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Abstract. We consider in this note smooth dynamical systems equipped with smooth
invariant affine connections and show that, under a pinching condition on the
Lyapunov exponents, certain invariant tensor fields are parallel. We then apply this
result to a problem of rigidity of geodesic flows for Riemannian manifolds with
negative curvature.

1. Statement of results
Let f:N-*Nbea difleomorphism of a smooth (i.e. C°°) closed manifold N. We
will assume that N is equipped with an /-invariant Borel measure n which is
absolutely continuous with respect to Lebesgue measure and positive on nonempty
open sets. We also assume that N possesses a nondegenerate, /-invariant bilinear
form g and an /-invariant (not necessarily torsion-free) affine connection V with
respect to which g is parallel (Vg = 0). The objects defined above, namely / TV, g,
and V are assumed to be smooth.

We say that the Lyapunov exponents of / satisfy the pinching condition with
respect to fi if for /JL- almost every point x e N, sup {|̂ |: x is a nonzero Lyapunov
exponent at x}<2 • inf{\x\'-X is a nonzero Lyapunov exponent at x}.

Finally, in those cases when 0 is a Lyapunov exponent of/ we will consider
tensor fields r with the following property: (*) r and VT vanish when contracted
with vectors or 1-forms associated to the exponent 0.

Most of our work is aimed at establishing the following result:

THEOREM 1. Letf g, N, n, and V be as defined above and let rbea smooth, f-invariant
tensor field on N. If 0 is a Lyapunov exponent off, we also assume that r possesses
property (*). Then, if the Lyapunov exponents of f satisfy the pinching condition with
respect to /*, T is parallel, i.e. VT = 0.

It should be remarked that the exact degree of differentiability required in the
proof of Theorem 1 is actually finite, but high, and depends on the type of r and
on the dimension of TV, due to the use of Sard's Theorem.
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From the proof of Theorem 1, we extract the following elementary, but nonetheless
interesting fact, which is a consequence of Lemma 2. We recall that a tensor field
of type (r, s) is a section of the vector bundle «g)r TJV)® ((g)s T*N).

PROPOSITION 1. Let f be as in Theorem 1. If the Lyapunov exponents off are nonzero
and satisfy the pinching condition, and r is a continuous, f-invariant tensor field on N
of type (r, s), r + s = 3, then r must vanish identically. Therefore, under these assump-
tions a Cl f-invariant connection on N is torsion-free and unique, as the difference of
two such connections is an invariant (1,2)-tensorfield.

An immediate consequence of Theorem 1 and Proposition 1 is:

COROLLARY 1. Consider f g, p, V, and N as in Theorem 1, and assume that the
exponents of f are nonzero. Then, (JV, V) is an affine locally symmetric space, not
necessarily complete.

Proof. It is easy to see that the torsion and curvature of an /-invariant connection
are /-invariant tensor-fields. By Theorem 1 the curvature tensor of the connection
V is parallel; by Proposition 1 V is torsion-free. This is a well-known necessary and
sufficient condition for V to be locally symmetric affine connection. •

Let M be a closed C°° Riemannian manifold with negative sectional curvature
and let (p,: SM -» SM be the geodesic flow on the unit tangent bundle of M. This
is an Anosov flow. The foliations of SM into stable and unstable horospheres
coincide with the contracting and expanding foliations for <p,. The geodesic flow
has a natural smooth measure, sometimes called Liouville measure.

THEOREM 2. If at least one of the horospheric foliations on SM is smooth and the
Lyapunov exponents of the time-one map <p, satisfy the pinching condition with respect
to Liouville measure, then the geodesic flow <p, is smoothly conjugate to the flow on a
manifold of constant negative curvature.

The following result is an immediate corollary of Theorem 2. It represents a
stronger and, in fact, sharp version of a result by M. Kanai [2].

THEOREM 3. If at least one of the horospheric foliations on SM is smooth and the
sectional curvature k is \-pinched, i.e. —4a2< k^ —a2, then the geodesic flow on M is
smoothly conjugate to the geodesic flow on a manifold of constant negative curvature.

