial orbits on V .
Using Dixon’s result again, we know that |M/L| ≤ 24(2l−1)/3 ≤ 32l−1 so that we get

k(HV) ≥ k(LV)

|HV:LV| ≥ n(L, V)

|H:L|
≥ p2l−1

|H:N||N:M||M:L| ≥ p2l−1

2(p − 1)32l−1
,

where the first inequality follows from the well-known fact that the number of conjugacy
classes in a subgroup is bounded by its index times the number of conjugacy classes in the
whole group [6]. Now since p > 1000 and l ≥ 2, we further get

k(HV) ≥ p3

2(p − 1)33
≥ p2

54
≥ p,

contradicting HV being a counterexample. This shows that V1 (and thus also V2) is primitive
as an M-module. Then clearly V is also primitive as an N-module.

We keep writing |V1| = qm and apply Seager’s result (Theorem 2·3) to the action of
N/CN(V1) on V1. This yields that we have one of the following situations:

(1) N/CN(V1) is permutation isomorphic to a subgroup of �(qm);

(2) If r is the number of orbits of N on V1, then r > (qm/2/12m) + 1; or

(3) qm ∈ {174, 194, 76, 58, 78, 138, 79, 316, 516}.
Let W ≤ V be an irreducible P-module. Since VP is homogenous, then there is a t ∈N

such that VP is a direct sum of t copies of W. Now we have qm = |V| = |W|t, so if we write
|W| = qs, then we see that m = st.

Note that if s = 1, then by [20, Theorem 2·1] we have that (1) holds; so if (1) does not
hold, then we know that s ≥ 2.

We first assume that (2) holds, but (1) does not hold. As just observed, then s ≥ 2.
Moreover, from (2) we get

r >
qm/2

12m
+ 1 = |W|t/2

12st
+ 1.

Now if v1 ∈ V1, then CN(v1) ≤ N also has at least r distinct orbits on V2, and this shows
that each orbit of N on V1 gives rise to at least r orbits of N on V which all have a represen-
tative that has v1 as their V1-component. Then we have n(N, V) ≥ r2, and with the above and
the fact that s = logq |W| we see that

n(N, V) ≥ r2 ≥ |W|t
144t2( logq |W|)2

.
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Now since |W| > |P| = p > 1000, we see that the function f (x) = |W|x/x2 is increasing for
x ≥ 2, and hence |W|t/t2 ≥ |W|2/22 = |W|2t/4, and thus

n(N, V) ≥ |W|2
576( logq |W|)2

≥ |W|2
576( log2 |W|)2

= D|W|
( log2 |W|) · |W|

576D log2 |W| ≥ Dp

log2 p
· p

576D log2 p
.

Since clearly k(HV) ≥ n(N, V)/|H/N| = n(N, V)/2, we see that we are done if
p/576D( log2 p) ≥ 2. This happens if and only if

p

log2 p
≥ 1152D.

Now first note that if p > 11000 and D = 1/2, then this is the case (we actually could choose
D slightly larger here) and we are done.

In general, however, with our lower bound on D from the beginning of the proof we
obtain

(2
√

p − 1 log (p))/p ≤ D ≤ p/(1152 log (p)).

This is the critical case mentioned at the beginning of the proof and is thus the one which
determines D. The optimal D is reached when we have equality here, so we have to find p
such that the left hand side is equal to the right-hand side. With the help of a calculator one
easily finds that this happens exactly when p = 4936.0274, and then the value of D equals
0.3492276. Therefore if D = 0.3942, then we are done in this situation as well.

Next we assume that (3) holds, but (1) does not hold. As observed above,
since (1) does not hold, we have s ≥ 2. Hence |W| ≤ qm/2 and actually |W| = qm/s.
Since p = |P| divides |W| − 1 and since (3) holds (and since a − 1 divides ab − 1
for any positive integers a, b), we see that p is a prime divisor of one of the
following numbers: 172 − 1, 192 − 1, 72 − 1, 73 − 1, 54 − 1, 52 − 1, 74 − 1, 72 − 1, 114 −
1, 112 − 1, 134 − 1, 73 − 1, 38 − 1, 34 − 1, 32 − 1, 58 − 1, 54 − 1, 52 − 1. But recall from
the very beginning that p > 1000, and none of the numbers listed has a prime divisor this
large. This is a contradiction.

