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Abstract

Let N be a fixed positive integer and f : R→ C. As a generalisation of the superstability of the exponential
functional equation we consider the functional inequalities∣∣∣ f ( N

√
xN + yN)

− f (x) f (y)
∣∣∣ ≤ φ(x),∣∣∣ f ( N

√
xN + yN)

− f (x) f (y)
∣∣∣ ≤ ψ(x, y)

for all x, y ∈ R, where φ : R→ R+ is an arbitrary function and ψ : R2 → R+ satisfies a certain condition.
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1. Introduction

Throughout, R, R+ and C denote the sets of real numbers, nonnegative real numbers
and complex numbers respectively and δ ≥ 0. A function E : R→ C is called an
exponential function if E(x + y) = E(x)E(y) for all x, y ∈ R.

The Ulam problem for functional equations goes back to 1940.

Problem 1.1 (Ulam [11]). Suppose that f is a mapping from a group G1 to a metric
group G2 with metric d(·, ·) such that

d( f (xy), f (x) f (y)) ≤ δ for all x, y ∈ G1.

Does there exist a group homomorphism h and θδ > 0 such that

d( f (x), h(x)) ≤ θδ for all x ∈ G1?

This problem was solved affirmatively by Hyers under the assumption that G2 is a
Banach space (see Hyers [7], Hyers et al. [8]). In the case of functions f : R→ R, it
is known that if f satisfies

| f (x + y) − f (x) f (y)| ≤ δ (1.1)
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for all x, y ∈ R, then f is either a bounded function satisfying | f (x)| ≤ 1
2
(
1 +
√

1 + 4δ
)

for all x ∈ R or an exponential function (see Baker [1], Baker et al. [2]). Székelyhidi
[10] generalised this result to the case when the difference in (1.1) is bounded for each
fixed y (or, equivalently, for each fixed x).

During the thirty-first International Symposium on Functional Equations,
Th. M. Rassias posed a problem concerning the behaviour of solutions of the functional
inequality

| f (x + y) − f (x) f (y)| ≤ θ(‖x‖p + ‖y‖p) (1.2)

for all x, y ∈ R and for some θ > 0, p > 0 (see [9, page 211]). In response, Gǎvruţǎ
investigated the stability of (1.2) in [6] (see also [9, Theorem 9.6]). A refined version
of the result can be found in [5].

We consider the Hyers–Ulam stability of the N-radical functional equation

f
( N
√

xN + yN)
= f (x) f (y) (1.3)

for all x, y ∈ R, that is, we consider the functional inequalities∣∣∣ f ( N
√

xN + yN)
− f (x) f (y)

∣∣∣ ≤ φ(x), (1.4)∣∣∣ f ( N
√

xN + yN)
− f (x) f (y)

∣∣∣ ≤ ψ(x, y) (1.5)

for all x, y ∈ R, where φ : R→ R+ is an arbitrary function and ψ : RN → R+ is a
symmetric even function in each variable such that there exist positive constants a1, a2
with

ψ(x, y) ≤ a1(ψ(x, x) + ψ(y, y)), (1.6)

ψ
( N
√

xN + yN , z
)
≤ a2(ψ(x, z) + ψ(y, z)) (1.7)

for all x, y, z ∈ R. In Section 2, we consider the functional inequality (1.4) and, in
Section 3, we consider the functional inequality (1.5).

Remark 1.2. It is easy to see that if ψ satisfies (1.6) and (1.7), then there exist positive
constants c1, c2 such that

ψ
( N√

2x,
N√

2x
)
≤ c1ψ(x, x), (1.8)

ψ
( N
√

2xN + yN , z
)
≤ c2ψ(x, x) + β(y, z) (1.9)

for all x, y, z ∈ R, where β : R2 → R+ is an appropriately chosen function.

2. Stability with perturbations of one variable

In this section, we consider the functional equation (1.3) and the functional
inequality (1.4). We first exhibit in Lemma 2.1 the general solutions of the functional
equation (1.3). We exclude the trivial case when f (x) = 0 for all x ∈ R.