Remark. The condition - 4 a 2 < f c < - a 2 cannot be improved. In fact, let M be a
closed manifold covered by the complex hyperbolic space or by any other non-
compact Riemannian symmetric space of rank 1 with nonconstant curvature. In that
case the horospheric foliations are smooth and the sectional negative curvature k
satisfies - 4 a 2 < / c < - a 2 . However, the covariant derivative VR of the curvature
tensor R for the Kanai connection (see § 3) does not vanish.

We believe that the assertion of Theorems 2 or 3 implies that the metric on M
has constant negative curvature. This fact is known for surfaces. The following
corollaries provide some evidence in favor of this conjecture.

COROLLARY 2. M is homotopy equivalent to a compact manifold of constant negative
curvature.
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Proof. We can assume that dim M > 3 . Since the unit tangent bundle SM is diffeo-
morphic to the unit tangent bundle SM0 for a manifold Mo of constant negative
curvature, irl(M) = irl(M0) and M is homotopy equivalent to Mo since they are
both K(v, 1) spaces. •

Remark. It is not difficult to construct a smooth homotopy equivalence between M
and Mo explicitly using the map conjugating the geodesic flows and the concept of
center of gravity.

COROLLARY 3. All positive Lyapunov exponents for <p, with respect to any invariant
measure are equal.

Proof. This property holds for metrics of constant negative curvature and is invariant
under a smooth flow conjugacy. •

COROLLARY 4. The topological entropy for q>, is equal to the metric entropy with respect
to the Liouville measure and the latter is the measure of maximal entropy.

Proof. The same as Corollary 3. •

2. Proof of Theorem 1
Let / N, and fi be as before. Consider the subset A of N defined as follows: for
each xeA there exist finitely many numbers (Lyapunov exponents) Xi(x)<' ' "<
#*<x)(x) and a decomposition TxN = Et®- • -®EkM(x) such that

log||(P/"),p|l_ {x)
n

for every v € E,(x), v ¥• 0, i = 1, . . . , k(x). Here, || • || is any continuous norm on TN.
It is a consequence of Oseledec Multiplicative Ergodic Theorem (cf. e.g. [5] Theorem
10.1) that A is a set of full measure.

Let T be a continuous, /-invariant tensor field on N. One can assume without
loss of generality that r is a tensor field of type (0, r); in fact, if r is of type (1, m),
we can use the isomorphism TN = T*N defined via the bilinear form g, v -*g(v, •),
to obtain a tensor field of type (0,1 + m). Notice that this correspondence between
(1, m) and (0, l + m)-tensors preserves/-invariance and sends parallel tensors into
parallel tensors, as g is itself/-invariant and parallel.

L E M M A 1. Let xeA and suppose u .ef , . , i = l,...,r, are vectors at x for which

lim
n-»±oo

Proof. 0*Tx(vit...,vr) = ( / " * T ) » ( » , , . . . ,
|| rx || is bounded for all x e N, so that

for some constant c>0 and

= T
r ( x )

((iy"),»,,..., (Df")xvr). But

n '
\ n \ , = i| n | \ n \ \n\,=i n

Passing to the limit as n-*+<x>, and n-»-oo, we obtain 0<±£[= 1 #;,, so that
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LEMMA 2. If x '* a Lyapunov exponent off, then ~x is also a Lyapunov exponent.
Furthermore, if the exponents of f satisfy the pinching condition, then there cannot be
nonzero exponentsXi, X2, Xi such that X\ + X2 + X3 = 0.