It remains to consider the case that (1) holds. Then N is isomorphic to a subgroup of
�(qm) × �(qm). Recall that �(qm) is of order (qm − 1)m and has a normal cyclic subgroup
�0(qm). Write N0 = N ∩ (�0(qm) × �0(qm)), so that N0/CN0 (Vi) acts frobeniusly on Vi (i =
1, 2). Furthermore, we have |N/N0| ≤ m2.

Let s be as above, that is, V1 viewed as a P-module, is the direct sum of s copies of an
irreducible P-module W. First suppose that s ≥ 2. Writing again n(N,V) for the number of
orbits of N on V , we have

k(NV) ≥ n(N, V) ≥ |V|
|N| ≥ q2m

|N0|m2
= 1

|N0|
(

qm

m

)2

.

Since k(HV) ≥ k(NV)/2, then we are done if 1/|N0| (qm/m)2 ≥ 2Dp/log2 p. Therefore we now
assume that 1/|N0| (qm/m)2 < 2Dp/log2 p or, equivalently, |N0| > (1/2D)(( log2 p)/p)(qm/m)2.

Now since p divides |W| − 1 and s ≥ 2, it follows that p ≤ |V1|1/2 = qm/2 and p2 ≤ qm.
Therefore we argue as follows.
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k(HV) ≥ k(NV)

2
≥ k(N)

2
≥

k(N0)
|N/N0|

2
= |N0|

2|N/N0| ≥ |N0|
2m2

≥ (1/2D)(( log2 p)/p)(qm/m)2

2m2
= 1

4D

log2 p

p

(
qm

m2

)2

≥ 1

4D

log2 p

p

(
qm

( log2 qm)2

)2

≥ 1

4D

log2 p

p

(
p2

( log2 p2)2

)2

≥ 1

64D

log2 p

p

(
p

log2 p

)4

= 1

64D

(
p

log2 p

)3

= Dp

log2 p
· 1

64D2

(
p

log2 p

)2

.

Now since p > 1000, it is easy to see that the last factor 1/64D2 (p/log2 p)2 is greater than 1,
and so we have the desired contradiction to HV being a counterexample and are done.

So let finally s = 1. We argue somewhat similarly to the case that s ≥ 2, but need some
more detailed structural information first. Since s = 1, we know that V1 is irreducible as a P-
module. By [20, Example 2·7] we know that p is a Zsigmondy prime divisor of qm − 1. Since
P acts faithfully (actually, frobeniusly) on V1 and V2, with [20, Lemma 6·5(c)] we conclude
that CN(P) = N0. In particular, N/N0 is isomorphic to a subgroup of Aut(P), and thus N/N0

is cyclic. On the other hand, since N is isomorphic to a subgroup of �(qm) × �(qm), we see
that N/N0 is isomorphic to a subgroup of a homocyclic group of type (m,m), so in particular
the exponent of N/N0 is bounded above by m. Altogether it follows that |N/N0| ≤ m.

Now

k(NV) ≥ n(N, V) ≥ |V|
|N| ≥ q2m

|N0|m .

Since k(HV) ≥ k(NV)/2, then we are done if 1
|N0|

q2m

m ≥ 2Dp
log2 p . Therefore we now assume that

1/|N0|q2m/m < 2Dp/log2 p or, equivalently, |N0| > (1/2D)(( log2 p)/p)(q2m/m).
As clearly p < |V1| = qm, we can argue as follows.

k(HV) ≥ k(NV)

2
≥ k(N)

2
≥

k(N0)
|N/N0|

2
= |N0|

2|N/N0| ≥ |N0|
2m

≥ (1/2D)(( log2 p)/p)(q2m/m)

2m
≥ 1

4D

log2 p

p

(
qm

m

)2

≥ 1

4D

log2 p

p

(
qm

log2 qm

)2

≥ 1

4D

log2 p

p

(
p

log2 p

)2

= 1

4D

p

log2 p
= Dp

log2 p
· 1

4D2
.