A slightly different description of the solutions to (1.3) is given in [3, Corollary
2.2].
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A mapping f : R→ C is called a general monomial of degree N if it satisfies the
functional equation

∆N
y f (x) − N! f (y) = 0 (2.1)

for all x, y ∈ R, where the difference operator ∆y is defined by ∆y f (x) = f (x + y) − f (x)
for all x, y ∈ R and ∆n

y is defined by ∆n+1
y f = ∆y(∆n

y f ) for n = 1, 2, . . .. Using iteration,
we can see that

∆N
y f (x) =

N∑
k=0

(
N
k

)
(−1)k f (x + (N − k)y)

for all x, y ∈ R.

Lemma 2.1. All nontrivial solutions of the functional equation (1.3) are of the form

f (x) = epN (x) for all x ∈ R, or f (x) =

1, x = 0,
0, x , 0,

(2.2)

where pN : R→ R is a monomial function of degree N.

Proof. Replacing y by −y in (1.3) shows that f is an even function if N is even.
Replacing y by x in (1.3) gives f (x)2 = f

( N√
2xN)

for all x ∈ R and it follows that
f (x) ≥ 0 for all x ∈ R. Putting x = y = 0 in (1.3) gives f (0) = 0 or f (0) = 1. If f (0) = 0,
putting y = 0 in (1.3) gives f

( N√
xN)

= f (x) f (0) = 0 for all x ∈ R, which implies that
f (x) = 0 for all x ∈ R. Thus, we have f (0) = 1.

First, we assume that f (a) = 0 for some a ∈ R. Putting y = a in (1.3) gives
f
( N√

xN + aN)
= f (x) f (a) = 0 for all x ∈ R, which implies that f (x) = 0 for all x ≥ |a|.

Putting x = y = |a|/ N√2 in (1.3) gives f
(
|a|/ N√2

)2
= f

( N
√
|a|N

)
= 0. By induction,

f
(
|a|/ N√2

k)
= 0 for all positive integers k. Let c > 0 be given. Since we can choose

a positive integer k so that |a|/ N√2
k
≤ c, we have f (c) = 0. Thus, we have f (x) = 0 for

all x , 0, which gives the second case of (2.2).
Now we assume that f (x) > 0 for all x , 0. Set g(x) = ln f (x) for all x ∈ R, so that

g
( N
√

xN + yN)
= g(x) + g(y) (2.3)

for all x, y ∈ R. Putting y = x = 0 in (2.3) shows that g(0) = 0 and so putting y = −x in
(2.3) shows that g is even if N is even and odd if N is odd. By iteration,

g
( N
√

xN
0 + xN

1 + · · · + xN
m−1

)
= g(x0) + g(x1) + · · · + g(xm−1) (2.4)

for all x0, x1, . . . , xm−1 ∈ R. Putting x0 = x1 = · · · = xm−1 = x in (2.4) gives

g
( N√mx

)
= g

( N√
mxN)

= mg(x) (2.5)

for all x ∈ R and all positive integers m. We first consider the case when N is odd.
Since g(x) = xN satisfies the functional equation (2.1),

N∑
k=0

(−1)k
(
N
k

)
(x + (N − k)y)N = N!yN (2.6)
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for all x, y ∈ R. In (2.4), set m = N + 1 and xk = (−1)k
(

N
k

)1/N
(x + (N − k)y) for

k = 0, 1, . . . ,N. By (2.5) and (2.6),

N!g(y) = g
( N
√

N!yN)
= g

(( N∑
k=0

(−1)k
(
N
k

)
(x + (N − k)y)N

)1/N)

=

N∑
k=0

g
(
(−1)k N

√(
N
k

)
(x + (N − k)y)