Proof. The first assertion is an immediate consequence of Lemma 1 and the existence
of the invariant and nondegenerate form g. As for the second assertion, we may
assume without loss of generality that Xi > 0, X2 < 0, Xi < 0- If this is not the case,
we can use the first assertion and a convenient permutation of the indices to have
the exponents in that form. But then, Xi = l/tel+ \xi\ — 2 • min {|̂ 2|, \xi\), which violates
the pinching condition. •

Suppose t h a t / satisfies the conditions of Theorem 1. Let r be a smooth/-invariant
tensor field of type (0, r) and assume that VT is not identically zero. We will later
show that this last assumption leads to a contradiction. Define si' = {x e N: TX^0
and (VT)X ̂  0}. sd' is an open, nonempty subset of N, hence its measure is positive.
Define si = s£' n A. This set also has positive measure. Denote by V the direct sum
bundle p: V = 0 r TN-* N. It will be convenient to view r as a smooth real valued
function on the manifold V. We will use the notation <ox(v0, v) = (Vlfex)x(i;), where
voe TXN and v = (vl,..., vr) e Vx = p~1(x). For each x e i , denote by S x the set of
all v = (vt,..., vr) e Vx for which: (i) CJX( •, v) # 0, (ii) vt € £,. for some /,, i = 1 , . . . , r.

LEMMA 3. Under the assumptions of Theorem 1, suppose xesi and ueH x . Then
T(V) = 0 and there is voe TXN such that (Dr)vX T4 0 for all X € TVVprojecting onto
v0, i.e. with (Dp)vX = v0. In particular (DT)VX 5̂  0 for each v in 3 X .

Proof. We can choose voe TXN such that a>x(v0, v)¥:Q and VQ&E^ for some /0.
Suppose X e TVV projects onto v0. Let v = ( £ , , . . . , vr) be a smooth local section
of V and y{t) a differentiable curve in N such that v(x) = v, y(0) = x, y'(0) = uo

and (v°y)'(0) = XeTvV. Then,

=0 1 = 1

We claim that the terms T X ( D , , . . . , V^tf,-,..., vr), i = 1 , . . . , r, vanish. Suppose not.
Decompose (V^tJ,)^ =£ ) 1* )

 u..^ Uj. e ^.(x). There will be indices i and j for which
TX(VX , . . . , My,..., vr) T

6 0. According to Lemma 1, the Lyapunov exponents must
satisfy the following relations: (a) Y.l=oXk=Q> since <ox(v0, v)^0 and (b) \j +
Y.k = i,k*i Xik ~^' since TX(V, ..., uijt..., vr) ̂  0. Subtracting (a) from (b) we obtain
Xj ~Xk,~Xi{

 = 0- Since these exponents are not zero, this equation violates the pinching
condition, as we have shown in Lemma 2. Hence we must have
rx(vi,... ,VVaVi,...,vr) = 0 for each i, and (DT)VX = WX(V0, V)^0, as claimed.
Finally, if we had TX(V) T* 0, then £r

k=1 xik = 0 so that ^ = 0 by (a). Since this violates
property (*), we must have TX(V) = 0. •

COROLLARY 5. All the conditions as in Lemma 2. Define Jf = {v e V: T(V) = 0}. Then,
for all xe M and v e S x , we can find a neighborhood U of v in V such that Jfn U is
a smooth manifold embedded in V of codimension 1 containing v. Furthermore, v is
a critical point of the projection p\^nU:Jfn U -» N.
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Proof. The first assertion is an immediate consequence of Lemma 3 and the Implicit
Function Theorem. The second one follows from Lemma 3 since if v were not a
critical point of the projection, there would be for every voe TXN an X e TVV with

= 0. Q

Proof of Theorem 1. Define Jf' = {v€jf:3 neighborhood U of v in V such that
I n U is a smooth manifold embedded in V}. Jf' is a (nonempty) smooth manifold.
The restriction of p to Jf is a smooth map which, according to Corollary 5 has a
set of positive measure of critical values, since each x e M is such a value. But this
is impossible by Sard's Theorem. Therefore, we must have VT = 0. •

Remark. There is an alternative approach to the proof of Theorem 1 which is based
on the study of singularities of the zero-set {v e Vx, x e / : TX(V) = 0}. This method
allows to avoid the use of Sard's Theorem and consequently requires lower differen-
tiability of the stable and unstable foliations. In fact, it is sufficient to assume just
enough differentiability in order to properly define the invariant tensor fields involved
in the argument. The necessary results about the structure of singularities are rather
difficult and can be extracted from [6].