Hence we are done if 1/4D2 ≥ 1 or, equivalently, D ≤ 1/2. Fortunately, this is the case, and
the proof is complete.

6. Solvable Groups: Primitive Case

Next, we consider the primitive case.

THEOREM 6·1. Let p be a prime and H a solvable group such that the Sylow p-subgroup
of H is normal in H and cyclic of order p. Let V be a faithful irreducible H-module over
GF(q) where q is a prime different from p, and suppose that V is primitive. Then

k(HV) ≥ p

2 log p
.
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Proof. By Lemma 2·6 and [9], we may assume that p > 1800. Let P be the normal Sylow
p-subgroup of H. Let C = CH(P) and put n = |H:C|. Since H/C is isomorphic to a subgroup
of Aut(P), we deduce that H/C is cyclic and n divides p − 1. If λ ∈ Irr(P) is nonprincipal,
then IH(λ) = C. By Clifford’s correspondence [16, Theorem 6·11], any faithful complex
representation of H has dimension at least |H:IH(λ)| = n. Furthermore, note that C = P ×
U, where U is a Hall p′-complement of C. By Gallagher’s theorem [16, Corollary 6·17]
and Clifford’s correspondence, there are k(U) irreducible characters of H lying over λ. We
conclude that H has exactly (p − 1)k(U)/n irreducible characters lying over nonprincipal
irreducible characters of P. Since H/C is abelian, we conclude that

k(H) ≥ n + (p − 1)k(U)

n
. (6·1)

In particular, the result follows if either n ≤ 2 log p or n ≥ p/2 log p, so we may assume that
2 log p < n < p/2 log p.

Since V is a faithful irreducible module in characteristic q, using Lemma 2·5 we deduce
that

|V| ≥ qn ≥ 2n > p2.

Suppose that 2 log p < n ≤ 4 log p. Then

k(H) ≥ 2 log p + (p − 1)k(U)

4 log p
.

In particular k(H) ≥ p/4 log p. Also, the result follows if k(U) ≥ 2, so we may assume that
U = 1. Thus

|H| = pn ≤ 4p log p,

so

n(H, V) ≥ p2/4p log p = p/4 log p.

Since

k(HV) ≥ k(H) + n(H, V) ≥ p

4 log p
+ p

4 log p
= p

2 log p
,

the result follows in this case too.
Hence, we may assume that 4 log p < n < p/2 log p. Recall that by hypothesis V is

a primitive H-module. (Note that we have not used this hypothesis in the remaining
cases.) If H is not isomorphic to a subgroup of �(V), then Theorem 2·3 implies that
the number of nontrivial orbits of H on V is n(H, V) ≥ qn/2/12n except for when |V| =
174, 194, 76, 58, 78, 138, 79, 36 or 516. Thus, in the nonexceptional cases, we have

k(HV) ≥ k(H) + n(H, V) ≥ n + p − 1

n
+ 2n/2

12n
.

Note that the third summand is ≥ p2/12(p/2 log p) ≥ p log p/6 > p/2 log p since p > 1800.
The result also follows.

Now, we consider the exceptional cases. In all of them |V| ≤ q16. On the other hand, we
know that |V| ≥ qn. We conclude that n ≤ 16. Using (6·1) and the fact that p > 1800, we
have that
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k(H) ≥ p − 1

n
≥ p − 1

16
≥ p

2 log p
,

and the result follows.
Finally, assume that H is isomorphic to a subgroup of �(V) = CN with N = GF(qm)× and

C is the Galois group of GF(qm)/GF(q). Thus D = N ∩ H is a normal subgroup of H of order
a divisor of qm − 1. Write |D| = pf . Note that H/D is cyclic of order e, for some divisor e of
m. As before,

k(H) ≥ e + pf

e
.

Thus, we may assume that e ≤ p/(2 log p). If e ≤ 2f log p, then the second summand
is ≥ p/(2 log p) and we are done. Since 2f log p < e ≤ p/(2 log p), we deduce that f <

p/(2 log p)2. It follows that

|H| = e · p · f ≤ p

2 log p
· p · p

(2 log p)2
= p3

(2 log p)3
.