)
=

N∑
k=0

(−1)k
(
N
k

)
g(x + (N − k)y)) = ∆N

y g(x) (2.7)

for all x, y ∈ R. Now we consider the case when N is even. From (2.4),

g(x1) + g(x3) + · · · + g(xN−1) + g
(

N
√

xN
0 + xN

2 + · · · + xN
N − xN

1 − xN
3 − · · · − xN

N−1

)
= g

(
N
√

xN
0 + xN

2 + · · · + xN
N

)
= g(x0) + g(x2) + · · · + g(xN)

for all x0, x1, . . . , xN ∈ R with xN
0 + xN

2 + · · · + xN
n − xN

1 − xN
3 − · · · − xN

N−1 ≥ 0, which
implies that

g
(( N∑

k=0

(−1)k xN
k

)1/N)
=

N∑
k=0

(−1)kg(xk) (2.8)

for all x0, x1, . . . , xN ∈ R with
∑N

k=0(−1)k xN
k ≥ 0. Putting xk =

(
N
k

)1/N
(x + (N − k)y) for

k = 0, 1, 2, . . . ,N in (2.8), we again get (2.7). Thus, g is a monomial function of degree
N and f (x) = epN (x), which gives the first case of (2.2). This completes the proof. �

Theorem 2.2. Suppose that f : R→ R satisfies the functional inequality

| f (x) f (y) − f
( N
√

xN + yN)
| ≤ φ(x) (2.9)

for all x, y ∈ R. Then either f is a bounded function satisfying

| f (x)| ≤ 1
2
(
1 +

√
1 + 4φ(x)

)
(2.10)

for all x ∈ R or f satisfies the functional equation (1.3).

Proof. First, we assume that f is bounded. Using the triangle inequality with (2.9) and
letting M := supx∈R | f (x)|,

| f (x) f (y)| ≤ | f
( N
√

xN + yN)
| + φ(x) ≤ M + φ(x) (2.11)

for all x, y ∈ R. Taking the supremum of the left-hand side of (2.11) with respect to y,

| f (x)|M ≤ M + φ(x)
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for all x ∈ R, which implies that

M(| f (x)| − 1) ≤ φ(x)

for all x ∈ R. The inequality (2.10) holds for all x ∈ R such that | f (x)| ≤ 1. If | f (x)| > 1,
then

| f (x)|(| f (x)| − 1) ≤ φ(x) (2.12)

for all x ∈ R. Fixing x and solving the quadratic inequality (2.12) gives (2.10).
Now we assume that f is unbounded. Choosing a sequence yn ∈ R, n = 1, 2, 3, . . . ,

such that | f (yn)| → ∞ as n→∞, putting y = yn, n = 1, 2, 3, . . . , in (2.9), dividing the
result by | f (yn)| and letting n→∞ gives

f (x) = lim
n→∞

f
( N
√

xN + yN
n
)

f (yn)
(2.13)

for all yn, x ∈ R. Multiplying both sides of (2.13) by f (y) and using (2.9) and (2.13),

f (y) f (x) = lim
n→∞

f (y) f
( N
√

xN + yN
n
)

f (yn)
= lim

n→∞

f
( N
√

yN + xN + yN
n
)

+ R(yn, x, y)
f (yn)

(2.14)

for all yn, x, y ∈ R, where R(yn, x, y) = f (y) f
( N
√

xN + yN
n
)
− f

( N
√

yN + xN + yN
n
)
. From

(2.9),
|R(yn, x, y)| ≤

∣∣∣φ( N
√

xN + yN)∣∣∣ (2.15)

for all yn, x, y ∈ R. Dividing (2.15) by | f (yn)| gives

R(yn, x, y)
f (yn)

→ 0 as n→∞.

Thus, from (2.13) and (2.14),

f (y) f (x) = lim
n→∞

f
( N
√

( N
√

xN + yN)N + yN
n
)

f (yn)
= f

( N
√

xN + yN)
for all x, y ∈ R. The proof is complete. �

Remark 2.3. An analogous result to Theorem 2.2 can be derived from the much more
involved [4, Theorem 2]. The estimation resulting from [4, (18)] is better than (2.11)
when the parameter δ(t) satisfies δ(t) ≤ M2 − M.