3. Geodesic flows
In order to discuss Theorem 2, we need to recall some notions which were introduced
in [2] by M. Kanai. For more details concerning the following material, see [2],
[3], [1].

Let M be a C°° closed Riemannian manifold of negative curvature. Denote by
M its universal covering space and by SM the unit tangent bundle of M. As is
shown in [2], SM is fibered over a manifold P, SM -^ P = SM/R, with the fibres
being the orbits of the R-action of the geodesic flow on SM. It is well known that
the tangent bundles of SM and SM possess a flow-invariant splitting, the Anosov
splitting, into the subbundles of exponentially contracting vectors E~, exponentially
expanding vectors E+, and the direction E° spanned by the geodesic spray
4>: T(SM) = E~®E°®E+. This splitting projects to TP = F~®F+. We assume that
the Anosov splitting is smooth, so that the splitting of TP has the same property.
P also possesses a symplectic form ft defined as the push forward via IT of the
exterior derivative of the contact form 0 of SM (the contact form can be defined
by the property that it vanishes on E' and E+ and 0(<p) = l). F~ and F+ are
Lagrangian distributions with respect to ft. TP has an involution c:TP-*TP,
c\F* = ±\dF* and we can define a nondegenerate bilinear symmetric form g(£ rj) =
ft(£ "7), for £ r) G TPP. We will call the Levi-Civita connection V associated to g
the Kanai connection of P. Notice that Vft = 0.

Next we define a connection on SM or SM which is a lift of the Kanai connection.
For a vector field f on P, let £* be the unique horizontal lift of f to SM, i.e. £* is
a section of E~®E+ such that 1?^* = ^. Now, define a connection V on SM in
the following way:
(i) V .̂77* = (Vf77)*, where £ and -q are vector fields on P,
(ii) v ^ * = v;.,p = v ^ = o,
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and extend it to arbitrary vector fields using the general properties of an affine
connection. It is not difficult to verify that the connection so denned is invariant
under the action of the fundamental group of M and satisfies the properties: V'0 = 0,
V dd = 0, and if T is a (0, r)-tensor field on P, then TT*VT = W * T . We note that V
is not torsion-free.

Denote by R the curvature tensor of V of P. In [2], it is shown how to deduce
the conjugacy of the geodesic flows of Theorem 2 from the assumption that (P, V)
is an affine locally symmetric space. More precisely, we have

THEOREM (M. Kanai [2].) If the Anosov splitting ofSM is smooth and the curvature
tensor for the Kanai connection on P is parallel (VR = 0) then the geodesic flow ofM
is smoothly conjugate to the flow for a metric of constant negative curvature.

Denote by R the (0,4)-tensor field on P associated to R via Cl, that is,
R(€i,- • •, £.) = n(K(fi, &)&, £*)• Since fl is parallel with respect to V, it follows
that VJ? = 0 iff VR=0.

Proof of Theorem 2. Let / : 5M-» SM be the 'flip' map which sends tangent vector
ve TXM, xe M to the vector -v. This map interchanges stable and unstable horo-
spheres. Thus if one of the foliations is smooth so is the other. According to the
above discussion, we need to show that VR = 0. As we noted before, Vrr*R = ir*VR,
so that ir*R possesses property (*) and VR = 0 if VTT*R - 0. But Theorem 1, applied
to f=(p\, N = SM, /i Liouville measure on SM, and the bilinear symmetric form
g = iT*g + d®d (the latter g, as defined in the previous paragraph, i.e. g(£ 77) =
fl(fc«j)), yields V'7T*£=0. •

Proof of Theorem 3. Notice that the condition - (Ca) 2 <fc<-a 2 implies that at each
point x e SM where Lyapunov exponents for the map <px are defined sup {\x\- X is
a non-zero Lyapunov exponent of x} < C inf {\x\- X is a non-zero Lyapunov exponent
at x) (see [4], Theorem 3.2.17). Hence Theorem 3 follows from Theorem 2. •
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