On the other hand, since m ≥ e ≥ n > 4 log p,

|V| > q4 log p ≥ p4.

Hence, the number of orbits of H on V is at least p4/|H| > p, and we are done in this case
too. This completes the proof.

The following is a slightly strengthened version of the second part of Theorem A.

THEOREM 6·2. If G be a solvable group and p divides |G:F(G)|, then

k(G) ≥ 0.3492(p/ log p).

Furthermore, if p > 11000 then

k(G) >
p

2 log p
.

Proof. If p2 divides |G|, it follows from Theorem 2.2, that k(G) ≥ (49p + 1)/60 ≥
p/(2 log p). Hence, we may assume that |G|p = p. Since k(G) ≥ k(G/N) for any N � G, we
may assume that p divides |F2(G):F(G)|. By the same reason, we may also assume that
�(G) = 1 so that F(G) is elementary abelian. By Gaschütz’s theorem [14, III·4·2, III·4·4.
and III·4·5], there exists H ≤ G such that G = HF(G) and the action of H on F(G) is com-
pletely reducible. Write F(G) = V1 ⊕ · · · ⊕ Vt as a direct sum of irreducible H-modules.
For every i, let Ci = CH(Vi) and note that k(G) ≥ k((H/Ci)Vi). Thus, we may assume that
G = HV , where V = F(G) is a faithful irreducible H-module in characteristic q, for some
prime q �= p. Now the result follows from Theorem 5·1 and 6·1.

It seems that with additional work it might be possible to get D = 1 in Theorem 5·1 when
p is large enough. However, it is not clear how to improve the constant in Theorem 6·1 even
when p is very large.

We conclude by remarking that, on the other hand, the stronger bound in Theorem 6·2
also holds for small primes. In fact, even Conjectures C and D hold when p is small enough.
More precisely, using [28–30] we have checked that these conjectures hold when k(G) ≤ 14.
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It follows that Conjecture D holds when p < 29, Conjecture C holds when p < 100 and the
stronger bound in Theorem 6·2 holds when p < 230.

7. Blocks and Characters of p′-Degree

As we have mentioned in the Introduction, the Hethélyi–Külshammer problem on the
number of conjugacy classes has interesting connections with representation theory. For
instance, they already pointed out that the inequality k(G) ≥ 2

√
p − 1 holds for every finite

group if it holds for p-solvable groups and the Alperin–McKay conjecture is true for every
finite group (McKay’s conjecture is enough; see [19] for this and related questions). The
straightforward versions of the results in this paper for p′-degree irreducible characters and
Brauer p-blocks are not true. Recall from [9] that the groups Hp = C√

p−1 � Cp where p
is a prime such that p − 1 is a square have 2

√
p − 1 conjugacy classes. Let Vp be a faith-

ful irreducible Hp-module over GF(q), where q �= p is prime, and let Gp = Hp � Vp. Then
Irrp′(Gp) = Irr(Hp) so

|Irrp′(Gp)| = k(Hp) = 2
√

p − 1,

and there is no hope to get a better lower bound for the number of p′-degree irreducible
characters of a finite group G such that p divides |G:F(G)| than the one in [21]. Similarly,
if B0(Gp) is the principal p-block of Gp, then k(B0(Gp)) = k(Hp) = 2

√
p − 1. However, the

following natural versions could have an affirmative answer.

QUESTION 7·1. Is it true that if G is a finite group such that
⋂

χ∈Irr
p
′ (G)

Kerχ = {1}

and p divides |G:F(G)| then k(G) ≥ p/ log p? �

The subgroup
⋂

χ∈Irr
p
′ (G) Kerχ is known to have interesting properties. For instance, by

a theorem of Y. Berkovich [25, Theorem 7·7] it has a normal p-complement.

QUESTION 7·2. Is it true that if B is a faithful Brauer p-block of positive defect of a finite
group G and p divides |G:F(G)| then k(B) ≥ p/ log p? �

It would be interesting to see if the proposed bounds in these questions are of the right
order of magnitude. In other words, does there exist a universal constant c > 0 such that k(G)
(respectively k(B)) is at least cp/ log p?
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