3. Stability with perturbations of all variables

In this section, we consider the functional inequality (1.5).
Let R∗ = {x ∈ R : ψ(x, x) , 0}. From (1.8), supx∈R* ψ

( N√2x, N√2x
)
/ψ(x, x) <∞. From

now on, we set λ = max{1, supx∈R* ψ
( N√2x, N√2x

)
/ψ(x, x)}.
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Theorem 3.1. Assume that f : R→ R satisfies the functional inequality

| f
( N
√

xN + yN)
− f (x) f (y)| ≤ ψ(x, y) (3.1)

for all x, y ∈ R. Then either f satisfies

| f (x)| ≤ 1
2
(√
λ +

√
λ + 4ψ(x, x)

)
(3.2)

for all x ∈ R or f satisfies the functional equation (1.3).

Proof. Let L > 0 be a positive real number and let ΦL(x) = max{1, Lψ(x, x)}. Then

sup
x∈R

ΦL
( N√2x

)
ΦL(x)

≤ λ (3.3)

for all L > 0. Also, it is easy to see that

min{1, L}Φ1(x) ≤ ΦL(x) ≤ max{1, L}Φ1(x) (3.4)

for all x ∈ R and L > 0. From (3.4), either

sup
x∈R

| f (x)|
√

ΦL(x)
:= ML <∞ for all L > 0 (3.5)

or
sup
x∈R

| f (x)|
√

ΦL(x)
=∞ for all L > 0. (3.6)

First, we assume that (3.5) holds. Replacing y by x in (3.1) and using the triangle
inequality in the result,

| f (x)|2 ≤ | f
( N√

2xN)
| + ψ(x, x) ≤ | f

( N√
2xN)
| +

1
L

ΦL(x) (3.7)

for all x ∈ R and L > 0. Dividing (3.7) by ΦL(x) and using (3.3) and (3.5),

(
| f (x)|
√

ΦL(x)

)2
≤

∣∣∣ f ( N√
2xN)∣∣∣

ΦL(x)
+

1
L
≤ ML

√
ΦL

( N√
2xN)

ΦL(x)
+

1
L

≤ML

√
ΦL

( N√2x
)

ΦL(x)
+

1
L
≤ ML

√
λ +

1
L

(3.8)

for all x ∈ R and L > 0. Taking the supremum of the left-hand side of (3.8),

M2
L −
√
λML −

1
L
≤ 0. (3.9)

Solving the quadratic inequality (3.9),

ML ≤
1
2

(√
λ +

√
λ +

4
L

)
. (3.10)
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From (3.5) and (3.10),

| f (x)| ≤
1
2

(√
λ +

√
λ +

4
L

) √
max{1, Lψ(x, x)} (3.11)

for all x ∈ R and L > 0. Fix an x0 ∈ R. If ψ(x0, x0) > 0, then applying (3.11) with
L := 1/ψ(x0, x0) gives

| f (x)| ≤
1
2
(√
λ +

√
λ + 4ψ(x0, x0)

)√
max

{
1,

ψ(x, x)
ψ(x0, x0)

}
(3.12)

for all x ∈ R. Putting x = x0 in (3.12),

| f (x0)| ≤ 1
2
(√
λ +

√
λ + 4ψ(x0, x0)

)
. (3.13)

On the other hand, if ψ(x0, x0) = 0, then, from (3.11),

| f (x0)| ≤
1
2

(√
λ +

√
λ +

4
L

)
(3.14)

for all L > 0. Letting L→∞ in (3.14),

| f (x0)| ≤
√
λ = 1

2
(√
λ +

√
λ + 4ψ(x0, x0)

)
. (3.15)

Thus, from (3.13) and (3.15) we reach the alternative (3.2) in the theorem.
Secondly, we assume that (3.6) holds. Then we can choose a sequence xn ∈ R for

n = 1, 2, . . . such that

ψ(xn, xn)
| f (xn)|2

+
1

| f (xn)|2
→ 0 as n→∞. (3.16)

Replacing (x, y) by
( N
√

xN + yN , z
)

in (3.1),

| f
( N
√

xN + yN)
f (z) − f

( N
√

xN + yN + zN)
| ≤ ψ

( N
√

xN + yN , z
)

(3.17)

for all x, y, z ∈ R. Multiplying both sides of (3.1) by | f (z)|,

| f (x) f (y) f (z) − f
( N
√

xN + yN)
f (z)| ≤ ψ(x, y)| f (z)| (3.18)

for all x, y, z ∈ R. Using the triangle inequality with (3.17) and (3.18),

| f (x) f (y) f (z) − f
( N
√

xN + yN + zN)
| ≤ ψ

( N
√

xN + yN , z
)

+ ψ(x, y)| f (z)| (3.19)

for all x, y, z ∈ R.
Replacing both x and y by xn in (3.19), dividing the result by | f (xn)|2 and using

(1.9), ∣∣∣∣∣ f
( N
√

2xN
n + zN)

f (xn)2 − f (z)
∣∣∣∣∣≤ ψ( N√2xn, z

)
+ ψ(xn, xn)| f (z)|
| f (xn)|2

≤
(c2 + | f (z)|)ψ(xn, xn) + β(0, z)

| f (xn)|2
(3.20)
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for all xn, z ∈ R and c2 a positive constant. Letting n→∞ in (3.20) and using (3.16),

f (z) = lim
n→∞

f
( N
√

2xN
n + zN)

f (xn)2 (3.21)

for all xn, z ∈ R. Multiplying both sides of (3.21) by f (w) and using (3.1),

f (z) f (w) = lim
n→∞

f
( N
√

2xN
n + zN)

f (w)
f (xn)2 = lim

n→∞

f
( N
√

2xN
n + zN + wN)

+ R(xn, z,w)
f (xn)2 (3.22)

for all xn, z, w ∈ R, where R(xn, z, w) = f
( N
√

2xN
n + zN)

f (w) − f
( N
√

2xN
n + zN + wN)

.
Using (1.9),

|R(xn, z,w)| ≤ ψ
( N
√

2xN
n + zN ,w

)
≤ c2ψ(xn, xn) + β(z,w) (3.23)

for all xn, z,w ∈ R. Using (3.16) in (3.23),

R(xn, z,w)
f (xn)2 → 0 as n→∞.

Thus, from (3.21) and (3.22),

f (z) f (w) = lim
n→∞

f
( N
√

2xN
n + zN + wN)
f (xn)2 = f

( N√
xN + wN)

for all z,w ∈ R. The proof is complete. �

Remark 3.2. As a matter of fact, fixing x ∈ R and taking the infimum of the right-hand
side of (3.11) with respect to L > 0 we get the inequality (3.2).

Remark 3.3. Let p j, q j, a j, j = 1, 2, . . . ,m, be sequences of nonnegative real numbers.
Then

ψ(x, y) =

m∑
j=1

a j|x|p j |y|q j

satisfies (1.6) and (1.7) and, if p = max{p j + q j : j = 1, 2, . . . ,m}, then λ =
N√2p.

As a direct consequence of Theorem 3.1, we obtain the Hyers–Ulam–Rassias
stability of the Gaussian functional equation, which is the case N = 2 of the following
corollary.

Corollary 3.4. Let p, q, r, θ1, θ2 be given nonnegative real numbers. Assume that
f : R→ R satisfies the functional inequality∣∣∣ f (x) f (y) − f

( N
√

xN + yN)∣∣∣ ≤ θ1|x|p|y|q + θ2(|x|r + |y|r)

for all x, y ∈ R. Then either f satisfies

| f (x)| ≤ 1
2
( 2N√

2µ +

√
N√

2µ + 4θ1|x|p+q + 8θ2|x|r
)
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for all x ∈ R, where

µ =


max{p + q, r} if θ1θ2 , 0,
p + q if θ1 , 0, θ2 = 0,
r if θ1 = 0, θ2 , 0,

or f satisfies the functional equation (1.3).

Remark 3.5. Corollary 3.4 reduces to Hyers–Ulam–Rassias stability if θ1 = 0, to
Ulam–Gǎvruţǎ–Rassias stability if θ2 = 0 and to Ulam–Rassias stability if θ1 = θ2.
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Math. Soc. 94(2) (2016), 278–285.
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